1/* @(#)e_sqrt.c 5.1 93/09/24 */
2/*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 */
12
13#if defined(LIBM_SCCS) && !defined(lint)
14static char rcsid[] = "$NetBSD: e_sqrt.c,v 1.8 1995/05/10 20:46:17 jtc Exp $";
15#endif
16
17/* __ieee754_sqrt(x)
18 * Return correctly rounded sqrt.
19 *           ------------------------------------------
20 *	     |  Use the hardware sqrt if you have one |
21 *           ------------------------------------------
22 * Method:
23 *   Bit by bit method using integer arithmetic. (Slow, but portable)
24 *   1. Normalization
25 *	Scale x to y in [1,4) with even powers of 2:
26 *	find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
27 *		sqrt(x) = 2^k * sqrt(y)
28 *   2. Bit by bit computation
29 *	Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
30 *	     i							 0
31 *                                     i+1         2
32 *	    s  = 2*q , and	y  =  2   * ( y - q  ).		(1)
33 *	     i      i            i                 i
34 *
35 *	To compute q    from q , one checks whether
36 *		    i+1       i
37 *
38 *			      -(i+1) 2
39 *			(q + 2      ) <= y.			(2)
40 *     			  i
41 *							      -(i+1)
42 *	If (2) is false, then q   = q ; otherwise q   = q  + 2      .
43 *		 	       i+1   i             i+1   i
44 *
45 *	With some algebric manipulation, it is not difficult to see
46 *	that (2) is equivalent to
47 *                             -(i+1)
48 *			s  +  2       <= y			(3)
49 *			 i                i
50 *
51 *	The advantage of (3) is that s  and y  can be computed by
52 *				      i      i
53 *	the following recurrence formula:
54 *	    if (3) is false
55 *
56 *	    s     =  s  ,	y    = y   ;			(4)
57 *	     i+1      i		 i+1    i
58 *
59 *	    otherwise,
60 *                         -i                     -(i+1)
61 *	    s	  =  s  + 2  ,  y    = y  -  s  - 2  		(5)
62 *           i+1      i          i+1    i     i
63 *
64 *	One may easily use induction to prove (4) and (5).
65 *	Note. Since the left hand side of (3) contain only i+2 bits,
66 *	      it does not necessary to do a full (53-bit) comparison
67 *	      in (3).
68 *   3. Final rounding
69 *	After generating the 53 bits result, we compute one more bit.
70 *	Together with the remainder, we can decide whether the
71 *	result is exact, bigger than 1/2ulp, or less than 1/2ulp
72 *	(it will never equal to 1/2ulp).
73 *	The rounding mode can be detected by checking whether
74 *	huge + tiny is equal to huge, and whether huge - tiny is
75 *	equal to huge for some floating point number "huge" and "tiny".
76 *
77 * Special cases:
78 *	sqrt(+-0) = +-0 	... exact
79 *	sqrt(inf) = inf
80 *	sqrt(-ve) = NaN		... with invalid signal
81 *	sqrt(NaN) = NaN		... with invalid signal for signaling NaN
82 *
83 * Other methods : see the appended file at the end of the program below.
84 *---------------
85 */
86
87/*#include "math.h"*/
88#include "math_private.h"
89
90#ifdef __STDC__
91	double SDL_NAME(copysign)(double x, double y)
92#else
93	double SDL_NAME(copysign)(x,y)
94	double x,y;
95#endif
96{
97	u_int32_t hx,hy;
98	GET_HIGH_WORD(hx,x);
99	GET_HIGH_WORD(hy,y);
100	SET_HIGH_WORD(x,(hx&0x7fffffff)|(hy&0x80000000));
101        return x;
102}
103
104#ifdef __STDC__
105	double SDL_NAME(scalbn) (double x, int n)
106#else
107	double SDL_NAME(scalbn) (x,n)
108	double x; int n;
109#endif
110{
111	int32_t k,hx,lx;
112	EXTRACT_WORDS(hx,lx,x);
113        k = (hx&0x7ff00000)>>20;		/* extract exponent */
114        if (k==0) {				/* 0 or subnormal x */
115            if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
116	    x *= two54;
117	    GET_HIGH_WORD(hx,x);
118	    k = ((hx&0x7ff00000)>>20) - 54;
119            if (n< -50000) return tiny*x; 	/*underflow*/
120	    }
121        if (k==0x7ff) return x+x;		/* NaN or Inf */
122        k = k+n;
123        if (k >  0x7fe) return huge*SDL_NAME(copysign)(huge,x); /* overflow  */
124        if (k > 0) 				/* normal result */
125	    {SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); return x;}
126        if (k <= -54) {
127            if (n > 50000) 	/* in case integer overflow in n+k */
128		return huge*SDL_NAME(copysign)(huge,x);	/*overflow*/
129	    else return tiny*SDL_NAME(copysign)(tiny,x); 	/*underflow*/
130	}
131        k += 54;				/* subnormal result */
132	SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20));
133        return x*twom54;
134}
135
136#ifdef __STDC__
137	double __ieee754_sqrt(double x)
138#else
139	double __ieee754_sqrt(x)
140	double x;
141#endif
142{
143	double z;
144	int32_t sign = (int)0x80000000;
145	int32_t ix0,s0,q,m,t,i;
146	u_int32_t r,t1,s1,ix1,q1;
147
148	EXTRACT_WORDS(ix0,ix1,x);
149
150    /* take care of Inf and NaN */
151	if((ix0&0x7ff00000)==0x7ff00000) {
152	    return x*x+x;		/* sqrt(NaN)=NaN, sqrt(+inf)=+inf
153					   sqrt(-inf)=sNaN */
154	}
155    /* take care of zero */
156	if(ix0<=0) {
157	    if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
158	    else if(ix0<0)
159		return (x-x)/(x-x);		/* sqrt(-ve) = sNaN */
160	}
161    /* normalize x */
162	m = (ix0>>20);
163	if(m==0) {				/* subnormal x */
164	    while(ix0==0) {
165		m -= 21;
166		ix0 |= (ix1>>11); ix1 <<= 21;
167	    }
168	    for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
169	    m -= i-1;
170	    ix0 |= (ix1>>(32-i));
171	    ix1 <<= i;
172	}
173	m -= 1023;	/* unbias exponent */
174	ix0 = (ix0&0x000fffff)|0x00100000;
175	if(m&1){	/* odd m, double x to make it even */
176	    ix0 += ix0 + ((ix1&sign)>>31);
177	    ix1 += ix1;
178	}
179	m >>= 1;	/* m = [m/2] */
180
181    /* generate sqrt(x) bit by bit */
182	ix0 += ix0 + ((ix1&sign)>>31);
183	ix1 += ix1;
184	q = q1 = s0 = s1 = 0;	/* [q,q1] = sqrt(x) */
185	r = 0x00200000;		/* r = moving bit from right to left */
186
187	while(r!=0) {
188	    t = s0+r;
189	    if(t<=ix0) {
190		s0   = t+r;
191		ix0 -= t;
192		q   += r;
193	    }
194	    ix0 += ix0 + ((ix1&sign)>>31);
195	    ix1 += ix1;
196	    r>>=1;
197	}
198
199	r = sign;
200	while(r!=0) {
201	    t1 = s1+r;
202	    t  = s0;
203	    if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
204		s1  = t1+r;
205		if(((int32_t)(t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
206		ix0 -= t;
207		if (ix1 < t1) ix0 -= 1;
208		ix1 -= t1;
209		q1  += r;
210	    }
211	    ix0 += ix0 + ((ix1&sign)>>31);
212	    ix1 += ix1;
213	    r>>=1;
214	}
215
216    /* use floating add to find out rounding direction */
217	if((ix0|ix1)!=0) {
218	    z = one-tiny; /* trigger inexact flag */
219	    if (z>=one) {
220	        z = one+tiny;
221	        if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
222		else if (z>one) {
223		    if (q1==(u_int32_t)0xfffffffe) q+=1;
224		    q1+=2;
225		} else
226	            q1 += (q1&1);
227	    }
228	}
229	ix0 = (q>>1)+0x3fe00000;
230	ix1 =  q1>>1;
231	if ((q&1)==1) ix1 |= sign;
232	ix0 += (m <<20);
233	INSERT_WORDS(z,ix0,ix1);
234	return z;
235}
236
237/*
238Other methods  (use floating-point arithmetic)
239-------------
240(This is a copy of a drafted paper by Prof W. Kahan
241and K.C. Ng, written in May, 1986)
242
243	Two algorithms are given here to implement sqrt(x)
244	(IEEE double precision arithmetic) in software.
245	Both supply sqrt(x) correctly rounded. The first algorithm (in
246	Section A) uses newton iterations and involves four divisions.
247	The second one uses reciproot iterations to avoid division, but
248	requires more multiplications. Both algorithms need the ability
249	to chop results of arithmetic operations instead of round them,
250	and the INEXACT flag to indicate when an arithmetic operation
251	is executed exactly with no roundoff error, all part of the
252	standard (IEEE 754-1985). The ability to perform shift, add,
253	subtract and logical AND operations upon 32-bit words is needed
254	too, though not part of the standard.
255
256A.  sqrt(x) by Newton Iteration
257
258   (1)	Initial approximation
259
260	Let x0 and x1 be the leading and the trailing 32-bit words of
261	a floating point number x (in IEEE double format) respectively
262
263	    1    11		     52				  ...widths
264	   ------------------------------------------------------
265	x: |s|	  e     |	      f				|
266	   ------------------------------------------------------
267	      msb    lsb  msb				      lsb ...order
268
269
270	     ------------------------  	     ------------------------
271	x0:  |s|   e    |    f1     |	 x1: |          f2           |
272	     ------------------------  	     ------------------------
273
274	By performing shifts and subtracts on x0 and x1 (both regarded
275	as integers), we obtain an 8-bit approximation of sqrt(x) as
276	follows.
277
278		k  := (x0>>1) + 0x1ff80000;
279		y0 := k - T1[31&(k>>15)].	... y ~ sqrt(x) to 8 bits
280	Here k is a 32-bit integer and T1[] is an integer array containing
281	correction terms. Now magically the floating value of y (y's
282	leading 32-bit word is y0, the value of its trailing word is 0)
283	approximates sqrt(x) to almost 8-bit.
284
285	Value of T1:
286	static int T1[32]= {
287	0,	1024,	3062,	5746,	9193,	13348,	18162,	23592,
288	29598,	36145,	43202,	50740,	58733,	67158,	75992,	85215,
289	83599,	71378,	60428,	50647,	41945,	34246,	27478,	21581,
290	16499,	12183,	8588,	5674,	3403,	1742,	661,	130,};
291
292    (2)	Iterative refinement
293
294	Apply Heron's rule three times to y, we have y approximates
295	sqrt(x) to within 1 ulp (Unit in the Last Place):
296
297		y := (y+x/y)/2		... almost 17 sig. bits
298		y := (y+x/y)/2		... almost 35 sig. bits
299		y := y-(y-x/y)/2	... within 1 ulp
300
301
302	Remark 1.
303	    Another way to improve y to within 1 ulp is:
304
305		y := (y+x/y)		... almost 17 sig. bits to 2*sqrt(x)
306		y := y - 0x00100006	... almost 18 sig. bits to sqrt(x)
307
308				2
309			    (x-y )*y
310		y := y + 2* ----------	...within 1 ulp
311			       2
312			     3y  + x
313
314
315	This formula has one division fewer than the one above; however,
316	it requires more multiplications and additions. Also x must be
317	scaled in advance to avoid spurious overflow in evaluating the
318	expression 3y*y+x. Hence it is not recommended uless division
319	is slow. If division is very slow, then one should use the
320	reciproot algorithm given in section B.
321
322    (3) Final adjustment
323
324	By twiddling y's last bit it is possible to force y to be
325	correctly rounded according to the prevailing rounding mode
326	as follows. Let r and i be copies of the rounding mode and
327	inexact flag before entering the square root program. Also we
328	use the expression y+-ulp for the next representable floating
329	numbers (up and down) of y. Note that y+-ulp = either fixed
330	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
331	mode.
332
333		I := FALSE;	... reset INEXACT flag I
334		R := RZ;	... set rounding mode to round-toward-zero
335		z := x/y;	... chopped quotient, possibly inexact
336		If(not I) then {	... if the quotient is exact
337		    if(z=y) {
338		        I := i;	 ... restore inexact flag
339		        R := r;  ... restore rounded mode
340		        return sqrt(x):=y.
341		    } else {
342			z := z - ulp;	... special rounding
343		    }
344		}
345		i := TRUE;		... sqrt(x) is inexact
346		If (r=RN) then z=z+ulp	... rounded-to-nearest
347		If (r=RP) then {	... round-toward-+inf
348		    y = y+ulp; z=z+ulp;
349		}
350		y := y+z;		... chopped sum
351		y0:=y0-0x00100000;	... y := y/2 is correctly rounded.
352	        I := i;	 		... restore inexact flag
353	        R := r;  		... restore rounded mode
354	        return sqrt(x):=y.
355
356    (4)	Special cases
357
358	Square root of +inf, +-0, or NaN is itself;
359	Square root of a negative number is NaN with invalid signal.
360
361
362B.  sqrt(x) by Reciproot Iteration
363
364   (1)	Initial approximation
365
366	Let x0 and x1 be the leading and the trailing 32-bit words of
367	a floating point number x (in IEEE double format) respectively
368	(see section A). By performing shifs and subtracts on x0 and y0,
369	we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
370
371	    k := 0x5fe80000 - (x0>>1);
372	    y0:= k - T2[63&(k>>14)].	... y ~ 1/sqrt(x) to 7.8 bits
373
374	Here k is a 32-bit integer and T2[] is an integer array
375	containing correction terms. Now magically the floating
376	value of y (y's leading 32-bit word is y0, the value of
377	its trailing word y1 is set to zero) approximates 1/sqrt(x)
378	to almost 7.8-bit.
379
380	Value of T2:
381	static int T2[64]= {
382	0x1500,	0x2ef8,	0x4d67,	0x6b02,	0x87be,	0xa395,	0xbe7a,	0xd866,
383	0xf14a,	0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
384	0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
385	0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
386	0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
387	0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
388	0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
389	0x1527f,0x1334a,0x11051,0xe951,	0xbe01,	0x8e0d,	0x5924,	0x1edd,};
390
391    (2)	Iterative refinement
392
393	Apply Reciproot iteration three times to y and multiply the
394	result by x to get an approximation z that matches sqrt(x)
395	to about 1 ulp. To be exact, we will have
396		-1ulp < sqrt(x)-z<1.0625ulp.
397
398	... set rounding mode to Round-to-nearest
399	   y := y*(1.5-0.5*x*y*y)	... almost 15 sig. bits to 1/sqrt(x)
400	   y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
401	... special arrangement for better accuracy
402	   z := x*y			... 29 bits to sqrt(x), with z*y<1
403	   z := z + 0.5*z*(1-z*y)	... about 1 ulp to sqrt(x)
404
405	Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
406	(a) the term z*y in the final iteration is always less than 1;
407	(b) the error in the final result is biased upward so that
408		-1 ulp < sqrt(x) - z < 1.0625 ulp
409	    instead of |sqrt(x)-z|<1.03125ulp.
410
411    (3)	Final adjustment
412
413	By twiddling y's last bit it is possible to force y to be
414	correctly rounded according to the prevailing rounding mode
415	as follows. Let r and i be copies of the rounding mode and
416	inexact flag before entering the square root program. Also we
417	use the expression y+-ulp for the next representable floating
418	numbers (up and down) of y. Note that y+-ulp = either fixed
419	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
420	mode.
421
422	R := RZ;		... set rounding mode to round-toward-zero
423	switch(r) {
424	    case RN:		... round-to-nearest
425	       if(x<= z*(z-ulp)...chopped) z = z - ulp; else
426	       if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
427	       break;
428	    case RZ:case RM:	... round-to-zero or round-to--inf
429	       R:=RP;		... reset rounding mod to round-to-+inf
430	       if(x<z*z ... rounded up) z = z - ulp; else
431	       if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
432	       break;
433	    case RP:		... round-to-+inf
434	       if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
435	       if(x>z*z ...chopped) z = z+ulp;
436	       break;
437	}
438
439	Remark 3. The above comparisons can be done in fixed point. For
440	example, to compare x and w=z*z chopped, it suffices to compare
441	x1 and w1 (the trailing parts of x and w), regarding them as
442	two's complement integers.
443
444	...Is z an exact square root?
445	To determine whether z is an exact square root of x, let z1 be the
446	trailing part of z, and also let x0 and x1 be the leading and
447	trailing parts of x.
448
449	If ((z1&0x03ffffff)!=0)	... not exact if trailing 26 bits of z!=0
450	    I := 1;		... Raise Inexact flag: z is not exact
451	else {
452	    j := 1 - [(x0>>20)&1]	... j = logb(x) mod 2
453	    k := z1 >> 26;		... get z's 25-th and 26-th
454					    fraction bits
455	    I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
456	}
457	R:= r		... restore rounded mode
458	return sqrt(x):=z.
459
460	If multiplication is cheaper then the foregoing red tape, the
461	Inexact flag can be evaluated by
462
463	    I := i;
464	    I := (z*z!=x) or I.
465
466	Note that z*z can overwrite I; this value must be sensed if it is
467	True.
468
469	Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
470	zero.
471
472		    --------------------
473		z1: |        f2        |
474		    --------------------
475		bit 31		   bit 0
476
477	Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
478	or even of logb(x) have the following relations:
479
480	-------------------------------------------------
481	bit 27,26 of z1		bit 1,0 of x1	logb(x)
482	-------------------------------------------------
483	00			00		odd and even
484	01			01		even
485	10			10		odd
486	10			00		even
487	11			01		even
488	-------------------------------------------------
489
490    (4)	Special cases (see (4) of Section A).
491
492 */
493
494