qcow2-cluster.c revision cb42a1b1461e02efb034582ac5d8f71534723b92
1/*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include <zlib.h>
26
27#include "qemu-common.h"
28#include "block_int.h"
29#include "block/qcow2.h"
30
31int qcow2_grow_l1_table(BlockDriverState *bs, int min_size)
32{
33    BDRVQcowState *s = bs->opaque;
34    int new_l1_size, new_l1_size2, ret, i;
35    uint64_t *new_l1_table;
36    int64_t new_l1_table_offset;
37    uint8_t data[12];
38
39    new_l1_size = s->l1_size;
40    if (min_size <= new_l1_size)
41        return 0;
42    if (new_l1_size == 0) {
43        new_l1_size = 1;
44    }
45    while (min_size > new_l1_size) {
46        new_l1_size = (new_l1_size * 3 + 1) / 2;
47    }
48#ifdef DEBUG_ALLOC2
49    printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
50#endif
51
52    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
53    new_l1_table = qemu_mallocz(align_offset(new_l1_size2, 512));
54    memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
55
56    /* write new table (align to cluster) */
57    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
58    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
59    if (new_l1_table_offset < 0) {
60        qemu_free(new_l1_table);
61        return new_l1_table_offset;
62    }
63
64    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
65    for(i = 0; i < s->l1_size; i++)
66        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
67    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
68    if (ret < 0)
69        goto fail;
70    for(i = 0; i < s->l1_size; i++)
71        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
72
73    /* set new table */
74    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
75    cpu_to_be32w((uint32_t*)data, new_l1_size);
76    cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
77    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
78    if (ret < 0) {
79        goto fail;
80    }
81    qemu_free(s->l1_table);
82    qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
83    s->l1_table_offset = new_l1_table_offset;
84    s->l1_table = new_l1_table;
85    s->l1_size = new_l1_size;
86    return 0;
87 fail:
88    qemu_free(new_l1_table);
89    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
90    return ret;
91}
92
93void qcow2_l2_cache_reset(BlockDriverState *bs)
94{
95    BDRVQcowState *s = bs->opaque;
96
97    memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
98    memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
99    memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
100}
101
102static inline int l2_cache_new_entry(BlockDriverState *bs)
103{
104    BDRVQcowState *s = bs->opaque;
105    uint32_t min_count;
106    int min_index, i;
107
108    /* find a new entry in the least used one */
109    min_index = 0;
110    min_count = 0xffffffff;
111    for(i = 0; i < L2_CACHE_SIZE; i++) {
112        if (s->l2_cache_counts[i] < min_count) {
113            min_count = s->l2_cache_counts[i];
114            min_index = i;
115        }
116    }
117    return min_index;
118}
119
120/*
121 * seek_l2_table
122 *
123 * seek l2_offset in the l2_cache table
124 * if not found, return NULL,
125 * if found,
126 *   increments the l2 cache hit count of the entry,
127 *   if counter overflow, divide by two all counters
128 *   return the pointer to the l2 cache entry
129 *
130 */
131
132static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
133{
134    int i, j;
135
136    for(i = 0; i < L2_CACHE_SIZE; i++) {
137        if (l2_offset == s->l2_cache_offsets[i]) {
138            /* increment the hit count */
139            if (++s->l2_cache_counts[i] == 0xffffffff) {
140                for(j = 0; j < L2_CACHE_SIZE; j++) {
141                    s->l2_cache_counts[j] >>= 1;
142                }
143            }
144            return s->l2_cache + (i << s->l2_bits);
145        }
146    }
147    return NULL;
148}
149
150/*
151 * l2_load
152 *
153 * Loads a L2 table into memory. If the table is in the cache, the cache
154 * is used; otherwise the L2 table is loaded from the image file.
155 *
156 * Returns a pointer to the L2 table on success, or NULL if the read from
157 * the image file failed.
158 */
159
160static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
161    uint64_t **l2_table)
162{
163    BDRVQcowState *s = bs->opaque;
164    int min_index;
165    int ret;
166
167    /* seek if the table for the given offset is in the cache */
168
169    *l2_table = seek_l2_table(s, l2_offset);
170    if (*l2_table != NULL) {
171        return 0;
172    }
173
174    /* not found: load a new entry in the least used one */
175
176    min_index = l2_cache_new_entry(bs);
177    *l2_table = s->l2_cache + (min_index << s->l2_bits);
178
179    BLKDBG_EVENT(bs->file, BLKDBG_L2_LOAD);
180    ret = bdrv_pread(bs->file, l2_offset, *l2_table,
181        s->l2_size * sizeof(uint64_t));
182    if (ret < 0) {
183        return ret;
184    }
185
186    s->l2_cache_offsets[min_index] = l2_offset;
187    s->l2_cache_counts[min_index] = 1;
188
189    return 0;
190}
191
192/*
193 * Writes one sector of the L1 table to the disk (can't update single entries
194 * and we really don't want bdrv_pread to perform a read-modify-write)
195 */
196#define L1_ENTRIES_PER_SECTOR (512 / 8)
197static int write_l1_entry(BlockDriverState *bs, int l1_index)
198{
199    BDRVQcowState *s = bs->opaque;
200    uint64_t buf[L1_ENTRIES_PER_SECTOR];
201    int l1_start_index;
202    int i, ret;
203
204    l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
205    for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
206        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
207    }
208
209    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
210    ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
211        buf, sizeof(buf));
212    if (ret < 0) {
213        return ret;
214    }
215
216    return 0;
217}
218
219/*
220 * l2_allocate
221 *
222 * Allocate a new l2 entry in the file. If l1_index points to an already
223 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
224 * table) copy the contents of the old L2 table into the newly allocated one.
225 * Otherwise the new table is initialized with zeros.
226 *
227 */
228
229static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
230{
231    BDRVQcowState *s = bs->opaque;
232    int min_index;
233    uint64_t old_l2_offset;
234    uint64_t *l2_table;
235    int64_t l2_offset;
236    int ret;
237
238    old_l2_offset = s->l1_table[l1_index];
239
240    /* allocate a new l2 entry */
241
242    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
243    if (l2_offset < 0) {
244        return l2_offset;
245    }
246
247    /* allocate a new entry in the l2 cache */
248
249    min_index = l2_cache_new_entry(bs);
250    l2_table = s->l2_cache + (min_index << s->l2_bits);
251
252    if (old_l2_offset == 0) {
253        /* if there was no old l2 table, clear the new table */
254        memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
255    } else {
256        /* if there was an old l2 table, read it from the disk */
257        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
258        ret = bdrv_pread(bs->file, old_l2_offset, l2_table,
259            s->l2_size * sizeof(uint64_t));
260        if (ret < 0) {
261            goto fail;
262        }
263    }
264    /* write the l2 table to the file */
265    BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
266    ret = bdrv_pwrite_sync(bs->file, l2_offset, l2_table,
267        s->l2_size * sizeof(uint64_t));
268    if (ret < 0) {
269        goto fail;
270    }
271
272    /* update the L1 entry */
273    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
274    ret = write_l1_entry(bs, l1_index);
275    if (ret < 0) {
276        goto fail;
277    }
278
279    /* update the l2 cache entry */
280
281    s->l2_cache_offsets[min_index] = l2_offset;
282    s->l2_cache_counts[min_index] = 1;
283
284    *table = l2_table;
285    return 0;
286
287fail:
288    s->l1_table[l1_index] = old_l2_offset;
289    qcow2_l2_cache_reset(bs);
290    return ret;
291}
292
293static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
294        uint64_t *l2_table, uint64_t start, uint64_t mask)
295{
296    int i;
297    uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
298
299    if (!offset)
300        return 0;
301
302    for (i = start; i < start + nb_clusters; i++)
303        if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
304            break;
305
306	return (i - start);
307}
308
309static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
310{
311    int i = 0;
312
313    while(nb_clusters-- && l2_table[i] == 0)
314        i++;
315
316    return i;
317}
318
319/* The crypt function is compatible with the linux cryptoloop
320   algorithm for < 4 GB images. NOTE: out_buf == in_buf is
321   supported */
322void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
323                           uint8_t *out_buf, const uint8_t *in_buf,
324                           int nb_sectors, int enc,
325                           const AES_KEY *key)
326{
327    union {
328        uint64_t ll[2];
329        uint8_t b[16];
330    } ivec;
331    int i;
332
333    for(i = 0; i < nb_sectors; i++) {
334        ivec.ll[0] = cpu_to_le64(sector_num);
335        ivec.ll[1] = 0;
336        AES_cbc_encrypt(in_buf, out_buf, 512, key,
337                        ivec.b, enc);
338        sector_num++;
339        in_buf += 512;
340        out_buf += 512;
341    }
342}
343
344
345static int qcow_read(BlockDriverState *bs, int64_t sector_num,
346                     uint8_t *buf, int nb_sectors)
347{
348    BDRVQcowState *s = bs->opaque;
349    int ret, index_in_cluster, n, n1;
350    uint64_t cluster_offset;
351
352    while (nb_sectors > 0) {
353        n = nb_sectors;
354
355        ret = qcow2_get_cluster_offset(bs, sector_num << 9, &n,
356            &cluster_offset);
357        if (ret < 0) {
358            return ret;
359        }
360
361        index_in_cluster = sector_num & (s->cluster_sectors - 1);
362        if (!cluster_offset) {
363            if (bs->backing_hd) {
364                /* read from the base image */
365                n1 = qcow2_backing_read1(bs->backing_hd, sector_num, buf, n);
366                if (n1 > 0) {
367                    BLKDBG_EVENT(bs->file, BLKDBG_READ_BACKING);
368                    ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
369                    if (ret < 0)
370                        return -1;
371                }
372            } else {
373                memset(buf, 0, 512 * n);
374            }
375        } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
376            if (qcow2_decompress_cluster(bs, cluster_offset) < 0)
377                return -1;
378            memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
379        } else {
380            BLKDBG_EVENT(bs->file, BLKDBG_READ);
381            ret = bdrv_pread(bs->file, cluster_offset + index_in_cluster * 512, buf, n * 512);
382            if (ret != n * 512)
383                return -1;
384            if (s->crypt_method) {
385                qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0,
386                                &s->aes_decrypt_key);
387            }
388        }
389        nb_sectors -= n;
390        sector_num += n;
391        buf += n * 512;
392    }
393    return 0;
394}
395
396static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
397                        uint64_t cluster_offset, int n_start, int n_end)
398{
399    BDRVQcowState *s = bs->opaque;
400    int n, ret;
401
402    n = n_end - n_start;
403    if (n <= 0)
404        return 0;
405    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
406    ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
407    if (ret < 0)
408        return ret;
409    if (s->crypt_method) {
410        qcow2_encrypt_sectors(s, start_sect + n_start,
411                        s->cluster_data,
412                        s->cluster_data, n, 1,
413                        &s->aes_encrypt_key);
414    }
415    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
416    ret = bdrv_write_sync(bs->file, (cluster_offset >> 9) + n_start,
417        s->cluster_data, n);
418    if (ret < 0)
419        return ret;
420    return 0;
421}
422
423
424/*
425 * get_cluster_offset
426 *
427 * For a given offset of the disk image, find the cluster offset in
428 * qcow2 file. The offset is stored in *cluster_offset.
429 *
430 * on entry, *num is the number of contiguous clusters we'd like to
431 * access following offset.
432 *
433 * on exit, *num is the number of contiguous clusters we can read.
434 *
435 * Return 0, if the offset is found
436 * Return -errno, otherwise.
437 *
438 */
439
440int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
441    int *num, uint64_t *cluster_offset)
442{
443    BDRVQcowState *s = bs->opaque;
444    unsigned int l1_index, l2_index;
445    uint64_t l2_offset, *l2_table;
446    int l1_bits, c;
447    unsigned int index_in_cluster, nb_clusters;
448    uint64_t nb_available, nb_needed;
449    int ret;
450
451    index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
452    nb_needed = *num + index_in_cluster;
453
454    l1_bits = s->l2_bits + s->cluster_bits;
455
456    /* compute how many bytes there are between the offset and
457     * the end of the l1 entry
458     */
459
460    nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
461
462    /* compute the number of available sectors */
463
464    nb_available = (nb_available >> 9) + index_in_cluster;
465
466    if (nb_needed > nb_available) {
467        nb_needed = nb_available;
468    }
469
470    *cluster_offset = 0;
471
472    /* seek the the l2 offset in the l1 table */
473
474    l1_index = offset >> l1_bits;
475    if (l1_index >= s->l1_size)
476        goto out;
477
478    l2_offset = s->l1_table[l1_index];
479
480    /* seek the l2 table of the given l2 offset */
481
482    if (!l2_offset)
483        goto out;
484
485    /* load the l2 table in memory */
486
487    l2_offset &= ~QCOW_OFLAG_COPIED;
488    ret = l2_load(bs, l2_offset, &l2_table);
489    if (ret < 0) {
490        return ret;
491    }
492
493    /* find the cluster offset for the given disk offset */
494
495    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
496    *cluster_offset = be64_to_cpu(l2_table[l2_index]);
497    nb_clusters = size_to_clusters(s, nb_needed << 9);
498
499    if (!*cluster_offset) {
500        /* how many empty clusters ? */
501        c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
502    } else {
503        /* how many allocated clusters ? */
504        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
505                &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
506    }
507
508   nb_available = (c * s->cluster_sectors);
509out:
510    if (nb_available > nb_needed)
511        nb_available = nb_needed;
512
513    *num = nb_available - index_in_cluster;
514
515    *cluster_offset &=~QCOW_OFLAG_COPIED;
516    return 0;
517}
518
519/*
520 * get_cluster_table
521 *
522 * for a given disk offset, load (and allocate if needed)
523 * the l2 table.
524 *
525 * the l2 table offset in the qcow2 file and the cluster index
526 * in the l2 table are given to the caller.
527 *
528 * Returns 0 on success, -errno in failure case
529 */
530static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
531                             uint64_t **new_l2_table,
532                             uint64_t *new_l2_offset,
533                             int *new_l2_index)
534{
535    BDRVQcowState *s = bs->opaque;
536    unsigned int l1_index, l2_index;
537    uint64_t l2_offset;
538    uint64_t *l2_table = NULL;
539    int ret;
540
541    /* seek the the l2 offset in the l1 table */
542
543    l1_index = offset >> (s->l2_bits + s->cluster_bits);
544    if (l1_index >= s->l1_size) {
545        ret = qcow2_grow_l1_table(bs, l1_index + 1);
546        if (ret < 0) {
547            return ret;
548        }
549    }
550    l2_offset = s->l1_table[l1_index];
551
552    /* seek the l2 table of the given l2 offset */
553
554    if (l2_offset & QCOW_OFLAG_COPIED) {
555        /* load the l2 table in memory */
556        l2_offset &= ~QCOW_OFLAG_COPIED;
557        ret = l2_load(bs, l2_offset, &l2_table);
558        if (ret < 0) {
559            return ret;
560        }
561    } else {
562        if (l2_offset)
563            qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
564        ret = l2_allocate(bs, l1_index, &l2_table);
565        if (ret < 0) {
566            return ret;
567        }
568        l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
569    }
570
571    /* find the cluster offset for the given disk offset */
572
573    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
574
575    *new_l2_table = l2_table;
576    *new_l2_offset = l2_offset;
577    *new_l2_index = l2_index;
578
579    return 0;
580}
581
582/*
583 * alloc_compressed_cluster_offset
584 *
585 * For a given offset of the disk image, return cluster offset in
586 * qcow2 file.
587 *
588 * If the offset is not found, allocate a new compressed cluster.
589 *
590 * Return the cluster offset if successful,
591 * Return 0, otherwise.
592 *
593 */
594
595uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
596                                               uint64_t offset,
597                                               int compressed_size)
598{
599    BDRVQcowState *s = bs->opaque;
600    int l2_index, ret;
601    uint64_t l2_offset, *l2_table;
602    int64_t cluster_offset;
603    int nb_csectors;
604
605    ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
606    if (ret < 0) {
607        return 0;
608    }
609
610    cluster_offset = be64_to_cpu(l2_table[l2_index]);
611    if (cluster_offset & QCOW_OFLAG_COPIED)
612        return cluster_offset & ~QCOW_OFLAG_COPIED;
613
614    if (cluster_offset)
615        qcow2_free_any_clusters(bs, cluster_offset, 1);
616
617    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
618    if (cluster_offset < 0) {
619        return 0;
620    }
621
622    nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
623                  (cluster_offset >> 9);
624
625    cluster_offset |= QCOW_OFLAG_COMPRESSED |
626                      ((uint64_t)nb_csectors << s->csize_shift);
627
628    /* update L2 table */
629
630    /* compressed clusters never have the copied flag */
631
632    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
633    l2_table[l2_index] = cpu_to_be64(cluster_offset);
634    if (bdrv_pwrite_sync(bs->file,
635                    l2_offset + l2_index * sizeof(uint64_t),
636                    l2_table + l2_index,
637                    sizeof(uint64_t)) < 0)
638        return 0;
639
640    return cluster_offset;
641}
642
643/*
644 * Write L2 table updates to disk, writing whole sectors to avoid a
645 * read-modify-write in bdrv_pwrite
646 */
647#define L2_ENTRIES_PER_SECTOR (512 / 8)
648static int write_l2_entries(BlockDriverState *bs, uint64_t *l2_table,
649    uint64_t l2_offset, int l2_index, int num)
650{
651    int l2_start_index = l2_index & ~(L1_ENTRIES_PER_SECTOR - 1);
652    int start_offset = (8 * l2_index) & ~511;
653    int end_offset = (8 * (l2_index + num) + 511) & ~511;
654    size_t len = end_offset - start_offset;
655    int ret;
656
657    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE);
658    ret = bdrv_pwrite_sync(bs->file, l2_offset + start_offset,
659        &l2_table[l2_start_index], len);
660    if (ret < 0) {
661        return ret;
662    }
663
664    return 0;
665}
666
667int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
668{
669    BDRVQcowState *s = bs->opaque;
670    int i, j = 0, l2_index, ret;
671    uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
672    uint64_t cluster_offset = m->cluster_offset;
673
674    if (m->nb_clusters == 0)
675        return 0;
676
677    old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
678
679    /* copy content of unmodified sectors */
680    start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
681    if (m->n_start) {
682        ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
683        if (ret < 0)
684            goto err;
685    }
686
687    if (m->nb_available & (s->cluster_sectors - 1)) {
688        uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
689        ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
690                m->nb_available - end, s->cluster_sectors);
691        if (ret < 0)
692            goto err;
693    }
694
695    /* update L2 table */
696    ret = get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index);
697    if (ret < 0) {
698        goto err;
699    }
700
701    for (i = 0; i < m->nb_clusters; i++) {
702        /* if two concurrent writes happen to the same unallocated cluster
703	 * each write allocates separate cluster and writes data concurrently.
704	 * The first one to complete updates l2 table with pointer to its
705	 * cluster the second one has to do RMW (which is done above by
706	 * copy_sectors()), update l2 table with its cluster pointer and free
707	 * old cluster. This is what this loop does */
708        if(l2_table[l2_index + i] != 0)
709            old_cluster[j++] = l2_table[l2_index + i];
710
711        l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
712                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
713     }
714
715    ret = write_l2_entries(bs, l2_table, l2_offset, l2_index, m->nb_clusters);
716    if (ret < 0) {
717        qcow2_l2_cache_reset(bs);
718        goto err;
719    }
720
721    for (i = 0; i < j; i++)
722        qcow2_free_any_clusters(bs,
723            be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
724
725    ret = 0;
726err:
727    qemu_free(old_cluster);
728    return ret;
729 }
730
731/*
732 * alloc_cluster_offset
733 *
734 * For a given offset of the disk image, return cluster offset in qcow2 file.
735 * If the offset is not found, allocate a new cluster.
736 *
737 * If the cluster was already allocated, m->nb_clusters is set to 0,
738 * m->depends_on is set to NULL and the other fields in m are meaningless.
739 *
740 * If the cluster is newly allocated, m->nb_clusters is set to the number of
741 * contiguous clusters that have been allocated. This may be 0 if the request
742 * conflict with another write request in flight; in this case, m->depends_on
743 * is set and the remaining fields of m are meaningless.
744 *
745 * If m->nb_clusters is non-zero, the other fields of m are valid and contain
746 * information about the first allocated cluster.
747 *
748 * Return 0 on success and -errno in error cases
749 */
750int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
751    int n_start, int n_end, int *num, QCowL2Meta *m)
752{
753    BDRVQcowState *s = bs->opaque;
754    int l2_index, ret;
755    uint64_t l2_offset, *l2_table;
756    int64_t cluster_offset;
757    unsigned int nb_clusters, i = 0;
758    QCowL2Meta *old_alloc;
759
760    ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
761    if (ret < 0) {
762        return ret;
763    }
764
765    nb_clusters = size_to_clusters(s, n_end << 9);
766
767    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
768
769    cluster_offset = be64_to_cpu(l2_table[l2_index]);
770
771    /* We keep all QCOW_OFLAG_COPIED clusters */
772
773    if (cluster_offset & QCOW_OFLAG_COPIED) {
774        nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
775                &l2_table[l2_index], 0, 0);
776
777        cluster_offset &= ~QCOW_OFLAG_COPIED;
778        m->nb_clusters = 0;
779        m->depends_on = NULL;
780
781        goto out;
782    }
783
784    /* for the moment, multiple compressed clusters are not managed */
785
786    if (cluster_offset & QCOW_OFLAG_COMPRESSED)
787        nb_clusters = 1;
788
789    /* how many available clusters ? */
790
791    while (i < nb_clusters) {
792        i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
793                &l2_table[l2_index], i, 0);
794        if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
795            break;
796        }
797
798        i += count_contiguous_free_clusters(nb_clusters - i,
799                &l2_table[l2_index + i]);
800        if (i >= nb_clusters) {
801            break;
802        }
803
804        cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
805
806        if ((cluster_offset & QCOW_OFLAG_COPIED) ||
807                (cluster_offset & QCOW_OFLAG_COMPRESSED))
808            break;
809    }
810    assert(i <= nb_clusters);
811    nb_clusters = i;
812
813    /*
814     * Check if there already is an AIO write request in flight which allocates
815     * the same cluster. In this case we need to wait until the previous
816     * request has completed and updated the L2 table accordingly.
817     */
818    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
819
820        uint64_t end_offset = offset + nb_clusters * s->cluster_size;
821        uint64_t old_offset = old_alloc->offset;
822        uint64_t old_end_offset = old_alloc->offset +
823            old_alloc->nb_clusters * s->cluster_size;
824
825        if (end_offset < old_offset || offset > old_end_offset) {
826            /* No intersection */
827        } else {
828            if (offset < old_offset) {
829                /* Stop at the start of a running allocation */
830                nb_clusters = (old_offset - offset) >> s->cluster_bits;
831            } else {
832                nb_clusters = 0;
833            }
834
835            if (nb_clusters == 0) {
836                /* Set dependency and wait for a callback */
837                m->depends_on = old_alloc;
838                m->nb_clusters = 0;
839                *num = 0;
840                return 0;
841            }
842        }
843    }
844
845    if (!nb_clusters) {
846        abort();
847    }
848
849    QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
850
851    /* allocate a new cluster */
852
853    cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
854    if (cluster_offset < 0) {
855        QLIST_REMOVE(m, next_in_flight);
856        return cluster_offset;
857    }
858
859    /* save info needed for meta data update */
860    m->offset = offset;
861    m->n_start = n_start;
862    m->nb_clusters = nb_clusters;
863
864out:
865    m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
866    m->cluster_offset = cluster_offset;
867
868    *num = m->nb_available - n_start;
869
870    return 0;
871}
872
873static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
874                             const uint8_t *buf, int buf_size)
875{
876    z_stream strm1, *strm = &strm1;
877    int ret, out_len;
878
879    memset(strm, 0, sizeof(*strm));
880
881    strm->next_in = (uint8_t *)buf;
882    strm->avail_in = buf_size;
883    strm->next_out = out_buf;
884    strm->avail_out = out_buf_size;
885
886    ret = inflateInit2(strm, -12);
887    if (ret != Z_OK)
888        return -1;
889    ret = inflate(strm, Z_FINISH);
890    out_len = strm->next_out - out_buf;
891    if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
892        out_len != out_buf_size) {
893        inflateEnd(strm);
894        return -1;
895    }
896    inflateEnd(strm);
897    return 0;
898}
899
900int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
901{
902    BDRVQcowState *s = bs->opaque;
903    int ret, csize, nb_csectors, sector_offset;
904    uint64_t coffset;
905
906    coffset = cluster_offset & s->cluster_offset_mask;
907    if (s->cluster_cache_offset != coffset) {
908        nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
909        sector_offset = coffset & 511;
910        csize = nb_csectors * 512 - sector_offset;
911        BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
912        ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
913        if (ret < 0) {
914            return -1;
915        }
916        if (decompress_buffer(s->cluster_cache, s->cluster_size,
917                              s->cluster_data + sector_offset, csize) < 0) {
918            return -1;
919        }
920        s->cluster_cache_offset = coffset;
921    }
922    return 0;
923}
924