jddctmgr.c revision f897702251443b531b2ded93df71ffd87fbae076
1/*
2 * jddctmgr.c
3 *
4 * Copyright (C) 1994-1996, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains the inverse-DCT management logic.
9 * This code selects a particular IDCT implementation to be used,
10 * and it performs related housekeeping chores.  No code in this file
11 * is executed per IDCT step, only during output pass setup.
12 *
13 * Note that the IDCT routines are responsible for performing coefficient
14 * dequantization as well as the IDCT proper.  This module sets up the
15 * dequantization multiplier table needed by the IDCT routine.
16 */
17
18#define JPEG_INTERNALS
19#include "jinclude.h"
20#include "jpeglib.h"
21#include "jdct.h"		/* Private declarations for DCT subsystem */
22
23#ifdef ANDROID_ARMV6_IDCT
24  #undef ANDROID_ARMV6_IDCT
25  #ifdef __arm__
26    #include <machine/cpu-features.h>
27    #if __ARM_ARCH__ >= 6
28      #define ANDROID_ARMV6_IDCT
29    #else
30      #warning "ANDROID_ARMV6_IDCT is disabled"
31    #endif
32  #endif
33#endif
34
35#ifdef ANDROID_ARMV6_IDCT
36
37/* Intentionally declare the prototype with arguments of primitive types instead
38 * of type-defined ones. This will at least generate some warnings if jmorecfg.h
39 * is changed and becomes incompatible with the assembly code.
40 */
41extern void armv6_idct(short *coefs, int *quans, unsigned char **rows, int col);
42
43void jpeg_idct_armv6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
44		 JCOEFPTR coef_block,
45		 JSAMPARRAY output_buf, JDIMENSION output_col)
46{
47  IFAST_MULT_TYPE *dct_table = (IFAST_MULT_TYPE *)compptr->dct_table;
48  armv6_idct(coef_block, dct_table, output_buf, output_col);
49}
50
51#endif
52
53#ifdef ANDROID_INTELSSE2_IDCT
54extern short __attribute__((aligned(16))) quantptrSSE[DCTSIZE2];
55extern void jpeg_idct_intelsse (j_decompress_ptr cinfo, jpeg_component_info * compptr,
56		JCOEFPTR coef_block,
57		JSAMPARRAY output_buf, JDIMENSION output_col);
58#endif
59
60/*
61 * The decompressor input side (jdinput.c) saves away the appropriate
62 * quantization table for each component at the start of the first scan
63 * involving that component.  (This is necessary in order to correctly
64 * decode files that reuse Q-table slots.)
65 * When we are ready to make an output pass, the saved Q-table is converted
66 * to a multiplier table that will actually be used by the IDCT routine.
67 * The multiplier table contents are IDCT-method-dependent.  To support
68 * application changes in IDCT method between scans, we can remake the
69 * multiplier tables if necessary.
70 * In buffered-image mode, the first output pass may occur before any data
71 * has been seen for some components, and thus before their Q-tables have
72 * been saved away.  To handle this case, multiplier tables are preset
73 * to zeroes; the result of the IDCT will be a neutral gray level.
74 */
75
76
77/* Private subobject for this module */
78
79typedef struct {
80  struct jpeg_inverse_dct pub;	/* public fields */
81
82  /* This array contains the IDCT method code that each multiplier table
83   * is currently set up for, or -1 if it's not yet set up.
84   * The actual multiplier tables are pointed to by dct_table in the
85   * per-component comp_info structures.
86   */
87  int cur_method[MAX_COMPONENTS];
88} my_idct_controller;
89
90typedef my_idct_controller * my_idct_ptr;
91
92
93/* Allocated multiplier tables: big enough for any supported variant */
94
95typedef union {
96  ISLOW_MULT_TYPE islow_array[DCTSIZE2];
97#ifdef DCT_IFAST_SUPPORTED
98  IFAST_MULT_TYPE ifast_array[DCTSIZE2];
99#endif
100#ifdef DCT_FLOAT_SUPPORTED
101  FLOAT_MULT_TYPE float_array[DCTSIZE2];
102#endif
103} multiplier_table;
104
105
106/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
107 * so be sure to compile that code if either ISLOW or SCALING is requested.
108 */
109#ifdef DCT_ISLOW_SUPPORTED
110#define PROVIDE_ISLOW_TABLES
111#else
112#ifdef IDCT_SCALING_SUPPORTED
113#define PROVIDE_ISLOW_TABLES
114#endif
115#endif
116
117
118/*
119 * Prepare for an output pass.
120 * Here we select the proper IDCT routine for each component and build
121 * a matching multiplier table.
122 */
123
124METHODDEF(void)
125start_pass (j_decompress_ptr cinfo)
126{
127  my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
128  int ci, i;
129  jpeg_component_info *compptr;
130  int method = 0;
131  inverse_DCT_method_ptr method_ptr = NULL;
132  JQUANT_TBL * qtbl;
133
134  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
135       ci++, compptr++) {
136    /* Select the proper IDCT routine for this component's scaling */
137    switch (compptr->DCT_scaled_size) {
138#ifdef IDCT_SCALING_SUPPORTED
139    case 1:
140      method_ptr = jpeg_idct_1x1;
141      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
142      break;
143    case 2:
144      method_ptr = jpeg_idct_2x2;
145      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
146      break;
147    case 4:
148      method_ptr = jpeg_idct_4x4;
149      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
150      break;
151#endif
152    case DCTSIZE:
153      switch (cinfo->dct_method) {
154#ifdef ANDROID_ARMV6_IDCT
155      case JDCT_ISLOW:
156      case JDCT_IFAST:
157	method_ptr = jpeg_idct_armv6;
158	method = JDCT_IFAST;
159	break;
160#else /* ANDROID_ARMV6_IDCT */
161#ifdef ANDROID_INTELSSE2_IDCT
162      case JDCT_ISLOW:
163      case JDCT_IFAST:
164	method_ptr = jpeg_idct_intelsse;
165	method = JDCT_ISLOW; /* Use quant table of ISLOW.*/
166	break;
167#else
168#ifdef DCT_ISLOW_SUPPORTED
169      case JDCT_ISLOW:
170	method_ptr = jpeg_idct_islow;
171	method = JDCT_ISLOW;
172	break;
173#endif
174#ifdef DCT_IFAST_SUPPORTED
175      case JDCT_IFAST:
176	method_ptr = jpeg_idct_ifast;
177	method = JDCT_IFAST;
178	break;
179#endif
180#endif
181#endif /* ANDROID_ARMV6_IDCT */
182#ifdef DCT_FLOAT_SUPPORTED
183      case JDCT_FLOAT:
184	method_ptr = jpeg_idct_float;
185	method = JDCT_FLOAT;
186	break;
187#endif
188      default:
189	ERREXIT(cinfo, JERR_NOT_COMPILED);
190	break;
191      }
192      break;
193    default:
194      ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
195      break;
196    }
197    idct->pub.inverse_DCT[ci] = method_ptr;
198    /* Create multiplier table from quant table.
199     * However, we can skip this if the component is uninteresting
200     * or if we already built the table.  Also, if no quant table
201     * has yet been saved for the component, we leave the
202     * multiplier table all-zero; we'll be reading zeroes from the
203     * coefficient controller's buffer anyway.
204     */
205    if (! compptr->component_needed || idct->cur_method[ci] == method)
206      continue;
207    qtbl = compptr->quant_table;
208    if (qtbl == NULL)		/* happens if no data yet for component */
209      continue;
210    idct->cur_method[ci] = method;
211    switch (method) {
212#ifdef PROVIDE_ISLOW_TABLES
213    case JDCT_ISLOW:
214      {
215	/* For LL&M IDCT method, multipliers are equal to raw quantization
216	 * coefficients, but are stored as ints to ensure access efficiency.
217	 */
218	ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
219	for (i = 0; i < DCTSIZE2; i++) {
220	  ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
221	}
222      }
223      break;
224#endif
225#ifdef DCT_IFAST_SUPPORTED
226    case JDCT_IFAST:
227      {
228	/* For AA&N IDCT method, multipliers are equal to quantization
229	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
230	 *   scalefactor[0] = 1
231	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
232	 * For integer operation, the multiplier table is to be scaled by
233	 * IFAST_SCALE_BITS.
234	 */
235	IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
236#ifdef ANDROID_ARMV6_IDCT
237	/* Precomputed values scaled up by 15 bits. */
238	static const unsigned short scales[DCTSIZE2] = {
239	  32768, 45451, 42813, 38531, 32768, 25746, 17734,  9041,
240	  45451, 63042, 59384, 53444, 45451, 35710, 24598, 12540,
241	  42813, 59384, 55938, 50343, 42813, 33638, 23170, 11812,
242	  38531, 53444, 50343, 45308, 38531, 30274, 20853, 10631,
243	  32768, 45451, 42813, 38531, 32768, 25746, 17734,  9041,
244	  25746, 35710, 33638, 30274, 25746, 20228, 13933,  7103,
245	  17734, 24598, 23170, 20853, 17734, 13933,  9598,  4893,
246	   9041, 12540, 11812, 10631,  9041,  7103,  4893,  2494,
247	};
248	/* Inverse map of [7, 5, 1, 3, 0, 2, 4, 6]. */
249	static const char orders[DCTSIZE] = {4, 2, 5, 3, 6, 1, 7, 0};
250	/* Reorder the columns after transposing. */
251	for (i = 0; i < DCTSIZE2; ++i) {
252	  int j = ((i & 7) << 3) + orders[i >> 3];
253	  ifmtbl[j] = (qtbl->quantval[i] * scales[i] + 2) >> 2;
254	}
255#else /* ANDROID_ARMV6_IDCT */
256
257#define CONST_BITS 14
258	static const INT16 aanscales[DCTSIZE2] = {
259	  /* precomputed values scaled up by 14 bits */
260	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
261	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
262	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
263	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
264	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
265	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
266	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
267	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
268	};
269	SHIFT_TEMPS
270
271	for (i = 0; i < DCTSIZE2; i++) {
272	  ifmtbl[i] = (IFAST_MULT_TYPE)
273	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
274				  (INT32) aanscales[i]),
275		    CONST_BITS-IFAST_SCALE_BITS);
276	}
277#endif /* ANDROID_ARMV6_IDCT */
278      }
279      break;
280#endif
281#ifdef DCT_FLOAT_SUPPORTED
282    case JDCT_FLOAT:
283      {
284	/* For float AA&N IDCT method, multipliers are equal to quantization
285	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
286	 *   scalefactor[0] = 1
287	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
288	 */
289	FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
290	int row, col;
291	static const double aanscalefactor[DCTSIZE] = {
292	  1.0, 1.387039845, 1.306562965, 1.175875602,
293	  1.0, 0.785694958, 0.541196100, 0.275899379
294	};
295
296	i = 0;
297	for (row = 0; row < DCTSIZE; row++) {
298	  for (col = 0; col < DCTSIZE; col++) {
299	    fmtbl[i] = (FLOAT_MULT_TYPE)
300	      ((double) qtbl->quantval[i] *
301	       aanscalefactor[row] * aanscalefactor[col]);
302	    i++;
303	  }
304	}
305      }
306      break;
307#endif
308    default:
309      ERREXIT(cinfo, JERR_NOT_COMPILED);
310      break;
311    }
312  }
313}
314
315
316/*
317 * Initialize IDCT manager.
318 */
319
320GLOBAL(void)
321jinit_inverse_dct (j_decompress_ptr cinfo)
322{
323  my_idct_ptr idct;
324  int ci;
325  jpeg_component_info *compptr;
326
327  idct = (my_idct_ptr)
328    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
329				SIZEOF(my_idct_controller));
330  cinfo->idct = (struct jpeg_inverse_dct *) idct;
331  idct->pub.start_pass = start_pass;
332
333  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
334       ci++, compptr++) {
335    /* Allocate and pre-zero a multiplier table for each component */
336    compptr->dct_table =
337      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
338				  SIZEOF(multiplier_table));
339    MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
340    /* Mark multiplier table not yet set up for any method */
341    idct->cur_method[ci] = -1;
342  }
343}
344