message.h revision fbaaef999ba563838ebd00874ed8a1c01fbf286d
1// Protocol Buffers - Google's data interchange format
2// Copyright 2008 Google Inc.  All rights reserved.
3// http://code.google.com/p/protobuf/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9//     * Redistributions of source code must retain the above copyright
10// notice, this list of conditions and the following disclaimer.
11//     * Redistributions in binary form must reproduce the above
12// copyright notice, this list of conditions and the following disclaimer
13// in the documentation and/or other materials provided with the
14// distribution.
15//     * Neither the name of Google Inc. nor the names of its
16// contributors may be used to endorse or promote products derived from
17// this software without specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// Author: kenton@google.com (Kenton Varda)
32//  Based on original Protocol Buffers design by
33//  Sanjay Ghemawat, Jeff Dean, and others.
34//
35// Defines Message, the abstract interface implemented by non-lite
36// protocol message objects.  Although it's possible to implement this
37// interface manually, most users will use the protocol compiler to
38// generate implementations.
39//
40// Example usage:
41//
42// Say you have a message defined as:
43//
44//   message Foo {
45//     optional string text = 1;
46//     repeated int32 numbers = 2;
47//   }
48//
49// Then, if you used the protocol compiler to generate a class from the above
50// definition, you could use it like so:
51//
52//   string data;  // Will store a serialized version of the message.
53//
54//   {
55//     // Create a message and serialize it.
56//     Foo foo;
57//     foo.set_text("Hello World!");
58//     foo.add_numbers(1);
59//     foo.add_numbers(5);
60//     foo.add_numbers(42);
61//
62//     foo.SerializeToString(&data);
63//   }
64//
65//   {
66//     // Parse the serialized message and check that it contains the
67//     // correct data.
68//     Foo foo;
69//     foo.ParseFromString(data);
70//
71//     assert(foo.text() == "Hello World!");
72//     assert(foo.numbers_size() == 3);
73//     assert(foo.numbers(0) == 1);
74//     assert(foo.numbers(1) == 5);
75//     assert(foo.numbers(2) == 42);
76//   }
77//
78//   {
79//     // Same as the last block, but do it dynamically via the Message
80//     // reflection interface.
81//     Message* foo = new Foo;
82//     Descriptor* descriptor = foo->GetDescriptor();
83//
84//     // Get the descriptors for the fields we're interested in and verify
85//     // their types.
86//     FieldDescriptor* text_field = descriptor->FindFieldByName("text");
87//     assert(text_field != NULL);
88//     assert(text_field->type() == FieldDescriptor::TYPE_STRING);
89//     assert(text_field->label() == FieldDescriptor::TYPE_OPTIONAL);
90//     FieldDescriptor* numbers_field = descriptor->FindFieldByName("numbers");
91//     assert(numbers_field != NULL);
92//     assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
93//     assert(numbers_field->label() == FieldDescriptor::TYPE_REPEATED);
94//
95//     // Parse the message.
96//     foo->ParseFromString(data);
97//
98//     // Use the reflection interface to examine the contents.
99//     const Reflection* reflection = foo->GetReflection();
100//     assert(reflection->GetString(foo, text_field) == "Hello World!");
101//     assert(reflection->FieldSize(foo, numbers_field) == 3);
102//     assert(reflection->GetRepeatedInt32(foo, numbers_field, 0) == 1);
103//     assert(reflection->GetRepeatedInt32(foo, numbers_field, 1) == 5);
104//     assert(reflection->GetRepeatedInt32(foo, numbers_field, 2) == 42);
105//
106//     delete foo;
107//   }
108
109#ifndef GOOGLE_PROTOBUF_MESSAGE_H__
110#define GOOGLE_PROTOBUF_MESSAGE_H__
111
112#include <vector>
113#include <string>
114
115#ifdef __DECCXX
116// HP C++'s iosfwd doesn't work.
117#include <iostream>
118#else
119#include <iosfwd>
120#endif
121
122#include <google/protobuf/message_lite.h>
123
124#include <google/protobuf/stubs/common.h>
125
126#if defined(_WIN32) && defined(GetMessage)
127// windows.h defines GetMessage() as a macro.  Let's re-define it as an inline
128// function.  This is necessary because Reflection has a method called
129// GetMessage() which we don't want overridden.  The inline function should be
130// equivalent for C++ users.
131inline BOOL GetMessage_Win32(
132    LPMSG lpMsg, HWND hWnd,
133    UINT wMsgFilterMin, UINT wMsgFilterMax) {
134  return GetMessage(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax);
135}
136#undef GetMessage
137inline BOOL GetMessage(
138    LPMSG lpMsg, HWND hWnd,
139    UINT wMsgFilterMin, UINT wMsgFilterMax) {
140  return GetMessage_Win32(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax);
141}
142#endif
143
144
145namespace google {
146namespace protobuf {
147
148// Defined in this file.
149class Message;
150class Reflection;
151
152// Defined in other files.
153class Descriptor;            // descriptor.h
154class FieldDescriptor;       // descriptor.h
155class EnumDescriptor;        // descriptor.h
156class EnumValueDescriptor;   // descriptor.h
157namespace io {
158  class ZeroCopyInputStream;   // zero_copy_stream.h
159  class ZeroCopyOutputStream;  // zero_copy_stream.h
160  class CodedInputStream;      // coded_stream.h
161  class CodedOutputStream;     // coded_stream.h
162}
163class UnknownFieldSet;       // unknown_field_set.h
164
165// A container to hold message metadata.
166struct Metadata {
167  const Descriptor* descriptor;
168  const Reflection* reflection;
169};
170
171// Returns the EnumDescriptor for enum type E, which must be a
172// proto-declared enum type.  Code generated by the protocol compiler
173// will include specializations of this template for each enum type declared.
174template <typename E>
175const EnumDescriptor* GetEnumDescriptor();
176
177// Abstract interface for protocol messages.
178//
179// See also MessageLite, which contains most every-day operations.  Message
180// adds descriptors and reflection on top of that.
181//
182// The methods of this class that are virtual but not pure-virtual have
183// default implementations based on reflection.  Message classes which are
184// optimized for speed will want to override these with faster implementations,
185// but classes optimized for code size may be happy with keeping them.  See
186// the optimize_for option in descriptor.proto.
187class LIBPROTOBUF_EXPORT Message : public MessageLite {
188 public:
189  inline Message() {}
190  virtual ~Message();
191
192  // Basic Operations ------------------------------------------------
193
194  // Construct a new instance of the same type.  Ownership is passed to the
195  // caller.  (This is also defined in MessageLite, but is defined again here
196  // for return-type covariance.)
197  virtual Message* New() const = 0;
198
199  // Make this message into a copy of the given message.  The given message
200  // must have the same descriptor, but need not necessarily be the same class.
201  // By default this is just implemented as "Clear(); MergeFrom(from);".
202  virtual void CopyFrom(const Message& from);
203
204  // Merge the fields from the given message into this message.  Singular
205  // fields will be overwritten, except for embedded messages which will
206  // be merged.  Repeated fields will be concatenated.  The given message
207  // must be of the same type as this message (i.e. the exact same class).
208  virtual void MergeFrom(const Message& from);
209
210  // Verifies that IsInitialized() returns true.  GOOGLE_CHECK-fails otherwise, with
211  // a nice error message.
212  void CheckInitialized() const;
213
214  // Slowly build a list of all required fields that are not set.
215  // This is much, much slower than IsInitialized() as it is implemented
216  // purely via reflection.  Generally, you should not call this unless you
217  // have already determined that an error exists by calling IsInitialized().
218  void FindInitializationErrors(vector<string>* errors) const;
219
220  // Like FindInitializationErrors, but joins all the strings, delimited by
221  // commas, and returns them.
222  string InitializationErrorString() const;
223
224  // Clears all unknown fields from this message and all embedded messages.
225  // Normally, if unknown tag numbers are encountered when parsing a message,
226  // the tag and value are stored in the message's UnknownFieldSet and
227  // then written back out when the message is serialized.  This allows servers
228  // which simply route messages to other servers to pass through messages
229  // that have new field definitions which they don't yet know about.  However,
230  // this behavior can have security implications.  To avoid it, call this
231  // method after parsing.
232  //
233  // See Reflection::GetUnknownFields() for more on unknown fields.
234  virtual void DiscardUnknownFields();
235
236  // Computes (an estimate of) the total number of bytes currently used for
237  // storing the message in memory.  The default implementation calls the
238  // Reflection object's SpaceUsed() method.
239  virtual int SpaceUsed() const;
240
241  // Debugging -------------------------------------------------------
242
243  // Generates a human readable form of this message, useful for debugging
244  // and other purposes.
245  string DebugString() const;
246  // Like DebugString(), but with less whitespace.
247  string ShortDebugString() const;
248  // Convenience function useful in GDB.  Prints DebugString() to stdout.
249  void PrintDebugString() const;
250
251  // Heavy I/O -------------------------------------------------------
252  // Additional parsing and serialization methods not implemented by
253  // MessageLite because they are not supported by the lite library.
254
255  // Parse a protocol buffer from a file descriptor.  If successful, the entire
256  // input will be consumed.
257  bool ParseFromFileDescriptor(int file_descriptor);
258  // Like ParseFromFileDescriptor(), but accepts messages that are missing
259  // required fields.
260  bool ParsePartialFromFileDescriptor(int file_descriptor);
261  // Parse a protocol buffer from a C++ istream.  If successful, the entire
262  // input will be consumed.
263  bool ParseFromIstream(istream* input);
264  // Like ParseFromIstream(), but accepts messages that are missing
265  // required fields.
266  bool ParsePartialFromIstream(istream* input);
267
268  // Serialize the message and write it to the given file descriptor.  All
269  // required fields must be set.
270  bool SerializeToFileDescriptor(int file_descriptor) const;
271  // Like SerializeToFileDescriptor(), but allows missing required fields.
272  bool SerializePartialToFileDescriptor(int file_descriptor) const;
273  // Serialize the message and write it to the given C++ ostream.  All
274  // required fields must be set.
275  bool SerializeToOstream(ostream* output) const;
276  // Like SerializeToOstream(), but allows missing required fields.
277  bool SerializePartialToOstream(ostream* output) const;
278
279
280  // Reflection-based methods ----------------------------------------
281  // These methods are pure-virtual in MessageLite, but Message provides
282  // reflection-based default implementations.
283
284  virtual string GetTypeName() const;
285  virtual void Clear();
286  virtual bool IsInitialized() const;
287  virtual void CheckTypeAndMergeFrom(const MessageLite& other);
288  virtual bool MergePartialFromCodedStream(io::CodedInputStream* input);
289  virtual int ByteSize() const;
290  virtual void SerializeWithCachedSizes(io::CodedOutputStream* output) const;
291
292 private:
293  // This is called only by the default implementation of ByteSize(), to
294  // update the cached size.  If you override ByteSize(), you do not need
295  // to override this.  If you do not override ByteSize(), you MUST override
296  // this; the default implementation will crash.
297  //
298  // The method is private because subclasses should never call it; only
299  // override it.  Yes, C++ lets you do that.  Crazy, huh?
300  virtual void SetCachedSize(int size) const;
301
302 public:
303
304  // Introspection ---------------------------------------------------
305
306  // Typedef for backwards-compatibility.
307  typedef google::protobuf::Reflection Reflection;
308
309  // Get a Descriptor for this message's type.  This describes what
310  // fields the message contains, the types of those fields, etc.
311  const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
312
313  // Get the Reflection interface for this Message, which can be used to
314  // read and modify the fields of the Message dynamically (in other words,
315  // without knowing the message type at compile time).  This object remains
316  // property of the Message.
317  //
318  // This method remains virtual in case a subclass does not implement
319  // reflection and wants to override the default behavior.
320  virtual const Reflection* GetReflection() const {
321    return GetMetadata().reflection;
322  }
323
324 protected:
325  // Get a struct containing the metadata for the Message. Most subclasses only
326  // need to implement this method, rather than the GetDescriptor() and
327  // GetReflection() wrappers.
328  virtual Metadata GetMetadata() const  = 0;
329
330 private:
331  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
332};
333
334// This interface contains methods that can be used to dynamically access
335// and modify the fields of a protocol message.  Their semantics are
336// similar to the accessors the protocol compiler generates.
337//
338// To get the Reflection for a given Message, call Message::GetReflection().
339//
340// This interface is separate from Message only for efficiency reasons;
341// the vast majority of implementations of Message will share the same
342// implementation of Reflection (GeneratedMessageReflection,
343// defined in generated_message.h), and all Messages of a particular class
344// should share the same Reflection object (though you should not rely on
345// the latter fact).
346//
347// There are several ways that these methods can be used incorrectly.  For
348// example, any of the following conditions will lead to undefined
349// results (probably assertion failures):
350// - The FieldDescriptor is not a field of this message type.
351// - The method called is not appropriate for the field's type.  For
352//   each field type in FieldDescriptor::TYPE_*, there is only one
353//   Get*() method, one Set*() method, and one Add*() method that is
354//   valid for that type.  It should be obvious which (except maybe
355//   for TYPE_BYTES, which are represented using strings in C++).
356// - A Get*() or Set*() method for singular fields is called on a repeated
357//   field.
358// - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
359//   field.
360// - The Message object passed to any method is not of the right type for
361//   this Reflection object (i.e. message.GetReflection() != reflection).
362//
363// You might wonder why there is not any abstract representation for a field
364// of arbitrary type.  E.g., why isn't there just a "GetField()" method that
365// returns "const Field&", where "Field" is some class with accessors like
366// "GetInt32Value()".  The problem is that someone would have to deal with
367// allocating these Field objects.  For generated message classes, having to
368// allocate space for an additional object to wrap every field would at least
369// double the message's memory footprint, probably worse.  Allocating the
370// objects on-demand, on the other hand, would be expensive and prone to
371// memory leaks.  So, instead we ended up with this flat interface.
372//
373// TODO(kenton):  Create a utility class which callers can use to read and
374//   write fields from a Reflection without paying attention to the type.
375class LIBPROTOBUF_EXPORT Reflection {
376 public:
377  // TODO(kenton):  Remove parameter.
378  inline Reflection() {}
379  virtual ~Reflection();
380
381  // Get the UnknownFieldSet for the message.  This contains fields which
382  // were seen when the Message was parsed but were not recognized according
383  // to the Message's definition.
384  virtual const UnknownFieldSet& GetUnknownFields(
385      const Message& message) const = 0;
386  // Get a mutable pointer to the UnknownFieldSet for the message.  This
387  // contains fields which were seen when the Message was parsed but were not
388  // recognized according to the Message's definition.
389  virtual UnknownFieldSet* MutableUnknownFields(Message* message) const = 0;
390
391  // Estimate the amount of memory used by the message object.
392  virtual int SpaceUsed(const Message& message) const = 0;
393
394  // Check if the given non-repeated field is set.
395  virtual bool HasField(const Message& message,
396                        const FieldDescriptor* field) const = 0;
397
398  // Get the number of elements of a repeated field.
399  virtual int FieldSize(const Message& message,
400                        const FieldDescriptor* field) const = 0;
401
402  // Clear the value of a field, so that HasField() returns false or
403  // FieldSize() returns zero.
404  virtual void ClearField(Message* message,
405                          const FieldDescriptor* field) const = 0;
406
407  // Remove the last element of a repeated field.
408  // We don't provide a way to remove any element other than the last
409  // because it invites inefficient use, such as O(n^2) filtering loops
410  // that should have been O(n).  If you want to remove an element other
411  // than the last, the best way to do it is to re-arrange the elements
412  // (using Swap()) so that the one you want removed is at the end, then
413  // call RemoveLast().
414  virtual void RemoveLast(Message* message,
415                          const FieldDescriptor* field) const = 0;
416
417  // Swap the complete contents of two messages.
418  virtual void Swap(Message* message1, Message* message2) const = 0;
419
420  // Swap two elements of a repeated field.
421  virtual void SwapElements(Message* message,
422                    const FieldDescriptor* field,
423                    int index1,
424                    int index2) const = 0;
425
426  // List all fields of the message which are currently set.  This includes
427  // extensions.  Singular fields will only be listed if HasField(field) would
428  // return true and repeated fields will only be listed if FieldSize(field)
429  // would return non-zero.  Fields (both normal fields and extension fields)
430  // will be listed ordered by field number.
431  virtual void ListFields(const Message& message,
432                          vector<const FieldDescriptor*>* output) const = 0;
433
434  // Singular field getters ------------------------------------------
435  // These get the value of a non-repeated field.  They return the default
436  // value for fields that aren't set.
437
438  virtual int32  GetInt32 (const Message& message,
439                           const FieldDescriptor* field) const = 0;
440  virtual int64  GetInt64 (const Message& message,
441                           const FieldDescriptor* field) const = 0;
442  virtual uint32 GetUInt32(const Message& message,
443                           const FieldDescriptor* field) const = 0;
444  virtual uint64 GetUInt64(const Message& message,
445                           const FieldDescriptor* field) const = 0;
446  virtual float  GetFloat (const Message& message,
447                           const FieldDescriptor* field) const = 0;
448  virtual double GetDouble(const Message& message,
449                           const FieldDescriptor* field) const = 0;
450  virtual bool   GetBool  (const Message& message,
451                           const FieldDescriptor* field) const = 0;
452  virtual string GetString(const Message& message,
453                           const FieldDescriptor* field) const = 0;
454  virtual const EnumValueDescriptor* GetEnum(
455      const Message& message, const FieldDescriptor* field) const = 0;
456  virtual const Message& GetMessage(const Message& message,
457                                    const FieldDescriptor* field) const = 0;
458
459  // Get a string value without copying, if possible.
460  //
461  // GetString() necessarily returns a copy of the string.  This can be
462  // inefficient when the string is already stored in a string object in the
463  // underlying message.  GetStringReference() will return a reference to the
464  // underlying string in this case.  Otherwise, it will copy the string into
465  // *scratch and return that.
466  //
467  // Note:  It is perfectly reasonable and useful to write code like:
468  //     str = reflection->GetStringReference(field, &str);
469  //   This line would ensure that only one copy of the string is made
470  //   regardless of the field's underlying representation.  When initializing
471  //   a newly-constructed string, though, it's just as fast and more readable
472  //   to use code like:
473  //     string str = reflection->GetString(field);
474  virtual const string& GetStringReference(const Message& message,
475                                           const FieldDescriptor* field,
476                                           string* scratch) const = 0;
477
478
479  // Singular field mutators -----------------------------------------
480  // These mutate the value of a non-repeated field.
481
482  virtual void SetInt32 (Message* message,
483                         const FieldDescriptor* field, int32  value) const = 0;
484  virtual void SetInt64 (Message* message,
485                         const FieldDescriptor* field, int64  value) const = 0;
486  virtual void SetUInt32(Message* message,
487                         const FieldDescriptor* field, uint32 value) const = 0;
488  virtual void SetUInt64(Message* message,
489                         const FieldDescriptor* field, uint64 value) const = 0;
490  virtual void SetFloat (Message* message,
491                         const FieldDescriptor* field, float  value) const = 0;
492  virtual void SetDouble(Message* message,
493                         const FieldDescriptor* field, double value) const = 0;
494  virtual void SetBool  (Message* message,
495                         const FieldDescriptor* field, bool   value) const = 0;
496  virtual void SetString(Message* message,
497                         const FieldDescriptor* field,
498                         const string& value) const = 0;
499  virtual void SetEnum  (Message* message,
500                         const FieldDescriptor* field,
501                         const EnumValueDescriptor* value) const = 0;
502  // Get a mutable pointer to a field with a message type.
503  virtual Message* MutableMessage(Message* message,
504                                  const FieldDescriptor* field) const = 0;
505
506
507  // Repeated field getters ------------------------------------------
508  // These get the value of one element of a repeated field.
509
510  virtual int32  GetRepeatedInt32 (const Message& message,
511                                   const FieldDescriptor* field,
512                                   int index) const = 0;
513  virtual int64  GetRepeatedInt64 (const Message& message,
514                                   const FieldDescriptor* field,
515                                   int index) const = 0;
516  virtual uint32 GetRepeatedUInt32(const Message& message,
517                                   const FieldDescriptor* field,
518                                   int index) const = 0;
519  virtual uint64 GetRepeatedUInt64(const Message& message,
520                                   const FieldDescriptor* field,
521                                   int index) const = 0;
522  virtual float  GetRepeatedFloat (const Message& message,
523                                   const FieldDescriptor* field,
524                                   int index) const = 0;
525  virtual double GetRepeatedDouble(const Message& message,
526                                   const FieldDescriptor* field,
527                                   int index) const = 0;
528  virtual bool   GetRepeatedBool  (const Message& message,
529                                   const FieldDescriptor* field,
530                                   int index) const = 0;
531  virtual string GetRepeatedString(const Message& message,
532                                   const FieldDescriptor* field,
533                                   int index) const = 0;
534  virtual const EnumValueDescriptor* GetRepeatedEnum(
535      const Message& message,
536      const FieldDescriptor* field, int index) const = 0;
537  virtual const Message& GetRepeatedMessage(
538      const Message& message,
539      const FieldDescriptor* field, int index) const = 0;
540
541  // See GetStringReference(), above.
542  virtual const string& GetRepeatedStringReference(
543      const Message& message, const FieldDescriptor* field,
544      int index, string* scratch) const = 0;
545
546
547  // Repeated field mutators -----------------------------------------
548  // These mutate the value of one element of a repeated field.
549
550  virtual void SetRepeatedInt32 (Message* message,
551                                 const FieldDescriptor* field,
552                                 int index, int32  value) const = 0;
553  virtual void SetRepeatedInt64 (Message* message,
554                                 const FieldDescriptor* field,
555                                 int index, int64  value) const = 0;
556  virtual void SetRepeatedUInt32(Message* message,
557                                 const FieldDescriptor* field,
558                                 int index, uint32 value) const = 0;
559  virtual void SetRepeatedUInt64(Message* message,
560                                 const FieldDescriptor* field,
561                                 int index, uint64 value) const = 0;
562  virtual void SetRepeatedFloat (Message* message,
563                                 const FieldDescriptor* field,
564                                 int index, float  value) const = 0;
565  virtual void SetRepeatedDouble(Message* message,
566                                 const FieldDescriptor* field,
567                                 int index, double value) const = 0;
568  virtual void SetRepeatedBool  (Message* message,
569                                 const FieldDescriptor* field,
570                                 int index, bool   value) const = 0;
571  virtual void SetRepeatedString(Message* message,
572                                 const FieldDescriptor* field,
573                                 int index, const string& value) const = 0;
574  virtual void SetRepeatedEnum(Message* message,
575                               const FieldDescriptor* field, int index,
576                               const EnumValueDescriptor* value) const = 0;
577  // Get a mutable pointer to an element of a repeated field with a message
578  // type.
579  virtual Message* MutableRepeatedMessage(
580      Message* message, const FieldDescriptor* field, int index) const = 0;
581
582
583  // Repeated field adders -------------------------------------------
584  // These add an element to a repeated field.
585
586  virtual void AddInt32 (Message* message,
587                         const FieldDescriptor* field, int32  value) const = 0;
588  virtual void AddInt64 (Message* message,
589                         const FieldDescriptor* field, int64  value) const = 0;
590  virtual void AddUInt32(Message* message,
591                         const FieldDescriptor* field, uint32 value) const = 0;
592  virtual void AddUInt64(Message* message,
593                         const FieldDescriptor* field, uint64 value) const = 0;
594  virtual void AddFloat (Message* message,
595                         const FieldDescriptor* field, float  value) const = 0;
596  virtual void AddDouble(Message* message,
597                         const FieldDescriptor* field, double value) const = 0;
598  virtual void AddBool  (Message* message,
599                         const FieldDescriptor* field, bool   value) const = 0;
600  virtual void AddString(Message* message,
601                         const FieldDescriptor* field,
602                         const string& value) const = 0;
603  virtual void AddEnum  (Message* message,
604                         const FieldDescriptor* field,
605                         const EnumValueDescriptor* value) const = 0;
606  virtual Message* AddMessage(Message* message,
607                              const FieldDescriptor* field) const = 0;
608
609
610  // Extensions ------------------------------------------------------
611
612  // Try to find an extension of this message type by fully-qualified field
613  // name.  Returns NULL if no extension is known for this name or number.
614  virtual const FieldDescriptor* FindKnownExtensionByName(
615      const string& name) const = 0;
616
617  // Try to find an extension of this message type by field number.
618  // Returns NULL if no extension is known for this name or number.
619  virtual const FieldDescriptor* FindKnownExtensionByNumber(
620      int number) const = 0;
621
622 private:
623  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
624};
625
626// Abstract interface for a factory for message objects.
627class LIBPROTOBUF_EXPORT MessageFactory {
628 public:
629  inline MessageFactory() {}
630  virtual ~MessageFactory();
631
632  // Given a Descriptor, gets or constructs the default (prototype) Message
633  // of that type.  You can then call that message's New() method to construct
634  // a mutable message of that type.
635  //
636  // Calling this method twice with the same Descriptor returns the same
637  // object.  The returned object remains property of the factory.  Also, any
638  // objects created by calling the prototype's New() method share some data
639  // with the prototype, so these must be destoyed before the MessageFactory
640  // is destroyed.
641  //
642  // The given descriptor must outlive the returned message, and hence must
643  // outlive the MessageFactory.
644  //
645  // Some implementations do not support all types.  GetPrototype() will
646  // return NULL if the descriptor passed in is not supported.
647  //
648  // This method may or may not be thread-safe depending on the implementation.
649  // Each implementation should document its own degree thread-safety.
650  virtual const Message* GetPrototype(const Descriptor* type) = 0;
651
652  // Gets a MessageFactory which supports all generated, compiled-in messages.
653  // In other words, for any compiled-in type FooMessage, the following is true:
654  //   MessageFactory::generated_factory()->GetPrototype(
655  //     FooMessage::descriptor()) == FooMessage::default_instance()
656  // This factory supports all types which are found in
657  // DescriptorPool::generated_pool().  If given a descriptor from any other
658  // pool, GetPrototype() will return NULL.  (You can also check if a
659  // descriptor is for a generated message by checking if
660  // descriptor->file()->pool() == DescriptorPool::generated_pool().)
661  //
662  // This factory is 100% thread-safe; calling GetPrototype() does not modify
663  // any shared data.
664  //
665  // This factory is a singleton.  The caller must not delete the object.
666  static MessageFactory* generated_factory();
667
668  // For internal use only:  Registers a .proto file at static initialization
669  // time, to be placed in generated_factory.  The first time GetPrototype()
670  // is called with a descriptor from this file, |register_messages| will be
671  // called, with the file name as the parameter.  It must call
672  // InternalRegisterGeneratedMessage() (below) to register each message type
673  // in the file.  This strange mechanism is necessary because descriptors are
674  // built lazily, so we can't register types by their descriptor until we
675  // know that the descriptor exists.  |filename| must be a permanent string.
676  static void InternalRegisterGeneratedFile(
677      const char* filename, void (*register_messages)(const string&));
678
679  // For internal use only:  Registers a message type.  Called only by the
680  // functions which are registered with InternalRegisterGeneratedFile(),
681  // above.
682  static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
683                                               const Message* prototype);
684
685 private:
686  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
687};
688
689}  // namespace protobuf
690
691}  // namespace google
692#endif  // GOOGLE_PROTOBUF_MESSAGE_H__
693