1/*
2 * jdphuff.c
3 *
4 * Copyright (C) 1995-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains Huffman entropy decoding routines for progressive JPEG.
9 *
10 * Much of the complexity here has to do with supporting input suspension.
11 * If the data source module demands suspension, we want to be able to back
12 * up to the start of the current MCU.  To do this, we copy state variables
13 * into local working storage, and update them back to the permanent
14 * storage only upon successful completion of an MCU.
15 */
16
17#define JPEG_INTERNALS
18#include "jinclude.h"
19#include "jpeglib.h"
20#include "jdhuff.h"		/* Declarations shared with jdhuff.c */
21
22
23#ifdef D_PROGRESSIVE_SUPPORTED
24
25/*
26 * Expanded entropy decoder object for progressive Huffman decoding.
27 *
28 * The savable_state subrecord contains fields that change within an MCU,
29 * but must not be updated permanently until we complete the MCU.
30 */
31
32typedef struct {
33  unsigned int EOBRUN;			/* remaining EOBs in EOBRUN */
34  int last_dc_val[MAX_COMPS_IN_SCAN];	/* last DC coef for each component */
35} savable_state;
36
37/* This macro is to work around compilers with missing or broken
38 * structure assignment.  You'll need to fix this code if you have
39 * such a compiler and you change MAX_COMPS_IN_SCAN.
40 */
41
42#ifndef NO_STRUCT_ASSIGN
43#define ASSIGN_STATE(dest,src)  ((dest) = (src))
44#else
45#if MAX_COMPS_IN_SCAN == 4
46#define ASSIGN_STATE(dest,src)  \
47	((dest).EOBRUN = (src).EOBRUN, \
48	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
49	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
50	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
51	 (dest).last_dc_val[3] = (src).last_dc_val[3])
52#endif
53#endif
54
55
56typedef struct {
57  struct jpeg_entropy_decoder pub; /* public fields */
58
59  /* These fields are loaded into local variables at start of each MCU.
60   * In case of suspension, we exit WITHOUT updating them.
61   */
62  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
63  savable_state saved;		/* Other state at start of MCU */
64
65  /* These fields are NOT loaded into local working state. */
66  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
67
68  /* Pointers to derived tables (these workspaces have image lifespan) */
69  d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
70
71  d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
72} phuff_entropy_decoder;
73
74typedef phuff_entropy_decoder * phuff_entropy_ptr;
75
76/* Forward declarations */
77METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo,
78					    JBLOCKROW *MCU_data));
79METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo,
80					    JBLOCKROW *MCU_data));
81METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo,
82					     JBLOCKROW *MCU_data));
83METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo,
84					     JBLOCKROW *MCU_data));
85GLOBAL(void) jpeg_configure_huffman_decoder_progressive(
86		j_decompress_ptr cinfo, huffman_offset_data offset);
87GLOBAL(void) jpeg_get_huffman_decoder_configuration_progressive(
88	        j_decompress_ptr cinfo, huffman_offset_data *offset);
89
90/*
91 * Initialize for a Huffman-compressed scan.
92 */
93
94METHODDEF(void)
95start_pass_phuff_decoder (j_decompress_ptr cinfo)
96{
97  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
98  boolean is_DC_band, bad;
99  int ci, coefi, tbl;
100  int *coef_bit_ptr;
101  jpeg_component_info * compptr;
102
103  is_DC_band = (cinfo->Ss == 0);
104
105  /* Validate scan parameters */
106  bad = FALSE;
107  if (is_DC_band) {
108    if (cinfo->Se != 0)
109      bad = TRUE;
110  } else {
111    /* need not check Ss/Se < 0 since they came from unsigned bytes */
112    if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
113      bad = TRUE;
114    /* AC scans may have only one component */
115    if (cinfo->comps_in_scan != 1)
116      bad = TRUE;
117  }
118  if (cinfo->Ah != 0) {
119    /* Successive approximation refinement scan: must have Al = Ah-1. */
120    if (cinfo->Al != cinfo->Ah-1)
121      bad = TRUE;
122  }
123  if (cinfo->Al > 13)		/* need not check for < 0 */
124    bad = TRUE;
125  /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
126   * but the spec doesn't say so, and we try to be liberal about what we
127   * accept.  Note: large Al values could result in out-of-range DC
128   * coefficients during early scans, leading to bizarre displays due to
129   * overflows in the IDCT math.  But we won't crash.
130   */
131  if (bad)
132    ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
133	     cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
134  /* Update progression status, and verify that scan order is legal.
135   * Note that inter-scan inconsistencies are treated as warnings
136   * not fatal errors ... not clear if this is right way to behave.
137   */
138  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
139    int cindex = cinfo->cur_comp_info[ci]->component_index;
140    coef_bit_ptr = & cinfo->coef_bits[cindex][0];
141    if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
142      WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
143    for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
144      int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
145      if (cinfo->Ah != expected)
146	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
147      coef_bit_ptr[coefi] = cinfo->Al;
148    }
149  }
150
151  /* Select MCU decoding routine */
152  if (cinfo->Ah == 0) {
153    if (is_DC_band)
154      entropy->pub.decode_mcu = decode_mcu_DC_first;
155    else
156      entropy->pub.decode_mcu = decode_mcu_AC_first;
157  } else {
158    if (is_DC_band)
159      entropy->pub.decode_mcu = decode_mcu_DC_refine;
160    else
161      entropy->pub.decode_mcu = decode_mcu_AC_refine;
162  }
163
164  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
165    compptr = cinfo->cur_comp_info[ci];
166    /* Make sure requested tables are present, and compute derived tables.
167     * We may build same derived table more than once, but it's not expensive.
168     */
169    if (is_DC_band) {
170      if (cinfo->Ah == 0) {	/* DC refinement needs no table */
171	tbl = compptr->dc_tbl_no;
172	jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
173				& entropy->derived_tbls[tbl]);
174      }
175    } else {
176      tbl = compptr->ac_tbl_no;
177      jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
178			      & entropy->derived_tbls[tbl]);
179      /* remember the single active table */
180      entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
181    }
182    /* Initialize DC predictions to 0 */
183    entropy->saved.last_dc_val[ci] = 0;
184  }
185
186  /* Initialize bitread state variables */
187  entropy->bitstate.bits_left = 0;
188  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
189  entropy->pub.insufficient_data = FALSE;
190
191  /* Initialize private state variables */
192  entropy->saved.EOBRUN = 0;
193
194  /* Initialize restart counter */
195  entropy->restarts_to_go = cinfo->restart_interval;
196}
197
198
199/*
200 * Figure F.12: extend sign bit.
201 * On some machines, a shift and add will be faster than a table lookup.
202 */
203
204#ifdef AVOID_TABLES
205
206#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
207
208#else
209
210#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
211
212static const int extend_test[16] =   /* entry n is 2**(n-1) */
213  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
214    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
215
216static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
217  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
218    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
219    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
220    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
221
222#endif /* AVOID_TABLES */
223
224
225/*
226 * Check for a restart marker & resynchronize decoder.
227 * Returns FALSE if must suspend.
228 */
229
230LOCAL(boolean)
231process_restart (j_decompress_ptr cinfo)
232{
233  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
234  int ci;
235
236  /* Throw away any unused bits remaining in bit buffer; */
237  /* include any full bytes in next_marker's count of discarded bytes */
238  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
239  entropy->bitstate.bits_left = 0;
240
241  /* Advance past the RSTn marker */
242  if (! (*cinfo->marker->read_restart_marker) (cinfo))
243    return FALSE;
244
245  /* Re-initialize DC predictions to 0 */
246  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
247    entropy->saved.last_dc_val[ci] = 0;
248  /* Re-init EOB run count, too */
249  entropy->saved.EOBRUN = 0;
250
251  /* Reset restart counter */
252  entropy->restarts_to_go = cinfo->restart_interval;
253
254  /* Reset out-of-data flag, unless read_restart_marker left us smack up
255   * against a marker.  In that case we will end up treating the next data
256   * segment as empty, and we can avoid producing bogus output pixels by
257   * leaving the flag set.
258   */
259  if (cinfo->unread_marker == 0)
260    entropy->pub.insufficient_data = FALSE;
261
262  return TRUE;
263}
264
265
266/*
267 * Huffman MCU decoding.
268 * Each of these routines decodes and returns one MCU's worth of
269 * Huffman-compressed coefficients.
270 * The coefficients are reordered from zigzag order into natural array order,
271 * but are not dequantized.
272 *
273 * The i'th block of the MCU is stored into the block pointed to by
274 * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
275 *
276 * We return FALSE if data source requested suspension.  In that case no
277 * changes have been made to permanent state.  (Exception: some output
278 * coefficients may already have been assigned.  This is harmless for
279 * spectral selection, since we'll just re-assign them on the next call.
280 * Successive approximation AC refinement has to be more careful, however.)
281 */
282
283/*
284 * MCU decoding for DC initial scan (either spectral selection,
285 * or first pass of successive approximation).
286 */
287
288METHODDEF(boolean)
289decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
290{
291  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
292  int Al = cinfo->Al;
293  register int s, r;
294  int blkn, ci;
295  JBLOCKROW block;
296  BITREAD_STATE_VARS;
297  savable_state state;
298  d_derived_tbl * tbl;
299  jpeg_component_info * compptr;
300
301  /* Process restart marker if needed; may have to suspend */
302  if (cinfo->restart_interval) {
303    if (entropy->restarts_to_go == 0)
304      if (! process_restart(cinfo))
305	return FALSE;
306  }
307
308  /* If we've run out of data, just leave the MCU set to zeroes.
309   * This way, we return uniform gray for the remainder of the segment.
310   */
311  if (! entropy->pub.insufficient_data) {
312
313    /* Load up working state */
314    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
315    ASSIGN_STATE(state, entropy->saved);
316
317    /* Outer loop handles each block in the MCU */
318
319    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
320      block = MCU_data[blkn];
321      ci = cinfo->MCU_membership[blkn];
322      compptr = cinfo->cur_comp_info[ci];
323      tbl = entropy->derived_tbls[compptr->dc_tbl_no];
324
325      /* Decode a single block's worth of coefficients */
326
327      /* Section F.2.2.1: decode the DC coefficient difference */
328      HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
329      if (s) {
330	CHECK_BIT_BUFFER(br_state, s, return FALSE);
331	r = GET_BITS(s);
332	s = HUFF_EXTEND(r, s);
333      }
334
335      /* Convert DC difference to actual value, update last_dc_val */
336      s += state.last_dc_val[ci];
337      state.last_dc_val[ci] = s;
338      /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
339      (*block)[0] = (JCOEF) (s << Al);
340    }
341
342    /* Completed MCU, so update state */
343    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
344    ASSIGN_STATE(entropy->saved, state);
345  }
346
347  /* Account for restart interval (no-op if not using restarts) */
348  entropy->restarts_to_go--;
349
350  return TRUE;
351}
352
353
354/*
355 * MCU decoding for AC initial scan (either spectral selection,
356 * or first pass of successive approximation).
357 */
358
359METHODDEF(boolean)
360decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
361{
362  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
363  int Se = cinfo->Se;
364  int Al = cinfo->Al;
365  register int s, k, r;
366  unsigned int EOBRUN;
367  JBLOCKROW block;
368  BITREAD_STATE_VARS;
369  d_derived_tbl * tbl;
370
371  /* Process restart marker if needed; may have to suspend */
372  if (cinfo->restart_interval) {
373    if (entropy->restarts_to_go == 0)
374      if (! process_restart(cinfo))
375	return FALSE;
376  }
377
378  /* If we've run out of data, just leave the MCU set to zeroes.
379   * This way, we return uniform gray for the remainder of the segment.
380   */
381  if (! entropy->pub.insufficient_data) {
382
383    /* Load up working state.
384     * We can avoid loading/saving bitread state if in an EOB run.
385     */
386    EOBRUN = entropy->saved.EOBRUN;	/* only part of saved state we need */
387
388    /* There is always only one block per MCU */
389
390    if (EOBRUN > 0)		/* if it's a band of zeroes... */
391      EOBRUN--;			/* ...process it now (we do nothing) */
392    else {
393      BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
394      block = MCU_data[0];
395      tbl = entropy->ac_derived_tbl;
396
397      for (k = cinfo->Ss; k <= Se; k++) {
398	HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
399	r = s >> 4;
400	s &= 15;
401	if (s) {
402	  k += r;
403	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
404	  r = GET_BITS(s);
405	  s = HUFF_EXTEND(r, s);
406	  /* Scale and output coefficient in natural (dezigzagged) order */
407	  (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
408	} else {
409	  if (r == 15) {	/* ZRL */
410	    k += 15;		/* skip 15 zeroes in band */
411	  } else {		/* EOBr, run length is 2^r + appended bits */
412	    EOBRUN = 1 << r;
413	    if (r) {		/* EOBr, r > 0 */
414	      CHECK_BIT_BUFFER(br_state, r, return FALSE);
415	      r = GET_BITS(r);
416	      EOBRUN += r;
417	    }
418	    EOBRUN--;		/* this band is processed at this moment */
419	    break;		/* force end-of-band */
420	  }
421	}
422      }
423
424      BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
425    }
426
427    /* Completed MCU, so update state */
428    entropy->saved.EOBRUN = EOBRUN;	/* only part of saved state we need */
429  }
430
431  /* Account for restart interval (no-op if not using restarts) */
432  entropy->restarts_to_go--;
433
434  return TRUE;
435}
436
437
438/*
439 * MCU decoding for DC successive approximation refinement scan.
440 * Note: we assume such scans can be multi-component, although the spec
441 * is not very clear on the point.
442 */
443
444METHODDEF(boolean)
445decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
446{
447  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
448  int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
449  int blkn;
450  JBLOCKROW block;
451  BITREAD_STATE_VARS;
452
453  /* Process restart marker if needed; may have to suspend */
454  if (cinfo->restart_interval) {
455    if (entropy->restarts_to_go == 0)
456      if (! process_restart(cinfo))
457	return FALSE;
458  }
459
460  /* Not worth the cycles to check insufficient_data here,
461   * since we will not change the data anyway if we read zeroes.
462   */
463
464  /* Load up working state */
465  BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
466
467  /* Outer loop handles each block in the MCU */
468
469  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
470    block = MCU_data[blkn];
471
472    /* Encoded data is simply the next bit of the two's-complement DC value */
473    CHECK_BIT_BUFFER(br_state, 1, return FALSE);
474    if (GET_BITS(1))
475      (*block)[0] |= p1;
476    /* Note: since we use |=, repeating the assignment later is safe */
477  }
478
479  /* Completed MCU, so update state */
480  BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
481
482  /* Account for restart interval (no-op if not using restarts) */
483  entropy->restarts_to_go--;
484
485  return TRUE;
486}
487
488
489/*
490 * MCU decoding for AC successive approximation refinement scan.
491 */
492
493METHODDEF(boolean)
494decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
495{
496  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
497  int Se = cinfo->Se;
498  int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
499  int m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
500  register int s, k, r;
501  unsigned int EOBRUN;
502  JBLOCKROW block;
503  JCOEFPTR thiscoef;
504  BITREAD_STATE_VARS;
505  d_derived_tbl * tbl;
506  int num_newnz;
507  int newnz_pos[DCTSIZE2];
508
509  /* Process restart marker if needed; may have to suspend */
510  if (cinfo->restart_interval) {
511    if (entropy->restarts_to_go == 0)
512      if (! process_restart(cinfo))
513	return FALSE;
514  }
515
516  /* If we've run out of data, don't modify the MCU.
517   */
518  if (! entropy->pub.insufficient_data) {
519
520    /* Load up working state */
521    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
522    EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
523
524    /* There is always only one block per MCU */
525    block = MCU_data[0];
526    tbl = entropy->ac_derived_tbl;
527
528    /* If we are forced to suspend, we must undo the assignments to any newly
529     * nonzero coefficients in the block, because otherwise we'd get confused
530     * next time about which coefficients were already nonzero.
531     * But we need not undo addition of bits to already-nonzero coefficients;
532     * instead, we can test the current bit to see if we already did it.
533     */
534    num_newnz = 0;
535
536    /* initialize coefficient loop counter to start of band */
537    k = cinfo->Ss;
538
539    if (EOBRUN == 0) {
540      for (; k <= Se; k++) {
541	HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
542	r = s >> 4;
543	s &= 15;
544	if (s) {
545	  if (s != 1)		/* size of new coef should always be 1 */
546	    WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
547	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
548	  if (GET_BITS(1))
549	    s = p1;		/* newly nonzero coef is positive */
550	  else
551	    s = m1;		/* newly nonzero coef is negative */
552	} else {
553	  if (r != 15) {
554	    EOBRUN = 1 << r;	/* EOBr, run length is 2^r + appended bits */
555	    if (r) {
556	      CHECK_BIT_BUFFER(br_state, r, goto undoit);
557	      r = GET_BITS(r);
558	      EOBRUN += r;
559	    }
560	    break;		/* rest of block is handled by EOB logic */
561	  }
562	  /* note s = 0 for processing ZRL */
563	}
564	/* Advance over already-nonzero coefs and r still-zero coefs,
565	 * appending correction bits to the nonzeroes.  A correction bit is 1
566	 * if the absolute value of the coefficient must be increased.
567	 */
568	do {
569	  thiscoef = *block + jpeg_natural_order[k];
570	  if (*thiscoef != 0) {
571	    CHECK_BIT_BUFFER(br_state, 1, goto undoit);
572	    if (GET_BITS(1)) {
573	      if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
574		if (*thiscoef >= 0)
575		  *thiscoef += p1;
576		else
577		  *thiscoef += m1;
578	      }
579	    }
580	  } else {
581	    if (--r < 0)
582	      break;		/* reached target zero coefficient */
583	  }
584	  k++;
585	} while (k <= Se);
586	if (s) {
587	  int pos = jpeg_natural_order[k];
588	  /* Output newly nonzero coefficient */
589	  (*block)[pos] = (JCOEF) s;
590	  /* Remember its position in case we have to suspend */
591	  newnz_pos[num_newnz++] = pos;
592	}
593      }
594    }
595
596    if (EOBRUN > 0) {
597      /* Scan any remaining coefficient positions after the end-of-band
598       * (the last newly nonzero coefficient, if any).  Append a correction
599       * bit to each already-nonzero coefficient.  A correction bit is 1
600       * if the absolute value of the coefficient must be increased.
601       */
602      for (; k <= Se; k++) {
603	thiscoef = *block + jpeg_natural_order[k];
604	if (*thiscoef != 0) {
605	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
606	  if (GET_BITS(1)) {
607	    if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
608	      if (*thiscoef >= 0)
609		*thiscoef += p1;
610	      else
611		*thiscoef += m1;
612	    }
613	  }
614	}
615      }
616      /* Count one block completed in EOB run */
617      EOBRUN--;
618    }
619
620    /* Completed MCU, so update state */
621    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
622    entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
623  }
624
625  /* Account for restart interval (no-op if not using restarts) */
626  entropy->restarts_to_go--;
627
628  return TRUE;
629
630undoit:
631  /* Re-zero any output coefficients that we made newly nonzero */
632  while (num_newnz > 0)
633    (*block)[newnz_pos[--num_newnz]] = 0;
634
635  return FALSE;
636}
637
638/*
639 * Save the current Huffman deocde position and the DC coefficients
640 * for each component into bitstream_offset and dc_info[], respectively.
641 */
642METHODDEF(void)
643get_huffman_decoder_configuration(j_decompress_ptr cinfo,
644        huffman_offset_data *offset)
645{
646  int i;
647  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
648  jpeg_get_huffman_decoder_configuration_progressive(cinfo, offset);
649  offset->EOBRUN = entropy->saved.EOBRUN;
650  for (i = 0; i < cinfo->comps_in_scan; i++)
651    offset->prev_dc[i] = entropy->saved.last_dc_val[i];
652}
653
654
655/*
656 * Save the current Huffman decoder position and the bit buffer
657 * into bitstream_offset and get_buffer, respectively.
658 */
659GLOBAL(void)
660jpeg_get_huffman_decoder_configuration_progressive(j_decompress_ptr cinfo,
661        huffman_offset_data *offset)
662{
663  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
664
665  if (cinfo->restart_interval) {
666    // We are at the end of a data segment
667    if (entropy->restarts_to_go == 0)
668      if (! process_restart(cinfo))
669	return;
670  }
671
672  // Save restarts_to_go and next_restart_num.
673  offset->restarts_to_go = (unsigned short) entropy->restarts_to_go;
674  offset->next_restart_num = cinfo->marker->next_restart_num;
675
676  offset->bitstream_offset =
677      (jget_input_stream_position(cinfo) << LOG_TWO_BIT_BUF_SIZE)
678      + entropy->bitstate.bits_left;
679
680  offset->get_buffer = entropy->bitstate.get_buffer;
681}
682
683
684/*
685 * Configure the Huffman decoder to decode the image
686 * starting from (iMCU_row_offset, iMCU_col_offset).
687 */
688METHODDEF(void)
689configure_huffman_decoder(j_decompress_ptr cinfo, huffman_offset_data offset)
690{
691  int i;
692  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
693  jpeg_configure_huffman_decoder_progressive(cinfo, offset);
694  entropy->saved.EOBRUN = offset.EOBRUN;
695  for (i = 0; i < cinfo->comps_in_scan; i++)
696    entropy->saved.last_dc_val[i] = offset.prev_dc[i];
697}
698
699/*
700 * Configure the Huffman decoder reader position and bit buffer.
701 */
702GLOBAL(void)
703jpeg_configure_huffman_decoder_progressive(j_decompress_ptr cinfo,
704        huffman_offset_data offset)
705{
706	phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
707
708  // Restore restarts_to_go and next_restart_num
709  cinfo->unread_marker = 0;
710  entropy->restarts_to_go = offset.restarts_to_go;
711  cinfo->marker->next_restart_num = offset.next_restart_num;
712
713  unsigned int bitstream_offset = offset.bitstream_offset;
714  int blkn, i;
715
716  unsigned int byte_offset = bitstream_offset >> LOG_TWO_BIT_BUF_SIZE;
717  unsigned int bit_in_bit_buffer =
718      bitstream_offset & ((1 << LOG_TWO_BIT_BUF_SIZE) - 1);
719
720  jset_input_stream_position_bit(cinfo, byte_offset,
721          bit_in_bit_buffer, offset.get_buffer);
722}
723
724GLOBAL(void)
725jpeg_configure_huffman_index_scan(j_decompress_ptr cinfo,
726        huffman_index *index, int scan_no, int offset)
727{
728  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
729  if (scan_no >= index->scan_count) {
730    index->scan = realloc(index->scan,
731                    (scan_no + 1) * sizeof(huffman_scan_header));
732    index->mem_used += (scan_no - index->scan_count + 1)
733      * (sizeof(huffman_scan_header) + cinfo->total_iMCU_rows
734      * sizeof(huffman_offset_data*));
735    index->scan_count = scan_no + 1;
736  }
737  index->scan[scan_no].offset = (huffman_offset_data**)malloc(
738          cinfo->total_iMCU_rows * sizeof(huffman_offset_data*));
739  index->scan[scan_no].bitstream_offset = offset;
740}
741
742/*
743 * Module initialization routine for progressive Huffman entropy decoding.
744 */
745GLOBAL(void)
746jinit_phuff_decoder (j_decompress_ptr cinfo)
747{
748  phuff_entropy_ptr entropy;
749  int *coef_bit_ptr;
750  int ci, i;
751
752  entropy = (phuff_entropy_ptr)
753    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
754				SIZEOF(phuff_entropy_decoder));
755  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
756  entropy->pub.start_pass = start_pass_phuff_decoder;
757  entropy->pub.configure_huffman_decoder = configure_huffman_decoder;
758  entropy->pub.get_huffman_decoder_configuration =
759        get_huffman_decoder_configuration;
760
761  /* Mark derived tables unallocated */
762  for (i = 0; i < NUM_HUFF_TBLS; i++) {
763    entropy->derived_tbls[i] = NULL;
764  }
765
766  /* Create progression status table */
767  cinfo->coef_bits = (int (*)[DCTSIZE2])
768    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
769				cinfo->num_components*DCTSIZE2*SIZEOF(int));
770  coef_bit_ptr = & cinfo->coef_bits[0][0];
771  for (ci = 0; ci < cinfo->num_components; ci++)
772    for (i = 0; i < DCTSIZE2; i++)
773      *coef_bit_ptr++ = -1;
774}
775
776#endif /* D_PROGRESSIVE_SUPPORTED */
777