1/*	mmx.h
2
3	MultiMedia eXtensions GCC interface library for IA32.
4
5	To use this library, simply include this header file
6	and compile with GCC.  You MUST have inlining enabled
7	in order for mmx_ok() to work; this can be done by
8	simply using -O on the GCC command line.
9
10	Compiling with -DMMX_TRACE will cause detailed trace
11	output to be sent to stderr for each mmx operation.
12	This adds lots of code, and obviously slows execution to
13	a crawl, but can be very useful for debugging.
14
15	THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY
16	EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
17	LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
18	AND FITNESS FOR ANY PARTICULAR PURPOSE.
19
20	1997-99 by H. Dietz and R. Fisher
21
22 Notes:
23	It appears that the latest gas has the pand problem fixed, therefore
24	  I'll undefine BROKEN_PAND by default.
25*/
26
27#ifndef _MMX_H
28#define _MMX_H
29
30
31/*	Warning:  at this writing, the version of GAS packaged
32	with most Linux distributions does not handle the
33	parallel AND operation mnemonic correctly.  If the
34	symbol BROKEN_PAND is defined, a slower alternative
35	coding will be used.  If execution of mmxtest results
36	in an illegal instruction fault, define this symbol.
37*/
38#undef	BROKEN_PAND
39
40
41/*	The type of an value that fits in an MMX register
42	(note that long long constant values MUST be suffixed
43	 by LL and unsigned long long values by ULL, lest
44	 they be truncated by the compiler)
45*/
46typedef	union {
47	long long		q;	/* Quadword (64-bit) value */
48	unsigned long long	uq;	/* Unsigned Quadword */
49	int			d[2];	/* 2 Doubleword (32-bit) values */
50	unsigned int		ud[2];	/* 2 Unsigned Doubleword */
51	short			w[4];	/* 4 Word (16-bit) values */
52	unsigned short		uw[4];	/* 4 Unsigned Word */
53	char			b[8];	/* 8 Byte (8-bit) values */
54	unsigned char		ub[8];	/* 8 Unsigned Byte */
55	float			s[2];	/* Single-precision (32-bit) value */
56} __attribute__ ((aligned (8))) mmx_t;	/* On an 8-byte (64-bit) boundary */
57
58
59#if 0
60/*	Function to test if multimedia instructions are supported...
61*/
62inline extern int
63mm_support(void)
64{
65	/* Returns 1 if MMX instructions are supported,
66	   3 if Cyrix MMX and Extended MMX instructions are supported
67	   5 if AMD MMX and 3DNow! instructions are supported
68	   0 if hardware does not support any of these
69	*/
70	register int rval = 0;
71
72	__asm__ __volatile__ (
73		/* See if CPUID instruction is supported ... */
74		/* ... Get copies of EFLAGS into eax and ecx */
75		"pushf\n\t"
76		"popl %%eax\n\t"
77		"movl %%eax, %%ecx\n\t"
78
79		/* ... Toggle the ID bit in one copy and store */
80		/*     to the EFLAGS reg */
81		"xorl $0x200000, %%eax\n\t"
82		"push %%eax\n\t"
83		"popf\n\t"
84
85		/* ... Get the (hopefully modified) EFLAGS */
86		"pushf\n\t"
87		"popl %%eax\n\t"
88
89		/* ... Compare and test result */
90		"xorl %%eax, %%ecx\n\t"
91		"testl $0x200000, %%ecx\n\t"
92		"jz NotSupported1\n\t"		/* CPUID not supported */
93
94
95		/* Get standard CPUID information, and
96		       go to a specific vendor section */
97		"movl $0, %%eax\n\t"
98		"cpuid\n\t"
99
100		/* Check for Intel */
101		"cmpl $0x756e6547, %%ebx\n\t"
102		"jne TryAMD\n\t"
103		"cmpl $0x49656e69, %%edx\n\t"
104		"jne TryAMD\n\t"
105		"cmpl $0x6c65746e, %%ecx\n"
106		"jne TryAMD\n\t"
107		"jmp Intel\n\t"
108
109		/* Check for AMD */
110		"\nTryAMD:\n\t"
111		"cmpl $0x68747541, %%ebx\n\t"
112		"jne TryCyrix\n\t"
113		"cmpl $0x69746e65, %%edx\n\t"
114		"jne TryCyrix\n\t"
115		"cmpl $0x444d4163, %%ecx\n"
116		"jne TryCyrix\n\t"
117		"jmp AMD\n\t"
118
119		/* Check for Cyrix */
120		"\nTryCyrix:\n\t"
121		"cmpl $0x69727943, %%ebx\n\t"
122		"jne NotSupported2\n\t"
123		"cmpl $0x736e4978, %%edx\n\t"
124		"jne NotSupported3\n\t"
125		"cmpl $0x64616574, %%ecx\n\t"
126		"jne NotSupported4\n\t"
127		/* Drop through to Cyrix... */
128
129
130		/* Cyrix Section */
131		/* See if extended CPUID level 80000001 is supported */
132		/* The value of CPUID/80000001 for the 6x86MX is undefined
133		   according to the Cyrix CPU Detection Guide (Preliminary
134		   Rev. 1.01 table 1), so we'll check the value of eax for
135		   CPUID/0 to see if standard CPUID level 2 is supported.
136		   According to the table, the only CPU which supports level
137		   2 is also the only one which supports extended CPUID levels.
138		*/
139		"cmpl $0x2, %%eax\n\t"
140		"jne MMXtest\n\t"	/* Use standard CPUID instead */
141
142		/* Extended CPUID supported (in theory), so get extended
143		   features */
144		"movl $0x80000001, %%eax\n\t"
145		"cpuid\n\t"
146		"testl $0x00800000, %%eax\n\t"	/* Test for MMX */
147		"jz NotSupported5\n\t"		/* MMX not supported */
148		"testl $0x01000000, %%eax\n\t"	/* Test for Ext'd MMX */
149		"jnz EMMXSupported\n\t"
150		"movl $1, %0:\n\n\t"		/* MMX Supported */
151		"jmp Return\n\n"
152		"EMMXSupported:\n\t"
153		"movl $3, %0:\n\n\t"		/* EMMX and MMX Supported */
154		"jmp Return\n\t"
155
156
157		/* AMD Section */
158		"AMD:\n\t"
159
160		/* See if extended CPUID is supported */
161		"movl $0x80000000, %%eax\n\t"
162		"cpuid\n\t"
163		"cmpl $0x80000000, %%eax\n\t"
164		"jl MMXtest\n\t"	/* Use standard CPUID instead */
165
166		/* Extended CPUID supported, so get extended features */
167		"movl $0x80000001, %%eax\n\t"
168		"cpuid\n\t"
169		"testl $0x00800000, %%edx\n\t"	/* Test for MMX */
170		"jz NotSupported6\n\t"		/* MMX not supported */
171		"testl $0x80000000, %%edx\n\t"	/* Test for 3DNow! */
172		"jnz ThreeDNowSupported\n\t"
173		"movl $1, %0:\n\n\t"		/* MMX Supported */
174		"jmp Return\n\n"
175		"ThreeDNowSupported:\n\t"
176		"movl $5, %0:\n\n\t"		/* 3DNow! and MMX Supported */
177		"jmp Return\n\t"
178
179
180		/* Intel Section */
181		"Intel:\n\t"
182
183		/* Check for MMX */
184		"MMXtest:\n\t"
185		"movl $1, %%eax\n\t"
186		"cpuid\n\t"
187		"testl $0x00800000, %%edx\n\t"	/* Test for MMX */
188		"jz NotSupported7\n\t"		/* MMX Not supported */
189		"movl $1, %0:\n\n\t"		/* MMX Supported */
190		"jmp Return\n\t"
191
192		/* Nothing supported */
193		"\nNotSupported1:\n\t"
194		"#movl $101, %0:\n\n\t"
195		"\nNotSupported2:\n\t"
196		"#movl $102, %0:\n\n\t"
197		"\nNotSupported3:\n\t"
198		"#movl $103, %0:\n\n\t"
199		"\nNotSupported4:\n\t"
200		"#movl $104, %0:\n\n\t"
201		"\nNotSupported5:\n\t"
202		"#movl $105, %0:\n\n\t"
203		"\nNotSupported6:\n\t"
204		"#movl $106, %0:\n\n\t"
205		"\nNotSupported7:\n\t"
206		"#movl $107, %0:\n\n\t"
207		"movl $0, %0:\n\n\t"
208
209		"Return:\n\t"
210		: "=a" (rval)
211		: /* no input */
212		: "eax", "ebx", "ecx", "edx"
213	);
214
215	/* Return */
216	return(rval);
217}
218
219/*	Function to test if mmx instructions are supported...
220*/
221inline extern int
222mmx_ok(void)
223{
224	/* Returns 1 if MMX instructions are supported, 0 otherwise */
225	return ( mm_support() & 0x1 );
226}
227#endif
228
229/*	Helper functions for the instruction macros that follow...
230	(note that memory-to-register, m2r, instructions are nearly
231	 as efficient as register-to-register, r2r, instructions;
232	 however, memory-to-memory instructions are really simulated
233	 as a convenience, and are only 1/3 as efficient)
234*/
235#ifdef	MMX_TRACE
236
237/*	Include the stuff for printing a trace to stderr...
238*/
239
240#define	mmx_i2r(op, imm, reg) \
241	{ \
242		mmx_t mmx_trace; \
243		mmx_trace.uq = (imm); \
244		printf(#op "_i2r(" #imm "=0x%08x%08x, ", \
245			mmx_trace.d[1], mmx_trace.d[0]); \
246		__asm__ __volatile__ ("movq %%" #reg ", %0" \
247				      : "=y" (mmx_trace) \
248				      : /* nothing */ ); \
249		printf(#reg "=0x%08x%08x) => ", \
250			mmx_trace.d[1], mmx_trace.d[0]); \
251		__asm__ __volatile__ (#op " %0, %%" #reg \
252				      : /* nothing */ \
253				      : "y" (imm)); \
254		__asm__ __volatile__ ("movq %%" #reg ", %0" \
255				      : "=y" (mmx_trace) \
256				      : /* nothing */ ); \
257		printf(#reg "=0x%08x%08x\n", \
258			mmx_trace.d[1], mmx_trace.d[0]); \
259	}
260
261#define	mmx_m2r(op, mem, reg) \
262	{ \
263		mmx_t mmx_trace; \
264		mmx_trace = (mem); \
265		printf(#op "_m2r(" #mem "=0x%08x%08x, ", \
266			mmx_trace.d[1], mmx_trace.d[0]); \
267		__asm__ __volatile__ ("movq %%" #reg ", %0" \
268				      : "=y" (mmx_trace) \
269				      : /* nothing */ ); \
270		printf(#reg "=0x%08x%08x) => ", \
271			mmx_trace.d[1], mmx_trace.d[0]); \
272		__asm__ __volatile__ (#op " %0, %%" #reg \
273				      : /* nothing */ \
274				      : "y" (mem)); \
275		__asm__ __volatile__ ("movq %%" #reg ", %0" \
276				      : "=y" (mmx_trace) \
277				      : /* nothing */ ); \
278		printf(#reg "=0x%08x%08x\n", \
279			mmx_trace.d[1], mmx_trace.d[0]); \
280	}
281
282#define	mmx_r2m(op, reg, mem) \
283	{ \
284		mmx_t mmx_trace; \
285		__asm__ __volatile__ ("movq %%" #reg ", %0" \
286				      : "=y" (mmx_trace) \
287				      : /* nothing */ ); \
288		printf(#op "_r2m(" #reg "=0x%08x%08x, ", \
289			mmx_trace.d[1], mmx_trace.d[0]); \
290		mmx_trace = (mem); \
291		printf(#mem "=0x%08x%08x) => ", \
292			mmx_trace.d[1], mmx_trace.d[0]); \
293		__asm__ __volatile__ (#op " %%" #reg ", %0" \
294				      : "=y" (mem) \
295				      : /* nothing */ ); \
296		mmx_trace = (mem); \
297		printf(#mem "=0x%08x%08x\n", \
298			mmx_trace.d[1], mmx_trace.d[0]); \
299	}
300
301#define	mmx_r2r(op, regs, regd) \
302	{ \
303		mmx_t mmx_trace; \
304		__asm__ __volatile__ ("movq %%" #regs ", %0" \
305				      : "=y" (mmx_trace) \
306				      : /* nothing */ ); \
307		printf(#op "_r2r(" #regs "=0x%08x%08x, ", \
308			mmx_trace.d[1], mmx_trace.d[0]); \
309		__asm__ __volatile__ ("movq %%" #regd ", %0" \
310				      : "=y" (mmx_trace) \
311				      : /* nothing */ ); \
312		printf(#regd "=0x%08x%08x) => ", \
313			mmx_trace.d[1], mmx_trace.d[0]); \
314		__asm__ __volatile__ (#op " %" #regs ", %" #regd); \
315		__asm__ __volatile__ ("movq %%" #regd ", %0" \
316				      : "=y" (mmx_trace) \
317				      : /* nothing */ ); \
318		printf(#regd "=0x%08x%08x\n", \
319			mmx_trace.d[1], mmx_trace.d[0]); \
320	}
321
322#define	mmx_m2m(op, mems, memd) \
323	{ \
324		mmx_t mmx_trace; \
325		mmx_trace = (mems); \
326		printf(#op "_m2m(" #mems "=0x%08x%08x, ", \
327			mmx_trace.d[1], mmx_trace.d[0]); \
328		mmx_trace = (memd); \
329		printf(#memd "=0x%08x%08x) => ", \
330			mmx_trace.d[1], mmx_trace.d[0]); \
331		__asm__ __volatile__ ("movq %0, %%mm0\n\t" \
332				      #op " %1, %%mm0\n\t" \
333				      "movq %%mm0, %0" \
334				      : "=y" (memd) \
335				      : "y" (mems)); \
336		mmx_trace = (memd); \
337		printf(#memd "=0x%08x%08x\n", \
338			mmx_trace.d[1], mmx_trace.d[0]); \
339	}
340
341#else
342
343/*	These macros are a lot simpler without the tracing...
344*/
345
346#define	mmx_i2r(op, imm, reg) \
347	__asm__ __volatile__ (#op " %0, %%" #reg \
348			      : /* nothing */ \
349			      : "y" (imm) )
350
351#define	mmx_m2r(op, mem, reg) \
352	__asm__ __volatile__ (#op " %0, %%" #reg \
353			      : /* nothing */ \
354			      : "m" (mem))
355
356#define	mmx_r2m(op, reg, mem) \
357	__asm__ __volatile__ (#op " %%" #reg ", %0" \
358			      : "=m" (mem) \
359			      : /* nothing */ )
360
361#define	mmx_r2r(op, regs, regd) \
362	__asm__ __volatile__ (#op " %" #regs ", %" #regd)
363
364#define	mmx_m2m(op, mems, memd) \
365	__asm__ __volatile__ ("movq %0, %%mm0\n\t" \
366			      #op " %1, %%mm0\n\t" \
367			      "movq %%mm0, %0" \
368			      : "=y" (memd) \
369			      : "y" (mems))
370
371#endif
372
373
374/*	1x64 MOVe Quadword
375	(this is both a load and a store...
376	 in fact, it is the only way to store)
377*/
378#define	movq_m2r(var, reg)	mmx_m2r(movq, var, reg)
379#define	movq_r2m(reg, var)	mmx_r2m(movq, reg, var)
380#define	movq_r2r(regs, regd)	mmx_r2r(movq, regs, regd)
381#define	movq(vars, vard) \
382	__asm__ __volatile__ ("movq %1, %%mm0\n\t" \
383			      "movq %%mm0, %0" \
384			      : "=y" (vard) \
385			      : "y" (vars))
386
387
388/*	1x32 MOVe Doubleword
389	(like movq, this is both load and store...
390	 but is most useful for moving things between
391	 mmx registers and ordinary registers)
392*/
393#define	movd_m2r(var, reg)	mmx_m2r(movd, var, reg)
394#define	movd_r2m(reg, var)	mmx_r2m(movd, reg, var)
395#define	movd_r2r(regs, regd)	mmx_r2r(movd, regs, regd)
396#define	movd(vars, vard) \
397	__asm__ __volatile__ ("movd %1, %%mm0\n\t" \
398			      "movd %%mm0, %0" \
399			      : "=y" (vard) \
400			      : "y" (vars))
401
402
403/*	2x32, 4x16, and 8x8 Parallel ADDs
404*/
405#define	paddd_m2r(var, reg)	mmx_m2r(paddd, var, reg)
406#define	paddd_r2r(regs, regd)	mmx_r2r(paddd, regs, regd)
407#define	paddd(vars, vard)	mmx_m2m(paddd, vars, vard)
408
409#define	paddw_m2r(var, reg)	mmx_m2r(paddw, var, reg)
410#define	paddw_r2r(regs, regd)	mmx_r2r(paddw, regs, regd)
411#define	paddw(vars, vard)	mmx_m2m(paddw, vars, vard)
412
413#define	paddb_m2r(var, reg)	mmx_m2r(paddb, var, reg)
414#define	paddb_r2r(regs, regd)	mmx_r2r(paddb, regs, regd)
415#define	paddb(vars, vard)	mmx_m2m(paddb, vars, vard)
416
417
418/*	4x16 and 8x8 Parallel ADDs using Saturation arithmetic
419*/
420#define	paddsw_m2r(var, reg)	mmx_m2r(paddsw, var, reg)
421#define	paddsw_r2r(regs, regd)	mmx_r2r(paddsw, regs, regd)
422#define	paddsw(vars, vard)	mmx_m2m(paddsw, vars, vard)
423
424#define	paddsb_m2r(var, reg)	mmx_m2r(paddsb, var, reg)
425#define	paddsb_r2r(regs, regd)	mmx_r2r(paddsb, regs, regd)
426#define	paddsb(vars, vard)	mmx_m2m(paddsb, vars, vard)
427
428
429/*	4x16 and 8x8 Parallel ADDs using Unsigned Saturation arithmetic
430*/
431#define	paddusw_m2r(var, reg)	mmx_m2r(paddusw, var, reg)
432#define	paddusw_r2r(regs, regd)	mmx_r2r(paddusw, regs, regd)
433#define	paddusw(vars, vard)	mmx_m2m(paddusw, vars, vard)
434
435#define	paddusb_m2r(var, reg)	mmx_m2r(paddusb, var, reg)
436#define	paddusb_r2r(regs, regd)	mmx_r2r(paddusb, regs, regd)
437#define	paddusb(vars, vard)	mmx_m2m(paddusb, vars, vard)
438
439
440/*	2x32, 4x16, and 8x8 Parallel SUBs
441*/
442#define	psubd_m2r(var, reg)	mmx_m2r(psubd, var, reg)
443#define	psubd_r2r(regs, regd)	mmx_r2r(psubd, regs, regd)
444#define	psubd(vars, vard)	mmx_m2m(psubd, vars, vard)
445
446#define	psubw_m2r(var, reg)	mmx_m2r(psubw, var, reg)
447#define	psubw_r2r(regs, regd)	mmx_r2r(psubw, regs, regd)
448#define	psubw(vars, vard)	mmx_m2m(psubw, vars, vard)
449
450#define	psubb_m2r(var, reg)	mmx_m2r(psubb, var, reg)
451#define	psubb_r2r(regs, regd)	mmx_r2r(psubb, regs, regd)
452#define	psubb(vars, vard)	mmx_m2m(psubb, vars, vard)
453
454
455/*	4x16 and 8x8 Parallel SUBs using Saturation arithmetic
456*/
457#define	psubsw_m2r(var, reg)	mmx_m2r(psubsw, var, reg)
458#define	psubsw_r2r(regs, regd)	mmx_r2r(psubsw, regs, regd)
459#define	psubsw(vars, vard)	mmx_m2m(psubsw, vars, vard)
460
461#define	psubsb_m2r(var, reg)	mmx_m2r(psubsb, var, reg)
462#define	psubsb_r2r(regs, regd)	mmx_r2r(psubsb, regs, regd)
463#define	psubsb(vars, vard)	mmx_m2m(psubsb, vars, vard)
464
465
466/*	4x16 and 8x8 Parallel SUBs using Unsigned Saturation arithmetic
467*/
468#define	psubusw_m2r(var, reg)	mmx_m2r(psubusw, var, reg)
469#define	psubusw_r2r(regs, regd)	mmx_r2r(psubusw, regs, regd)
470#define	psubusw(vars, vard)	mmx_m2m(psubusw, vars, vard)
471
472#define	psubusb_m2r(var, reg)	mmx_m2r(psubusb, var, reg)
473#define	psubusb_r2r(regs, regd)	mmx_r2r(psubusb, regs, regd)
474#define	psubusb(vars, vard)	mmx_m2m(psubusb, vars, vard)
475
476
477/*	4x16 Parallel MULs giving Low 4x16 portions of results
478*/
479#define	pmullw_m2r(var, reg)	mmx_m2r(pmullw, var, reg)
480#define	pmullw_r2r(regs, regd)	mmx_r2r(pmullw, regs, regd)
481#define	pmullw(vars, vard)	mmx_m2m(pmullw, vars, vard)
482
483
484/*	4x16 Parallel MULs giving High 4x16 portions of results
485*/
486#define	pmulhw_m2r(var, reg)	mmx_m2r(pmulhw, var, reg)
487#define	pmulhw_r2r(regs, regd)	mmx_r2r(pmulhw, regs, regd)
488#define	pmulhw(vars, vard)	mmx_m2m(pmulhw, vars, vard)
489
490
491/*	4x16->2x32 Parallel Mul-ADD
492	(muls like pmullw, then adds adjacent 16-bit fields
493	 in the multiply result to make the final 2x32 result)
494*/
495#define	pmaddwd_m2r(var, reg)	mmx_m2r(pmaddwd, var, reg)
496#define	pmaddwd_r2r(regs, regd)	mmx_r2r(pmaddwd, regs, regd)
497#define	pmaddwd(vars, vard)	mmx_m2m(pmaddwd, vars, vard)
498
499
500/*	1x64 bitwise AND
501*/
502#ifdef	BROKEN_PAND
503#define	pand_m2r(var, reg) \
504	{ \
505		mmx_m2r(pandn, (mmx_t) -1LL, reg); \
506		mmx_m2r(pandn, var, reg); \
507	}
508#define	pand_r2r(regs, regd) \
509	{ \
510		mmx_m2r(pandn, (mmx_t) -1LL, regd); \
511		mmx_r2r(pandn, regs, regd) \
512	}
513#define	pand(vars, vard) \
514	{ \
515		movq_m2r(vard, mm0); \
516		mmx_m2r(pandn, (mmx_t) -1LL, mm0); \
517		mmx_m2r(pandn, vars, mm0); \
518		movq_r2m(mm0, vard); \
519	}
520#else
521#define	pand_m2r(var, reg)	mmx_m2r(pand, var, reg)
522#define	pand_r2r(regs, regd)	mmx_r2r(pand, regs, regd)
523#define	pand(vars, vard)	mmx_m2m(pand, vars, vard)
524#endif
525
526
527/*	1x64 bitwise AND with Not the destination
528*/
529#define	pandn_m2r(var, reg)	mmx_m2r(pandn, var, reg)
530#define	pandn_r2r(regs, regd)	mmx_r2r(pandn, regs, regd)
531#define	pandn(vars, vard)	mmx_m2m(pandn, vars, vard)
532
533
534/*	1x64 bitwise OR
535*/
536#define	por_m2r(var, reg)	mmx_m2r(por, var, reg)
537#define	por_r2r(regs, regd)	mmx_r2r(por, regs, regd)
538#define	por(vars, vard)	mmx_m2m(por, vars, vard)
539
540
541/*	1x64 bitwise eXclusive OR
542*/
543#define	pxor_m2r(var, reg)	mmx_m2r(pxor, var, reg)
544#define	pxor_r2r(regs, regd)	mmx_r2r(pxor, regs, regd)
545#define	pxor(vars, vard)	mmx_m2m(pxor, vars, vard)
546
547
548/*	2x32, 4x16, and 8x8 Parallel CoMPare for EQuality
549	(resulting fields are either 0 or -1)
550*/
551#define	pcmpeqd_m2r(var, reg)	mmx_m2r(pcmpeqd, var, reg)
552#define	pcmpeqd_r2r(regs, regd)	mmx_r2r(pcmpeqd, regs, regd)
553#define	pcmpeqd(vars, vard)	mmx_m2m(pcmpeqd, vars, vard)
554
555#define	pcmpeqw_m2r(var, reg)	mmx_m2r(pcmpeqw, var, reg)
556#define	pcmpeqw_r2r(regs, regd)	mmx_r2r(pcmpeqw, regs, regd)
557#define	pcmpeqw(vars, vard)	mmx_m2m(pcmpeqw, vars, vard)
558
559#define	pcmpeqb_m2r(var, reg)	mmx_m2r(pcmpeqb, var, reg)
560#define	pcmpeqb_r2r(regs, regd)	mmx_r2r(pcmpeqb, regs, regd)
561#define	pcmpeqb(vars, vard)	mmx_m2m(pcmpeqb, vars, vard)
562
563
564/*	2x32, 4x16, and 8x8 Parallel CoMPare for Greater Than
565	(resulting fields are either 0 or -1)
566*/
567#define	pcmpgtd_m2r(var, reg)	mmx_m2r(pcmpgtd, var, reg)
568#define	pcmpgtd_r2r(regs, regd)	mmx_r2r(pcmpgtd, regs, regd)
569#define	pcmpgtd(vars, vard)	mmx_m2m(pcmpgtd, vars, vard)
570
571#define	pcmpgtw_m2r(var, reg)	mmx_m2r(pcmpgtw, var, reg)
572#define	pcmpgtw_r2r(regs, regd)	mmx_r2r(pcmpgtw, regs, regd)
573#define	pcmpgtw(vars, vard)	mmx_m2m(pcmpgtw, vars, vard)
574
575#define	pcmpgtb_m2r(var, reg)	mmx_m2r(pcmpgtb, var, reg)
576#define	pcmpgtb_r2r(regs, regd)	mmx_r2r(pcmpgtb, regs, regd)
577#define	pcmpgtb(vars, vard)	mmx_m2m(pcmpgtb, vars, vard)
578
579
580/*	1x64, 2x32, and 4x16 Parallel Shift Left Logical
581*/
582#define	psllq_i2r(imm, reg)	mmx_i2r(psllq, imm, reg)
583#define	psllq_m2r(var, reg)	mmx_m2r(psllq, var, reg)
584#define	psllq_r2r(regs, regd)	mmx_r2r(psllq, regs, regd)
585#define	psllq(vars, vard)	mmx_m2m(psllq, vars, vard)
586
587#define	pslld_i2r(imm, reg)	mmx_i2r(pslld, imm, reg)
588#define	pslld_m2r(var, reg)	mmx_m2r(pslld, var, reg)
589#define	pslld_r2r(regs, regd)	mmx_r2r(pslld, regs, regd)
590#define	pslld(vars, vard)	mmx_m2m(pslld, vars, vard)
591
592#define	psllw_i2r(imm, reg)	mmx_i2r(psllw, imm, reg)
593#define	psllw_m2r(var, reg)	mmx_m2r(psllw, var, reg)
594#define	psllw_r2r(regs, regd)	mmx_r2r(psllw, regs, regd)
595#define	psllw(vars, vard)	mmx_m2m(psllw, vars, vard)
596
597
598/*	1x64, 2x32, and 4x16 Parallel Shift Right Logical
599*/
600#define	psrlq_i2r(imm, reg)	mmx_i2r(psrlq, imm, reg)
601#define	psrlq_m2r(var, reg)	mmx_m2r(psrlq, var, reg)
602#define	psrlq_r2r(regs, regd)	mmx_r2r(psrlq, regs, regd)
603#define	psrlq(vars, vard)	mmx_m2m(psrlq, vars, vard)
604
605#define	psrld_i2r(imm, reg)	mmx_i2r(psrld, imm, reg)
606#define	psrld_m2r(var, reg)	mmx_m2r(psrld, var, reg)
607#define	psrld_r2r(regs, regd)	mmx_r2r(psrld, regs, regd)
608#define	psrld(vars, vard)	mmx_m2m(psrld, vars, vard)
609
610#define	psrlw_i2r(imm, reg)	mmx_i2r(psrlw, imm, reg)
611#define	psrlw_m2r(var, reg)	mmx_m2r(psrlw, var, reg)
612#define	psrlw_r2r(regs, regd)	mmx_r2r(psrlw, regs, regd)
613#define	psrlw(vars, vard)	mmx_m2m(psrlw, vars, vard)
614
615
616/*	2x32 and 4x16 Parallel Shift Right Arithmetic
617*/
618#define	psrad_i2r(imm, reg)	mmx_i2r(psrad, imm, reg)
619#define	psrad_m2r(var, reg)	mmx_m2r(psrad, var, reg)
620#define	psrad_r2r(regs, regd)	mmx_r2r(psrad, regs, regd)
621#define	psrad(vars, vard)	mmx_m2m(psrad, vars, vard)
622
623#define	psraw_i2r(imm, reg)	mmx_i2r(psraw, imm, reg)
624#define	psraw_m2r(var, reg)	mmx_m2r(psraw, var, reg)
625#define	psraw_r2r(regs, regd)	mmx_r2r(psraw, regs, regd)
626#define	psraw(vars, vard)	mmx_m2m(psraw, vars, vard)
627
628
629/*	2x32->4x16 and 4x16->8x8 PACK and Signed Saturate
630	(packs source and dest fields into dest in that order)
631*/
632#define	packssdw_m2r(var, reg)	mmx_m2r(packssdw, var, reg)
633#define	packssdw_r2r(regs, regd) mmx_r2r(packssdw, regs, regd)
634#define	packssdw(vars, vard)	mmx_m2m(packssdw, vars, vard)
635
636#define	packsswb_m2r(var, reg)	mmx_m2r(packsswb, var, reg)
637#define	packsswb_r2r(regs, regd) mmx_r2r(packsswb, regs, regd)
638#define	packsswb(vars, vard)	mmx_m2m(packsswb, vars, vard)
639
640
641/*	4x16->8x8 PACK and Unsigned Saturate
642	(packs source and dest fields into dest in that order)
643*/
644#define	packuswb_m2r(var, reg)	mmx_m2r(packuswb, var, reg)
645#define	packuswb_r2r(regs, regd) mmx_r2r(packuswb, regs, regd)
646#define	packuswb(vars, vard)	mmx_m2m(packuswb, vars, vard)
647
648
649/*	2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK Low
650	(interleaves low half of dest with low half of source
651	 as padding in each result field)
652*/
653#define	punpckldq_m2r(var, reg)	mmx_m2r(punpckldq, var, reg)
654#define	punpckldq_r2r(regs, regd) mmx_r2r(punpckldq, regs, regd)
655#define	punpckldq(vars, vard)	mmx_m2m(punpckldq, vars, vard)
656
657#define	punpcklwd_m2r(var, reg)	mmx_m2r(punpcklwd, var, reg)
658#define	punpcklwd_r2r(regs, regd) mmx_r2r(punpcklwd, regs, regd)
659#define	punpcklwd(vars, vard)	mmx_m2m(punpcklwd, vars, vard)
660
661#define	punpcklbw_m2r(var, reg)	mmx_m2r(punpcklbw, var, reg)
662#define	punpcklbw_r2r(regs, regd) mmx_r2r(punpcklbw, regs, regd)
663#define	punpcklbw(vars, vard)	mmx_m2m(punpcklbw, vars, vard)
664
665
666/*	2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK High
667	(interleaves high half of dest with high half of source
668	 as padding in each result field)
669*/
670#define	punpckhdq_m2r(var, reg)	mmx_m2r(punpckhdq, var, reg)
671#define	punpckhdq_r2r(regs, regd) mmx_r2r(punpckhdq, regs, regd)
672#define	punpckhdq(vars, vard)	mmx_m2m(punpckhdq, vars, vard)
673
674#define	punpckhwd_m2r(var, reg)	mmx_m2r(punpckhwd, var, reg)
675#define	punpckhwd_r2r(regs, regd) mmx_r2r(punpckhwd, regs, regd)
676#define	punpckhwd(vars, vard)	mmx_m2m(punpckhwd, vars, vard)
677
678#define	punpckhbw_m2r(var, reg)	mmx_m2r(punpckhbw, var, reg)
679#define	punpckhbw_r2r(regs, regd) mmx_r2r(punpckhbw, regs, regd)
680#define	punpckhbw(vars, vard)	mmx_m2m(punpckhbw, vars, vard)
681
682
683/*	Empty MMx State
684	(used to clean-up when going from mmx to float use
685	 of the registers that are shared by both; note that
686	 there is no float-to-mmx operation needed, because
687	 only the float tag word info is corruptible)
688*/
689#ifdef	MMX_TRACE
690
691#define	emms() \
692	{ \
693		printf("emms()\n"); \
694		__asm__ __volatile__ ("emms"); \
695	}
696
697#else
698
699#define	emms()			__asm__ __volatile__ ("emms")
700
701#endif
702
703#endif
704
705