1// Copyright 2008 The RE2 Authors.  All Rights Reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// A DFA (deterministic finite automaton)-based regular expression search.
6//
7// The DFA search has two main parts: the construction of the automaton,
8// which is represented by a graph of State structures, and the execution
9// of the automaton over a given input string.
10//
11// The basic idea is that the State graph is constructed so that the
12// execution can simply start with a state s, and then for each byte c in
13// the input string, execute "s = s->next[c]", checking at each point whether
14// the current s represents a matching state.
15//
16// The simple explanation just given does convey the essence of this code,
17// but it omits the details of how the State graph gets constructed as well
18// as some performance-driven optimizations to the execution of the automaton.
19// All these details are explained in the comments for the code following
20// the definition of class DFA.
21//
22// See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent.
23
24#include "re2/prog.h"
25#include "re2/stringpiece.h"
26#include "util/atomicops.h"
27#include "util/flags.h"
28#include "util/sparse_set.h"
29
30DEFINE_bool(re2_dfa_bail_when_slow, true,
31            "Whether the RE2 DFA should bail out early "
32            "if the NFA would be faster (for testing).");
33
34namespace re2 {
35
36#if !defined(__linux__)  /* only Linux seems to have memrchr */
37static void* memrchr(const void* s, int c, size_t n) {
38  const unsigned char* p = (const unsigned char*)s;
39  for (p += n; n > 0; n--)
40    if (*--p == c)
41      return (void*)p;
42
43  return NULL;
44}
45#endif
46
47// Changing this to true compiles in prints that trace execution of the DFA.
48// Generates a lot of output -- only useful for debugging.
49static const bool DebugDFA = false;
50
51// A DFA implementation of a regular expression program.
52// Since this is entirely a forward declaration mandated by C++,
53// some of the comments here are better understood after reading
54// the comments in the sections that follow the DFA definition.
55class DFA {
56 public:
57  DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem);
58  ~DFA();
59  bool ok() const { return !init_failed_; }
60  Prog::MatchKind kind() { return kind_; }
61
62  // Searches for the regular expression in text, which is considered
63  // as a subsection of context for the purposes of interpreting flags
64  // like ^ and $ and \A and \z.
65  // Returns whether a match was found.
66  // If a match is found, sets *ep to the end point of the best match in text.
67  // If "anchored", the match must begin at the start of text.
68  // If "want_earliest_match", the match that ends first is used, not
69  //   necessarily the best one.
70  // If "run_forward" is true, the DFA runs from text.begin() to text.end().
71  //   If it is false, the DFA runs from text.end() to text.begin(),
72  //   returning the leftmost end of the match instead of the rightmost one.
73  // If the DFA cannot complete the search (for example, if it is out of
74  //   memory), it sets *failed and returns false.
75  bool Search(const StringPiece& text, const StringPiece& context,
76              bool anchored, bool want_earliest_match, bool run_forward,
77              bool* failed, const char** ep, vector<int>* matches);
78
79  // Builds out all states for the entire DFA.  FOR TESTING ONLY
80  // Returns number of states.
81  int BuildAllStates();
82
83  // Computes min and max for matching strings.  Won't return strings
84  // bigger than maxlen.
85  bool PossibleMatchRange(string* min, string* max, int maxlen);
86
87  // These data structures are logically private, but C++ makes it too
88  // difficult to mark them as such.
89  class Workq;
90  class RWLocker;
91  class StateSaver;
92
93  // A single DFA state.  The DFA is represented as a graph of these
94  // States, linked by the next_ pointers.  If in state s and reading
95  // byte c, the next state should be s->next_[c].
96  struct State {
97    inline bool IsMatch() const { return flag_ & kFlagMatch; }
98    void SaveMatch(vector<int>* v);
99
100    int* inst_;         // Instruction pointers in the state.
101    int ninst_;         // # of inst_ pointers.
102    uint flag_;         // Empty string bitfield flags in effect on the way
103                        // into this state, along with kFlagMatch if this
104                        // is a matching state.
105    State** next_;      // Outgoing arrows from State,
106                        // one per input byte class
107  };
108
109  enum {
110    kByteEndText = 256,         // imaginary byte at end of text
111
112    kFlagEmptyMask = 0xFFF,     // State.flag_: bits holding kEmptyXXX flags
113    kFlagMatch = 0x1000,        // State.flag_: this is a matching state
114    kFlagLastWord = 0x2000,     // State.flag_: last byte was a word char
115    kFlagNeedShift = 16,        // needed kEmpty bits are or'ed in shifted left
116  };
117
118#ifndef STL_MSVC
119  // STL function structures for use with unordered_set.
120  struct StateEqual {
121    bool operator()(const State* a, const State* b) const {
122      if (a == b)
123        return true;
124      if (a == NULL || b == NULL)
125        return false;
126      if (a->ninst_ != b->ninst_)
127        return false;
128      if (a->flag_ != b->flag_)
129        return false;
130      for (int i = 0; i < a->ninst_; i++)
131        if (a->inst_[i] != b->inst_[i])
132          return false;
133      return true;  // they're equal
134    }
135  };
136#endif  // STL_MSVC
137  struct StateHash {
138    size_t operator()(const State* a) const {
139      if (a == NULL)
140        return 0;
141      const char* s = reinterpret_cast<const char*>(a->inst_);
142      int len = a->ninst_ * sizeof a->inst_[0];
143      if (sizeof(size_t) == sizeof(uint32))
144        return Hash32StringWithSeed(s, len, a->flag_);
145      else
146        return Hash64StringWithSeed(s, len, a->flag_);
147    }
148#ifdef STL_MSVC
149    // Less than operator.
150    bool operator()(const State* a, const State* b) const {
151      if (a == b)
152        return false;
153      if (a == NULL || b == NULL)
154        return a == NULL;
155      if (a->ninst_ != b->ninst_)
156        return a->ninst_ < b->ninst_;
157      if (a->flag_ != b->flag_)
158        return a->flag_ < b->flag_;
159      for (int i = 0; i < a->ninst_; ++i)
160        if (a->inst_[i] != b->inst_[i])
161          return a->inst_[i] < b->inst_[i];
162      return false;  // they're equal
163    }
164    // The two public members are required by msvc. 4 and 8 are default values.
165    // Reference: http://msdn.microsoft.com/en-us/library/1s1byw77.aspx
166    static const size_t bucket_size = 4;
167    static const size_t min_buckets = 8;
168#endif  // STL_MSVC
169  };
170
171#ifdef STL_MSVC
172  typedef unordered_set<State*, StateHash> StateSet;
173#else  // !STL_MSVC
174  typedef unordered_set<State*, StateHash, StateEqual> StateSet;
175#endif  // STL_MSVC
176
177
178 private:
179  // Special "firstbyte" values for a state.  (Values >= 0 denote actual bytes.)
180  enum {
181    kFbUnknown = -1,   // No analysis has been performed.
182    kFbMany = -2,      // Many bytes will lead out of this state.
183    kFbNone = -3,      // No bytes lead out of this state.
184  };
185
186  enum {
187    // Indices into start_ for unanchored searches.
188    // Add kStartAnchored for anchored searches.
189    kStartBeginText = 0,          // text at beginning of context
190    kStartBeginLine = 2,          // text at beginning of line
191    kStartAfterWordChar = 4,      // text follows a word character
192    kStartAfterNonWordChar = 6,   // text follows non-word character
193    kMaxStart = 8,
194
195    kStartAnchored = 1,
196  };
197
198  // Resets the DFA State cache, flushing all saved State* information.
199  // Releases and reacquires cache_mutex_ via cache_lock, so any
200  // State* existing before the call are not valid after the call.
201  // Use a StateSaver to preserve important states across the call.
202  // cache_mutex_.r <= L < mutex_
203  // After: cache_mutex_.w <= L < mutex_
204  void ResetCache(RWLocker* cache_lock);
205
206  // Looks up and returns the State corresponding to a Workq.
207  // L >= mutex_
208  State* WorkqToCachedState(Workq* q, uint flag);
209
210  // Looks up and returns a State matching the inst, ninst, and flag.
211  // L >= mutex_
212  State* CachedState(int* inst, int ninst, uint flag);
213
214  // Clear the cache entirely.
215  // Must hold cache_mutex_.w or be in destructor.
216  void ClearCache();
217
218  // Converts a State into a Workq: the opposite of WorkqToCachedState.
219  // L >= mutex_
220  static void StateToWorkq(State* s, Workq* q);
221
222  // Runs a State on a given byte, returning the next state.
223  State* RunStateOnByteUnlocked(State*, int);  // cache_mutex_.r <= L < mutex_
224  State* RunStateOnByte(State*, int);          // L >= mutex_
225
226  // Runs a Workq on a given byte followed by a set of empty-string flags,
227  // producing a new Workq in nq.  If a match instruction is encountered,
228  // sets *ismatch to true.
229  // L >= mutex_
230  void RunWorkqOnByte(Workq* q, Workq* nq,
231                             int c, uint flag, bool* ismatch,
232                             Prog::MatchKind kind,
233                             int new_byte_loop);
234
235  // Runs a Workq on a set of empty-string flags, producing a new Workq in nq.
236  // L >= mutex_
237  void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint flag);
238
239  // Adds the instruction id to the Workq, following empty arrows
240  // according to flag.
241  // L >= mutex_
242  void AddToQueue(Workq* q, int id, uint flag);
243
244  // For debugging, returns a text representation of State.
245  static string DumpState(State* state);
246
247  // For debugging, returns a text representation of a Workq.
248  static string DumpWorkq(Workq* q);
249
250  // Search parameters
251  struct SearchParams {
252    SearchParams(const StringPiece& text, const StringPiece& context,
253                 RWLocker* cache_lock)
254      : text(text), context(context),
255        anchored(false),
256        want_earliest_match(false),
257        run_forward(false),
258        start(NULL),
259        firstbyte(kFbUnknown),
260        cache_lock(cache_lock),
261        failed(false),
262        ep(NULL),
263        matches(NULL) { }
264
265    StringPiece text;
266    StringPiece context;
267    bool anchored;
268    bool want_earliest_match;
269    bool run_forward;
270    State* start;
271    int firstbyte;
272    RWLocker *cache_lock;
273    bool failed;     // "out" parameter: whether search gave up
274    const char* ep;  // "out" parameter: end pointer for match
275    vector<int>* matches;
276
277   private:
278    DISALLOW_EVIL_CONSTRUCTORS(SearchParams);
279  };
280
281  // Before each search, the parameters to Search are analyzed by
282  // AnalyzeSearch to determine the state in which to start and the
283  // "firstbyte" for that state, if any.
284  struct StartInfo {
285    StartInfo() : start(NULL), firstbyte(kFbUnknown) { }
286    State* start;
287    volatile int firstbyte;
288  };
289
290  // Fills in params->start and params->firstbyte using
291  // the other search parameters.  Returns true on success,
292  // false on failure.
293  // cache_mutex_.r <= L < mutex_
294  bool AnalyzeSearch(SearchParams* params);
295  bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info, uint flags);
296
297  // The generic search loop, inlined to create specialized versions.
298  // cache_mutex_.r <= L < mutex_
299  // Might unlock and relock cache_mutex_ via params->cache_lock.
300  inline bool InlinedSearchLoop(SearchParams* params,
301                                bool have_firstbyte,
302                                bool want_earliest_match,
303                                bool run_forward);
304
305  // The specialized versions of InlinedSearchLoop.  The three letters
306  // at the ends of the name denote the true/false values used as the
307  // last three parameters of InlinedSearchLoop.
308  // cache_mutex_.r <= L < mutex_
309  // Might unlock and relock cache_mutex_ via params->cache_lock.
310  bool SearchFFF(SearchParams* params);
311  bool SearchFFT(SearchParams* params);
312  bool SearchFTF(SearchParams* params);
313  bool SearchFTT(SearchParams* params);
314  bool SearchTFF(SearchParams* params);
315  bool SearchTFT(SearchParams* params);
316  bool SearchTTF(SearchParams* params);
317  bool SearchTTT(SearchParams* params);
318
319  // The main search loop: calls an appropriate specialized version of
320  // InlinedSearchLoop.
321  // cache_mutex_.r <= L < mutex_
322  // Might unlock and relock cache_mutex_ via params->cache_lock.
323  bool FastSearchLoop(SearchParams* params);
324
325  // For debugging, a slow search loop that calls InlinedSearchLoop
326  // directly -- because the booleans passed are not constants, the
327  // loop is not specialized like the SearchFFF etc. versions, so it
328  // runs much more slowly.  Useful only for debugging.
329  // cache_mutex_.r <= L < mutex_
330  // Might unlock and relock cache_mutex_ via params->cache_lock.
331  bool SlowSearchLoop(SearchParams* params);
332
333  // Looks up bytes in bytemap_ but handles case c == kByteEndText too.
334  int ByteMap(int c) {
335    if (c == kByteEndText)
336      return prog_->bytemap_range();
337    return prog_->bytemap()[c];
338  }
339
340  // Constant after initialization.
341  Prog* prog_;              // The regular expression program to run.
342  Prog::MatchKind kind_;    // The kind of DFA.
343  int start_unanchored_;  // start of unanchored program
344  bool init_failed_;        // initialization failed (out of memory)
345
346  Mutex mutex_;  // mutex_ >= cache_mutex_.r
347
348  // Scratch areas, protected by mutex_.
349  Workq* q0_;             // Two pre-allocated work queues.
350  Workq* q1_;
351  int* astack_;         // Pre-allocated stack for AddToQueue
352  int nastack_;
353
354  // State* cache.  Many threads use and add to the cache simultaneously,
355  // holding cache_mutex_ for reading and mutex_ (above) when adding.
356  // If the cache fills and needs to be discarded, the discarding is done
357  // while holding cache_mutex_ for writing, to avoid interrupting other
358  // readers.  Any State* pointers are only valid while cache_mutex_
359  // is held.
360  Mutex cache_mutex_;
361  int64 mem_budget_;       // Total memory budget for all States.
362  int64 state_budget_;     // Amount of memory remaining for new States.
363  StateSet state_cache_;   // All States computed so far.
364  StartInfo start_[kMaxStart];
365  bool cache_warned_;      // have printed to LOG(INFO) about the cache
366};
367
368// Shorthand for casting to uint8*.
369static inline const uint8* BytePtr(const void* v) {
370  return reinterpret_cast<const uint8*>(v);
371}
372
373// Work queues
374
375// Marks separate thread groups of different priority
376// in the work queue when in leftmost-longest matching mode.
377#define Mark (-1)
378
379// Internally, the DFA uses a sparse array of
380// program instruction pointers as a work queue.
381// In leftmost longest mode, marks separate sections
382// of workq that started executing at different
383// locations in the string (earlier locations first).
384class DFA::Workq : public SparseSet {
385 public:
386  // Constructor: n is number of normal slots, maxmark number of mark slots.
387  Workq(int n, int maxmark) :
388    SparseSet(n+maxmark),
389    n_(n),
390    maxmark_(maxmark),
391    nextmark_(n),
392    last_was_mark_(true) {
393  }
394
395  bool is_mark(int i) { return i >= n_; }
396
397  int maxmark() { return maxmark_; }
398
399  void clear() {
400    SparseSet::clear();
401    nextmark_ = n_;
402  }
403
404  void mark() {
405    if (last_was_mark_)
406      return;
407    last_was_mark_ = false;
408    SparseSet::insert_new(nextmark_++);
409  }
410
411  int size() {
412    return n_ + maxmark_;
413  }
414
415  void insert(int id) {
416    if (contains(id))
417      return;
418    insert_new(id);
419  }
420
421  void insert_new(int id) {
422    last_was_mark_ = false;
423    SparseSet::insert_new(id);
424  }
425
426 private:
427  int n_;                // size excluding marks
428  int maxmark_;          // maximum number of marks
429  int nextmark_;         // id of next mark
430  bool last_was_mark_;   // last inserted was mark
431  DISALLOW_EVIL_CONSTRUCTORS(Workq);
432};
433
434DFA::DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem)
435  : prog_(prog),
436    kind_(kind),
437    init_failed_(false),
438    q0_(NULL),
439    q1_(NULL),
440    astack_(NULL),
441    mem_budget_(max_mem),
442    cache_warned_(false) {
443  if (DebugDFA)
444    fprintf(stderr, "\nkind %d\n%s\n", (int)kind_, prog_->DumpUnanchored().c_str());
445  int nmark = 0;
446  start_unanchored_ = 0;
447  if (kind_ == Prog::kLongestMatch) {
448    nmark = prog->size();
449    start_unanchored_ = prog->start_unanchored();
450  }
451  nastack_ = 2 * prog->size() + nmark;
452
453  // Account for space needed for DFA, q0, q1, astack.
454  mem_budget_ -= sizeof(DFA);
455  mem_budget_ -= (prog_->size() + nmark) *
456                 (sizeof(int)+sizeof(int)) * 2;  // q0, q1
457  mem_budget_ -= nastack_ * sizeof(int);  // astack
458  if (mem_budget_ < 0) {
459    LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld",
460                              prog_->size(), max_mem);
461    init_failed_ = true;
462    return;
463  }
464
465  state_budget_ = mem_budget_;
466
467  // Make sure there is a reasonable amount of working room left.
468  // At minimum, the search requires room for two states in order
469  // to limp along, restarting frequently.  We'll get better performance
470  // if there is room for a larger number of states, say 20.
471  int64 one_state = sizeof(State) + (prog_->size()+nmark)*sizeof(int) +
472                    (prog_->bytemap_range()+1)*sizeof(State*);
473  if (state_budget_ < 20*one_state) {
474    LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld",
475                              prog_->size(), max_mem);
476    init_failed_ = true;
477    return;
478  }
479
480  q0_ = new Workq(prog->size(), nmark);
481  q1_ = new Workq(prog->size(), nmark);
482  astack_ = new int[nastack_];
483}
484
485DFA::~DFA() {
486  delete q0_;
487  delete q1_;
488  delete[] astack_;
489  ClearCache();
490}
491
492// In the DFA state graph, s->next[c] == NULL means that the
493// state has not yet been computed and needs to be.  We need
494// a different special value to signal that s->next[c] is a
495// state that can never lead to a match (and thus the search
496// can be called off).  Hence DeadState.
497#define DeadState reinterpret_cast<State*>(1)
498
499// Signals that the rest of the string matches no matter what it is.
500#define FullMatchState reinterpret_cast<State*>(2)
501
502#define SpecialStateMax FullMatchState
503
504// Debugging printouts
505
506// For debugging, returns a string representation of the work queue.
507string DFA::DumpWorkq(Workq* q) {
508  string s;
509  const char* sep = "";
510  for (DFA::Workq::iterator it = q->begin(); it != q->end(); ++it) {
511    if (q->is_mark(*it)) {
512      StringAppendF(&s, "|");
513      sep = "";
514    } else {
515      StringAppendF(&s, "%s%d", sep, *it);
516      sep = ",";
517    }
518  }
519  return s;
520}
521
522// For debugging, returns a string representation of the state.
523string DFA::DumpState(State* state) {
524  if (state == NULL)
525    return "_";
526  if (state == DeadState)
527    return "X";
528  if (state == FullMatchState)
529    return "*";
530  string s;
531  const char* sep = "";
532  StringAppendF(&s, "(%p)", state);
533  for (int i = 0; i < state->ninst_; i++) {
534    if (state->inst_[i] == Mark) {
535      StringAppendF(&s, "|");
536      sep = "";
537    } else {
538      StringAppendF(&s, "%s%d", sep, state->inst_[i]);
539      sep = ",";
540    }
541  }
542  StringAppendF(&s, " flag=%#x", state->flag_);
543  return s;
544}
545
546//////////////////////////////////////////////////////////////////////
547//
548// DFA state graph construction.
549//
550// The DFA state graph is a heavily-linked collection of State* structures.
551// The state_cache_ is a set of all the State structures ever allocated,
552// so that if the same state is reached by two different paths,
553// the same State structure can be used.  This reduces allocation
554// requirements and also avoids duplication of effort across the two
555// identical states.
556//
557// A State is defined by an ordered list of instruction ids and a flag word.
558//
559// The choice of an ordered list of instructions differs from a typical
560// textbook DFA implementation, which would use an unordered set.
561// Textbook descriptions, however, only care about whether
562// the DFA matches, not where it matches in the text.  To decide where the
563// DFA matches, we need to mimic the behavior of the dominant backtracking
564// implementations like PCRE, which try one possible regular expression
565// execution, then another, then another, stopping when one of them succeeds.
566// The DFA execution tries these many executions in parallel, representing
567// each by an instruction id.  These pointers are ordered in the State.inst_
568// list in the same order that the executions would happen in a backtracking
569// search: if a match is found during execution of inst_[2], inst_[i] for i>=3
570// can be discarded.
571//
572// Textbooks also typically do not consider context-aware empty string operators
573// like ^ or $.  These are handled by the flag word, which specifies the set
574// of empty-string operators that should be matched when executing at the
575// current text position.  These flag bits are defined in prog.h.
576// The flag word also contains two DFA-specific bits: kFlagMatch if the state
577// is a matching state (one that reached a kInstMatch in the program)
578// and kFlagLastWord if the last processed byte was a word character, for the
579// implementation of \B and \b.
580//
581// The flag word also contains, shifted up 16 bits, the bits looked for by
582// any kInstEmptyWidth instructions in the state.  These provide a useful
583// summary indicating when new flags might be useful.
584//
585// The permanent representation of a State's instruction ids is just an array,
586// but while a state is being analyzed, these instruction ids are represented
587// as a Workq, which is an array that allows iteration in insertion order.
588
589// NOTE(rsc): The choice of State construction determines whether the DFA
590// mimics backtracking implementations (so-called leftmost first matching) or
591// traditional DFA implementations (so-called leftmost longest matching as
592// prescribed by POSIX).  This implementation chooses to mimic the
593// backtracking implementations, because we want to replace PCRE.  To get
594// POSIX behavior, the states would need to be considered not as a simple
595// ordered list of instruction ids, but as a list of unordered sets of instruction
596// ids.  A match by a state in one set would inhibit the running of sets
597// farther down the list but not other instruction ids in the same set.  Each
598// set would correspond to matches beginning at a given point in the string.
599// This is implemented by separating different sets with Mark pointers.
600
601// Looks in the State cache for a State matching q, flag.
602// If one is found, returns it.  If one is not found, allocates one,
603// inserts it in the cache, and returns it.
604DFA::State* DFA::WorkqToCachedState(Workq* q, uint flag) {
605  if (DEBUG_MODE)
606    mutex_.AssertHeld();
607
608  // Construct array of instruction ids for the new state.
609  // Only ByteRange, EmptyWidth, and Match instructions are useful to keep:
610  // those are the only operators with any effect in
611  // RunWorkqOnEmptyString or RunWorkqOnByte.
612  int* inst = new int[q->size()];
613  int n = 0;
614  uint needflags = 0;     // flags needed by kInstEmptyWidth instructions
615  bool sawmatch = false;  // whether queue contains guaranteed kInstMatch
616  bool sawmark = false;  // whether queue contains a Mark
617  if (DebugDFA)
618    fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag);
619  for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
620    int id = *it;
621    if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id)))
622      break;
623    if (q->is_mark(id)) {
624      if (n > 0 && inst[n-1] != Mark) {
625        sawmark = true;
626        inst[n++] = Mark;
627      }
628      continue;
629    }
630    Prog::Inst* ip = prog_->inst(id);
631    switch (ip->opcode()) {
632      case kInstAltMatch:
633        // This state will continue to a match no matter what
634        // the rest of the input is.  If it is the highest priority match
635        // being considered, return the special FullMatchState
636        // to indicate that it's all matches from here out.
637        if (kind_ != Prog::kManyMatch &&
638            (kind_ != Prog::kFirstMatch ||
639             (it == q->begin() && ip->greedy(prog_))) &&
640            (kind_ != Prog::kLongestMatch || !sawmark) &&
641            (flag & kFlagMatch)) {
642          delete[] inst;
643          if (DebugDFA)
644            fprintf(stderr, " -> FullMatchState\n");
645          return FullMatchState;
646        }
647        // Fall through.
648      case kInstByteRange:    // These are useful.
649      case kInstEmptyWidth:
650      case kInstMatch:
651      case kInstAlt:          // Not useful, but necessary [*]
652        inst[n++] = *it;
653        if (ip->opcode() == kInstEmptyWidth)
654          needflags |= ip->empty();
655        if (ip->opcode() == kInstMatch && !prog_->anchor_end())
656          sawmatch = true;
657        break;
658
659      default:                // The rest are not.
660        break;
661    }
662
663    // [*] kInstAlt would seem useless to record in a state, since
664    // we've already followed both its arrows and saved all the
665    // interesting states we can reach from there.  The problem
666    // is that one of the empty-width instructions might lead
667    // back to the same kInstAlt (if an empty-width operator is starred),
668    // producing a different evaluation order depending on whether
669    // we keep the kInstAlt to begin with.  Sigh.
670    // A specific case that this affects is /(^|a)+/ matching "a".
671    // If we don't save the kInstAlt, we will match the whole "a" (0,1)
672    // but in fact the correct leftmost-first match is the leading "" (0,0).
673  }
674  DCHECK_LE(n, q->size());
675  if (n > 0 && inst[n-1] == Mark)
676    n--;
677
678  // If there are no empty-width instructions waiting to execute,
679  // then the extra flag bits will not be used, so there is no
680  // point in saving them.  (Discarding them reduces the number
681  // of distinct states.)
682  if (needflags == 0)
683    flag &= kFlagMatch;
684
685  // NOTE(rsc): The code above cannot do flag &= needflags,
686  // because if the right flags were present to pass the current
687  // kInstEmptyWidth instructions, new kInstEmptyWidth instructions
688  // might be reached that in turn need different flags.
689  // The only sure thing is that if there are no kInstEmptyWidth
690  // instructions at all, no flags will be needed.
691  // We could do the extra work to figure out the full set of
692  // possibly needed flags by exploring past the kInstEmptyWidth
693  // instructions, but the check above -- are any flags needed
694  // at all? -- handles the most common case.  More fine-grained
695  // analysis can only be justified by measurements showing that
696  // too many redundant states are being allocated.
697
698  // If there are no Insts in the list, it's a dead state,
699  // which is useful to signal with a special pointer so that
700  // the execution loop can stop early.  This is only okay
701  // if the state is *not* a matching state.
702  if (n == 0 && flag == 0) {
703    delete[] inst;
704    if (DebugDFA)
705      fprintf(stderr, " -> DeadState\n");
706    return DeadState;
707  }
708
709  // If we're in longest match mode, the state is a sequence of
710  // unordered state sets separated by Marks.  Sort each set
711  // to canonicalize, to reduce the number of distinct sets stored.
712  if (kind_ == Prog::kLongestMatch) {
713    int* ip = inst;
714    int* ep = ip + n;
715    while (ip < ep) {
716      int* markp = ip;
717      while (markp < ep && *markp != Mark)
718        markp++;
719      sort(ip, markp);
720      if (markp < ep)
721        markp++;
722      ip = markp;
723    }
724  }
725
726  // Save the needed empty-width flags in the top bits for use later.
727  flag |= needflags << kFlagNeedShift;
728
729  State* state = CachedState(inst, n, flag);
730  delete[] inst;
731  return state;
732}
733
734// Looks in the State cache for a State matching inst, ninst, flag.
735// If one is found, returns it.  If one is not found, allocates one,
736// inserts it in the cache, and returns it.
737DFA::State* DFA::CachedState(int* inst, int ninst, uint flag) {
738  if (DEBUG_MODE)
739    mutex_.AssertHeld();
740
741  // Look in the cache for a pre-existing state.
742  State state = { inst, ninst, flag, NULL };
743  StateSet::iterator it = state_cache_.find(&state);
744  if (it != state_cache_.end()) {
745    if (DebugDFA)
746      fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str());
747    return *it;
748  }
749
750  // Must have enough memory for new state.
751  // In addition to what we're going to allocate,
752  // the state cache hash table seems to incur about 32 bytes per
753  // State*, empirically.
754  const int kStateCacheOverhead = 32;
755  int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
756  int mem = sizeof(State) + nnext*sizeof(State*) + ninst*sizeof(int);
757  if (mem_budget_ < mem + kStateCacheOverhead) {
758    mem_budget_ = -1;
759    return NULL;
760  }
761  mem_budget_ -= mem + kStateCacheOverhead;
762
763  // Allocate new state, along with room for next and inst.
764  char* space = new char[mem];
765  State* s = reinterpret_cast<State*>(space);
766  s->next_ = reinterpret_cast<State**>(s + 1);
767  s->inst_ = reinterpret_cast<int*>(s->next_ + nnext);
768  memset(s->next_, 0, nnext*sizeof s->next_[0]);
769  memmove(s->inst_, inst, ninst*sizeof s->inst_[0]);
770  s->ninst_ = ninst;
771  s->flag_ = flag;
772  if (DebugDFA)
773    fprintf(stderr, " -> %s\n", DumpState(s).c_str());
774
775  // Put state in cache and return it.
776  state_cache_.insert(s);
777  return s;
778}
779
780// Clear the cache.  Must hold cache_mutex_.w or be in destructor.
781void DFA::ClearCache() {
782  // In case state_cache_ doesn't support deleting entries
783  // during iteration, copy into a vector and then delete.
784  vector<State*> v;
785  v.reserve(state_cache_.size());
786  for (StateSet::iterator it = state_cache_.begin();
787       it != state_cache_.end(); ++it)
788    v.push_back(*it);
789  state_cache_.clear();
790  for (int i = 0; i < v.size(); i++)
791    delete[] reinterpret_cast<const char*>(v[i]);
792}
793
794// Copies insts in state s to the work queue q.
795void DFA::StateToWorkq(State* s, Workq* q) {
796  q->clear();
797  for (int i = 0; i < s->ninst_; i++) {
798    if (s->inst_[i] == Mark)
799      q->mark();
800    else
801      q->insert_new(s->inst_[i]);
802  }
803}
804
805// Adds ip to the work queue, following empty arrows according to flag
806// and expanding kInstAlt instructions (two-target gotos).
807void DFA::AddToQueue(Workq* q, int id, uint flag) {
808
809  // Use astack_ to hold our stack of states yet to process.
810  // It is sized to have room for nastack_ == 2*prog->size() + nmark
811  // instructions, which is enough: each instruction can be
812  // processed by the switch below only once, and the processing
813  // pushes at most two instructions plus maybe a mark.
814  // (If we're using marks, nmark == prog->size(); otherwise nmark == 0.)
815  int* stk = astack_;
816  int nstk = 0;
817
818  stk[nstk++] = id;
819  while (nstk > 0) {
820    DCHECK_LE(nstk, nastack_);
821    id = stk[--nstk];
822
823    if (id == Mark) {
824      q->mark();
825      continue;
826    }
827
828    if (id == 0)
829      continue;
830
831    // If ip is already on the queue, nothing to do.
832    // Otherwise add it.  We don't actually keep all the ones
833    // that get added -- for example, kInstAlt is ignored
834    // when on a work queue -- but adding all ip's here
835    // increases the likelihood of q->contains(id),
836    // reducing the amount of duplicated work.
837    if (q->contains(id))
838      continue;
839    q->insert_new(id);
840
841    // Process instruction.
842    Prog::Inst* ip = prog_->inst(id);
843    switch (ip->opcode()) {
844      case kInstFail:       // can't happen: discarded above
845        break;
846
847      case kInstByteRange:  // just save these on the queue
848      case kInstMatch:
849        break;
850
851      case kInstCapture:    // DFA treats captures as no-ops.
852      case kInstNop:
853        stk[nstk++] = ip->out();
854        break;
855
856      case kInstAlt:        // two choices: expand both, in order
857      case kInstAltMatch:
858        // Want to visit out then out1, so push on stack in reverse order.
859        // This instruction is the [00-FF]* loop at the beginning of
860        // a leftmost-longest unanchored search, separate out from out1
861        // with a Mark, so that out1's threads (which will start farther
862        // to the right in the string being searched) are lower priority
863        // than the current ones.
864        stk[nstk++] = ip->out1();
865        if (q->maxmark() > 0 &&
866            id == prog_->start_unanchored() && id != prog_->start())
867          stk[nstk++] = Mark;
868        stk[nstk++] = ip->out();
869        break;
870
871      case kInstEmptyWidth:
872        if ((ip->empty() & flag) == ip->empty())
873          stk[nstk++] = ip->out();
874        break;
875    }
876  }
877}
878
879// Running of work queues.  In the work queue, order matters:
880// the queue is sorted in priority order.  If instruction i comes before j,
881// then the instructions that i produces during the run must come before
882// the ones that j produces.  In order to keep this invariant, all the
883// work queue runners have to take an old queue to process and then
884// also a new queue to fill in.  It's not acceptable to add to the end of
885// an existing queue, because new instructions will not end up in the
886// correct position.
887
888// Runs the work queue, processing the empty strings indicated by flag.
889// For example, flag == kEmptyBeginLine|kEmptyEndLine means to match
890// both ^ and $.  It is important that callers pass all flags at once:
891// processing both ^ and $ is not the same as first processing only ^
892// and then processing only $.  Doing the two-step sequence won't match
893// ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior
894// exhibited by existing implementations).
895void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint flag) {
896  newq->clear();
897  for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
898    if (oldq->is_mark(*i))
899      AddToQueue(newq, Mark, flag);
900    else
901      AddToQueue(newq, *i, flag);
902  }
903}
904
905// Runs the work queue, processing the single byte c followed by any empty
906// strings indicated by flag.  For example, c == 'a' and flag == kEmptyEndLine,
907// means to match c$.  Sets the bool *ismatch to true if the end of the
908// regular expression program has been reached (the regexp has matched).
909void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq,
910                         int c, uint flag, bool* ismatch,
911                         Prog::MatchKind kind,
912                         int new_byte_loop) {
913  if (DEBUG_MODE)
914    mutex_.AssertHeld();
915
916  newq->clear();
917  for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
918    if (oldq->is_mark(*i)) {
919      if (*ismatch)
920        return;
921      newq->mark();
922      continue;
923    }
924    int id = *i;
925    Prog::Inst* ip = prog_->inst(id);
926    switch (ip->opcode()) {
927      case kInstFail:        // never succeeds
928      case kInstCapture:     // already followed
929      case kInstNop:         // already followed
930      case kInstAlt:         // already followed
931      case kInstAltMatch:    // already followed
932      case kInstEmptyWidth:  // already followed
933        break;
934
935      case kInstByteRange:   // can follow if c is in range
936        if (ip->Matches(c))
937          AddToQueue(newq, ip->out(), flag);
938        break;
939
940      case kInstMatch:
941        if (prog_->anchor_end() && c != kByteEndText)
942          break;
943        *ismatch = true;
944        if (kind == Prog::kFirstMatch) {
945          // Can stop processing work queue since we found a match.
946          return;
947        }
948        break;
949    }
950  }
951
952  if (DebugDFA)
953    fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n", DumpWorkq(oldq).c_str(),
954            c, flag, DumpWorkq(newq).c_str(), *ismatch);
955}
956
957// Processes input byte c in state, returning new state.
958// Caller does not hold mutex.
959DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) {
960  // Keep only one RunStateOnByte going
961  // even if the DFA is being run by multiple threads.
962  MutexLock l(&mutex_);
963  return RunStateOnByte(state, c);
964}
965
966// Processes input byte c in state, returning new state.
967DFA::State* DFA::RunStateOnByte(State* state, int c) {
968  if (DEBUG_MODE)
969    mutex_.AssertHeld();
970  if (state <= SpecialStateMax) {
971    if (state == FullMatchState) {
972      // It is convenient for routines like PossibleMatchRange
973      // if we implement RunStateOnByte for FullMatchState:
974      // once you get into this state you never get out,
975      // so it's pretty easy.
976      return FullMatchState;
977    }
978    if (state == DeadState) {
979      LOG(DFATAL) << "DeadState in RunStateOnByte";
980      return NULL;
981    }
982    if (state == NULL) {
983      LOG(DFATAL) << "NULL state in RunStateOnByte";
984      return NULL;
985    }
986    LOG(DFATAL) << "Unexpected special state in RunStateOnByte";
987    return NULL;
988  }
989
990  // If someone else already computed this, return it.
991  MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
992  State* ns = state->next_[ByteMap(c)];
993  ANNOTATE_HAPPENS_AFTER(ns);
994  if (ns != NULL)
995    return ns;
996
997  // Convert state into Workq.
998  StateToWorkq(state, q0_);
999
1000  // Flags marking the kinds of empty-width things (^ $ etc)
1001  // around this byte.  Before the byte we have the flags recorded
1002  // in the State structure itself.  After the byte we have
1003  // nothing yet (but that will change: read on).
1004  uint needflag = state->flag_ >> kFlagNeedShift;
1005  uint beforeflag = state->flag_ & kFlagEmptyMask;
1006  uint oldbeforeflag = beforeflag;
1007  uint afterflag = 0;
1008
1009  if (c == '\n') {
1010    // Insert implicit $ and ^ around \n
1011    beforeflag |= kEmptyEndLine;
1012    afterflag |= kEmptyBeginLine;
1013  }
1014
1015  if (c == kByteEndText) {
1016    // Insert implicit $ and \z before the fake "end text" byte.
1017    beforeflag |= kEmptyEndLine | kEmptyEndText;
1018  }
1019
1020  // The state flag kFlagLastWord says whether the last
1021  // byte processed was a word character.  Use that info to
1022  // insert empty-width (non-)word boundaries.
1023  bool islastword = state->flag_ & kFlagLastWord;
1024  bool isword = (c != kByteEndText && Prog::IsWordChar(c));
1025  if (isword == islastword)
1026    beforeflag |= kEmptyNonWordBoundary;
1027  else
1028    beforeflag |= kEmptyWordBoundary;
1029
1030  // Okay, finally ready to run.
1031  // Only useful to rerun on empty string if there are new, useful flags.
1032  if (beforeflag & ~oldbeforeflag & needflag) {
1033    RunWorkqOnEmptyString(q0_, q1_, beforeflag);
1034    swap(q0_, q1_);
1035  }
1036  bool ismatch = false;
1037  RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch, kind_, start_unanchored_);
1038
1039  // Most of the time, we build the state from the output of
1040  // RunWorkqOnByte, so swap q0_ and q1_ here.  However, so that
1041  // RE2::Set can tell exactly which match instructions
1042  // contributed to the match, don't swap if c is kByteEndText.
1043  // The resulting state wouldn't be correct for further processing
1044  // of the string, but we're at the end of the text so that's okay.
1045  // Leaving q0_ alone preseves the match instructions that led to
1046  // the current setting of ismatch.
1047  if (c != kByteEndText || kind_ != Prog::kManyMatch)
1048    swap(q0_, q1_);
1049
1050  // Save afterflag along with ismatch and isword in new state.
1051  uint flag = afterflag;
1052  if (ismatch)
1053    flag |= kFlagMatch;
1054  if (isword)
1055    flag |= kFlagLastWord;
1056
1057  ns = WorkqToCachedState(q0_, flag);
1058
1059  // Write barrier before updating state->next_ so that the
1060  // main search loop can proceed without any locking, for speed.
1061  // (Otherwise it would need one mutex operation per input byte.)
1062  // The annotations below tell race detectors that:
1063  //   a) the access to next_ should be ignored,
1064  //   b) 'ns' is properly published.
1065  WriteMemoryBarrier();  // Flush ns before linking to it.
1066
1067  ANNOTATE_IGNORE_WRITES_BEGIN();
1068  ANNOTATE_HAPPENS_BEFORE(ns);
1069  state->next_[ByteMap(c)] = ns;
1070  ANNOTATE_IGNORE_WRITES_END();
1071  return ns;
1072}
1073
1074
1075//////////////////////////////////////////////////////////////////////
1076// DFA cache reset.
1077
1078// Reader-writer lock helper.
1079//
1080// The DFA uses a reader-writer mutex to protect the state graph itself.
1081// Traversing the state graph requires holding the mutex for reading,
1082// and discarding the state graph and starting over requires holding the
1083// lock for writing.  If a search needs to expand the graph but is out
1084// of memory, it will need to drop its read lock and then acquire the
1085// write lock.  Since it cannot then atomically downgrade from write lock
1086// to read lock, it runs the rest of the search holding the write lock.
1087// (This probably helps avoid repeated contention, but really the decision
1088// is forced by the Mutex interface.)  It's a bit complicated to keep
1089// track of whether the lock is held for reading or writing and thread
1090// that through the search, so instead we encapsulate it in the RWLocker
1091// and pass that around.
1092
1093class DFA::RWLocker {
1094 public:
1095  explicit RWLocker(Mutex* mu);
1096  ~RWLocker();
1097
1098  // If the lock is only held for reading right now,
1099  // drop the read lock and re-acquire for writing.
1100  // Subsequent calls to LockForWriting are no-ops.
1101  // Notice that the lock is *released* temporarily.
1102  void LockForWriting();
1103
1104  // Returns whether the lock is already held for writing.
1105  bool IsLockedForWriting() {
1106    return writing_;
1107  }
1108
1109 private:
1110  Mutex* mu_;
1111  bool writing_;
1112
1113  DISALLOW_EVIL_CONSTRUCTORS(RWLocker);
1114};
1115
1116DFA::RWLocker::RWLocker(Mutex* mu)
1117  : mu_(mu), writing_(false) {
1118
1119  mu_->ReaderLock();
1120}
1121
1122// This function is marked as NO_THREAD_SAFETY_ANALYSIS because the annotations
1123// does not support lock upgrade.
1124void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS {
1125  if (!writing_) {
1126    mu_->ReaderUnlock();
1127    mu_->Lock();
1128    writing_ = true;
1129  }
1130}
1131
1132DFA::RWLocker::~RWLocker() {
1133  if (writing_)
1134    mu_->WriterUnlock();
1135  else
1136    mu_->ReaderUnlock();
1137}
1138
1139
1140// When the DFA's State cache fills, we discard all the states in the
1141// cache and start over.  Many threads can be using and adding to the
1142// cache at the same time, so we synchronize using the cache_mutex_
1143// to keep from stepping on other threads.  Specifically, all the
1144// threads using the current cache hold cache_mutex_ for reading.
1145// When a thread decides to flush the cache, it drops cache_mutex_
1146// and then re-acquires it for writing.  That ensures there are no
1147// other threads accessing the cache anymore.  The rest of the search
1148// runs holding cache_mutex_ for writing, avoiding any contention
1149// with or cache pollution caused by other threads.
1150
1151void DFA::ResetCache(RWLocker* cache_lock) {
1152  // Re-acquire the cache_mutex_ for writing (exclusive use).
1153  bool was_writing = cache_lock->IsLockedForWriting();
1154  cache_lock->LockForWriting();
1155
1156  // If we already held cache_mutex_ for writing, it means
1157  // this invocation of Search() has already reset the
1158  // cache once already.  That's a pretty clear indication
1159  // that the cache is too small.  Warn about that, once.
1160  // TODO(rsc): Only warn if state_cache_.size() < some threshold.
1161  if (was_writing && !cache_warned_) {
1162    LOG(INFO) << "DFA memory cache could be too small: "
1163              << "only room for " << state_cache_.size() << " states.";
1164    cache_warned_ = true;
1165  }
1166
1167  // Clear the cache, reset the memory budget.
1168  for (int i = 0; i < kMaxStart; i++) {
1169    start_[i].start = NULL;
1170    start_[i].firstbyte = kFbUnknown;
1171  }
1172  ClearCache();
1173  mem_budget_ = state_budget_;
1174}
1175
1176// Typically, a couple States do need to be preserved across a cache
1177// reset, like the State at the current point in the search.
1178// The StateSaver class helps keep States across cache resets.
1179// It makes a copy of the state's guts outside the cache (before the reset)
1180// and then can be asked, after the reset, to recreate the State
1181// in the new cache.  For example, in a DFA method ("this" is a DFA):
1182//
1183//   StateSaver saver(this, s);
1184//   ResetCache(cache_lock);
1185//   s = saver.Restore();
1186//
1187// The saver should always have room in the cache to re-create the state,
1188// because resetting the cache locks out all other threads, and the cache
1189// is known to have room for at least a couple states (otherwise the DFA
1190// constructor fails).
1191
1192class DFA::StateSaver {
1193 public:
1194  explicit StateSaver(DFA* dfa, State* state);
1195  ~StateSaver();
1196
1197  // Recreates and returns a state equivalent to the
1198  // original state passed to the constructor.
1199  // Returns NULL if the cache has filled, but
1200  // since the DFA guarantees to have room in the cache
1201  // for a couple states, should never return NULL
1202  // if used right after ResetCache.
1203  State* Restore();
1204
1205 private:
1206  DFA* dfa_;         // the DFA to use
1207  int* inst_;        // saved info from State
1208  int ninst_;
1209  uint flag_;
1210  bool is_special_;  // whether original state was special
1211  State* special_;   // if is_special_, the original state
1212
1213  DISALLOW_EVIL_CONSTRUCTORS(StateSaver);
1214};
1215
1216DFA::StateSaver::StateSaver(DFA* dfa, State* state) {
1217  dfa_ = dfa;
1218  if (state <= SpecialStateMax) {
1219    inst_ = NULL;
1220    ninst_ = 0;
1221    flag_ = 0;
1222    is_special_ = true;
1223    special_ = state;
1224    return;
1225  }
1226  is_special_ = false;
1227  special_ = NULL;
1228  flag_ = state->flag_;
1229  ninst_ = state->ninst_;
1230  inst_ = new int[ninst_];
1231  memmove(inst_, state->inst_, ninst_*sizeof inst_[0]);
1232}
1233
1234DFA::StateSaver::~StateSaver() {
1235  if (!is_special_)
1236    delete[] inst_;
1237}
1238
1239DFA::State* DFA::StateSaver::Restore() {
1240  if (is_special_)
1241    return special_;
1242  MutexLock l(&dfa_->mutex_);
1243  State* s = dfa_->CachedState(inst_, ninst_, flag_);
1244  if (s == NULL)
1245    LOG(DFATAL) << "StateSaver failed to restore state.";
1246  return s;
1247}
1248
1249
1250//////////////////////////////////////////////////////////////////////
1251//
1252// DFA execution.
1253//
1254// The basic search loop is easy: start in a state s and then for each
1255// byte c in the input, s = s->next[c].
1256//
1257// This simple description omits a few efficiency-driven complications.
1258//
1259// First, the State graph is constructed incrementally: it is possible
1260// that s->next[c] is null, indicating that that state has not been
1261// fully explored.  In this case, RunStateOnByte must be invoked to
1262// determine the next state, which is cached in s->next[c] to save
1263// future effort.  An alternative reason for s->next[c] to be null is
1264// that the DFA has reached a so-called "dead state", in which any match
1265// is no longer possible.  In this case RunStateOnByte will return NULL
1266// and the processing of the string can stop early.
1267//
1268// Second, a 256-element pointer array for s->next_ makes each State
1269// quite large (2kB on 64-bit machines).  Instead, dfa->bytemap_[]
1270// maps from bytes to "byte classes" and then next_ only needs to have
1271// as many pointers as there are byte classes.  A byte class is simply a
1272// range of bytes that the regexp never distinguishes between.
1273// A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1,
1274// 'a', 'b' to 'c', and 'c' to 0xFF.  The bytemap slows us a little bit
1275// but in exchange we typically cut the size of a State (and thus our
1276// memory footprint) by about 5-10x.  The comments still refer to
1277// s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]].
1278//
1279// Third, it is common for a DFA for an unanchored match to begin in a
1280// state in which only one particular byte value can take the DFA to a
1281// different state.  That is, s->next[c] != s for only one c.  In this
1282// situation, the DFA can do better than executing the simple loop.
1283// Instead, it can call memchr to search very quickly for the byte c.
1284// Whether the start state has this property is determined during a
1285// pre-compilation pass, and if so, the byte b is passed to the search
1286// loop as the "firstbyte" argument, along with a boolean "have_firstbyte".
1287//
1288// Fourth, the desired behavior is to search for the leftmost-best match
1289// (approximately, the same one that Perl would find), which is not
1290// necessarily the match ending earliest in the string.  Each time a
1291// match is found, it must be noted, but the DFA must continue on in
1292// hope of finding a higher-priority match.  In some cases, the caller only
1293// cares whether there is any match at all, not which one is found.
1294// The "want_earliest_match" flag causes the search to stop at the first
1295// match found.
1296//
1297// Fifth, one algorithm that uses the DFA needs it to run over the
1298// input string backward, beginning at the end and ending at the beginning.
1299// Passing false for the "run_forward" flag causes the DFA to run backward.
1300//
1301// The checks for these last three cases, which in a naive implementation
1302// would be performed once per input byte, slow the general loop enough
1303// to merit specialized versions of the search loop for each of the
1304// eight possible settings of the three booleans.  Rather than write
1305// eight different functions, we write one general implementation and then
1306// inline it to create the specialized ones.
1307//
1308// Note that matches are delayed by one byte, to make it easier to
1309// accomodate match conditions depending on the next input byte (like $ and \b).
1310// When s->next[c]->IsMatch(), it means that there is a match ending just
1311// *before* byte c.
1312
1313// The generic search loop.  Searches text for a match, returning
1314// the pointer to the end of the chosen match, or NULL if no match.
1315// The bools are equal to the same-named variables in params, but
1316// making them function arguments lets the inliner specialize
1317// this function to each combination (see two paragraphs above).
1318inline bool DFA::InlinedSearchLoop(SearchParams* params,
1319                                   bool have_firstbyte,
1320                                   bool want_earliest_match,
1321                                   bool run_forward) {
1322  State* start = params->start;
1323  const uint8* bp = BytePtr(params->text.begin());  // start of text
1324  const uint8* p = bp;                              // text scanning point
1325  const uint8* ep = BytePtr(params->text.end());    // end of text
1326  const uint8* resetp = NULL;                       // p at last cache reset
1327  if (!run_forward)
1328    swap(p, ep);
1329
1330  const uint8* bytemap = prog_->bytemap();
1331  const uint8* lastmatch = NULL;   // most recent matching position in text
1332  bool matched = false;
1333  State* s = start;
1334
1335  if (s->IsMatch()) {
1336    matched = true;
1337    lastmatch = p;
1338    if (want_earliest_match) {
1339      params->ep = reinterpret_cast<const char*>(lastmatch);
1340      return true;
1341    }
1342  }
1343
1344  while (p != ep) {
1345    if (DebugDFA)
1346      fprintf(stderr, "@%d: %s\n", static_cast<int>(p - bp),
1347              DumpState(s).c_str());
1348    if (have_firstbyte && s == start) {
1349      // In start state, only way out is to find firstbyte,
1350      // so use optimized assembly in memchr to skip ahead.
1351      // If firstbyte isn't found, we can skip to the end
1352      // of the string.
1353      if (run_forward) {
1354        if ((p = BytePtr(memchr(p, params->firstbyte, ep - p))) == NULL) {
1355          p = ep;
1356          break;
1357        }
1358      } else {
1359        if ((p = BytePtr(memrchr(ep, params->firstbyte, p - ep))) == NULL) {
1360          p = ep;
1361          break;
1362        }
1363        p++;
1364      }
1365    }
1366
1367    int c;
1368    if (run_forward)
1369      c = *p++;
1370    else
1371      c = *--p;
1372
1373    // Note that multiple threads might be consulting
1374    // s->next_[bytemap[c]] simultaneously.
1375    // RunStateOnByte takes care of the appropriate locking,
1376    // including a memory barrier so that the unlocked access
1377    // (sometimes known as "double-checked locking") is safe.
1378    // The alternative would be either one DFA per thread
1379    // or one mutex operation per input byte.
1380    //
1381    // ns == DeadState means the state is known to be dead
1382    // (no more matches are possible).
1383    // ns == NULL means the state has not yet been computed
1384    // (need to call RunStateOnByteUnlocked).
1385    // RunStateOnByte returns ns == NULL if it is out of memory.
1386    // ns == FullMatchState means the rest of the string matches.
1387    //
1388    // Okay to use bytemap[] not ByteMap() here, because
1389    // c is known to be an actual byte and not kByteEndText.
1390
1391    MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
1392    State* ns = s->next_[bytemap[c]];
1393    ANNOTATE_HAPPENS_AFTER(ns);
1394    if (ns == NULL) {
1395      ns = RunStateOnByteUnlocked(s, c);
1396      if (ns == NULL) {
1397        // After we reset the cache, we hold cache_mutex exclusively,
1398        // so if resetp != NULL, it means we filled the DFA state
1399        // cache with this search alone (without any other threads).
1400        // Benchmarks show that doing a state computation on every
1401        // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the
1402        // same at about 2 MB/s.  Unless we're processing an average
1403        // of 10 bytes per state computation, fail so that RE2 can
1404        // fall back to the NFA.
1405        if (FLAGS_re2_dfa_bail_when_slow && resetp != NULL &&
1406            (p - resetp) < 10*state_cache_.size()) {
1407          params->failed = true;
1408          return false;
1409        }
1410        resetp = p;
1411
1412        // Prepare to save start and s across the reset.
1413        StateSaver save_start(this, start);
1414        StateSaver save_s(this, s);
1415
1416        // Discard all the States in the cache.
1417        ResetCache(params->cache_lock);
1418
1419        // Restore start and s so we can continue.
1420        if ((start = save_start.Restore()) == NULL ||
1421            (s = save_s.Restore()) == NULL) {
1422          // Restore already did LOG(DFATAL).
1423          params->failed = true;
1424          return false;
1425        }
1426        ns = RunStateOnByteUnlocked(s, c);
1427        if (ns == NULL) {
1428          LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache";
1429          params->failed = true;
1430          return false;
1431        }
1432      }
1433    }
1434    if (ns <= SpecialStateMax) {
1435      if (ns == DeadState) {
1436        params->ep = reinterpret_cast<const char*>(lastmatch);
1437        return matched;
1438      }
1439      // FullMatchState
1440      params->ep = reinterpret_cast<const char*>(ep);
1441      return true;
1442    }
1443    s = ns;
1444
1445    if (s->IsMatch()) {
1446      matched = true;
1447      // The DFA notices the match one byte late,
1448      // so adjust p before using it in the match.
1449      if (run_forward)
1450        lastmatch = p - 1;
1451      else
1452        lastmatch = p + 1;
1453      if (DebugDFA)
1454        fprintf(stderr, "match @%d! [%s]\n",
1455                static_cast<int>(lastmatch - bp),
1456                DumpState(s).c_str());
1457
1458      if (want_earliest_match) {
1459        params->ep = reinterpret_cast<const char*>(lastmatch);
1460        return true;
1461      }
1462    }
1463  }
1464
1465  // Process one more byte to see if it triggers a match.
1466  // (Remember, matches are delayed one byte.)
1467  int lastbyte;
1468  if (run_forward) {
1469    if (params->text.end() == params->context.end())
1470      lastbyte = kByteEndText;
1471    else
1472      lastbyte = params->text.end()[0] & 0xFF;
1473  } else {
1474    if (params->text.begin() == params->context.begin())
1475      lastbyte = kByteEndText;
1476    else
1477      lastbyte = params->text.begin()[-1] & 0xFF;
1478  }
1479
1480  MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
1481  State* ns = s->next_[ByteMap(lastbyte)];
1482  ANNOTATE_HAPPENS_AFTER(ns);
1483  if (ns == NULL) {
1484    ns = RunStateOnByteUnlocked(s, lastbyte);
1485    if (ns == NULL) {
1486      StateSaver save_s(this, s);
1487      ResetCache(params->cache_lock);
1488      if ((s = save_s.Restore()) == NULL) {
1489        params->failed = true;
1490        return false;
1491      }
1492      ns = RunStateOnByteUnlocked(s, lastbyte);
1493      if (ns == NULL) {
1494        LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset";
1495        params->failed = true;
1496        return false;
1497      }
1498    }
1499  }
1500  s = ns;
1501  if (DebugDFA)
1502    fprintf(stderr, "@_: %s\n", DumpState(s).c_str());
1503  if (s == FullMatchState) {
1504    params->ep = reinterpret_cast<const char*>(ep);
1505    return true;
1506  }
1507  if (s > SpecialStateMax && s->IsMatch()) {
1508    matched = true;
1509    lastmatch = p;
1510    if (params->matches && kind_ == Prog::kManyMatch) {
1511      vector<int>* v = params->matches;
1512      v->clear();
1513      for (int i = 0; i < s->ninst_; i++) {
1514        Prog::Inst* ip = prog_->inst(s->inst_[i]);
1515        if (ip->opcode() == kInstMatch)
1516          v->push_back(ip->match_id());
1517      }
1518    }
1519    if (DebugDFA)
1520      fprintf(stderr, "match @%d! [%s]\n", static_cast<int>(lastmatch - bp),
1521              DumpState(s).c_str());
1522  }
1523  params->ep = reinterpret_cast<const char*>(lastmatch);
1524  return matched;
1525}
1526
1527// Inline specializations of the general loop.
1528bool DFA::SearchFFF(SearchParams* params) {
1529  return InlinedSearchLoop(params, 0, 0, 0);
1530}
1531bool DFA::SearchFFT(SearchParams* params) {
1532  return InlinedSearchLoop(params, 0, 0, 1);
1533}
1534bool DFA::SearchFTF(SearchParams* params) {
1535  return InlinedSearchLoop(params, 0, 1, 0);
1536}
1537bool DFA::SearchFTT(SearchParams* params) {
1538  return InlinedSearchLoop(params, 0, 1, 1);
1539}
1540bool DFA::SearchTFF(SearchParams* params) {
1541  return InlinedSearchLoop(params, 1, 0, 0);
1542}
1543bool DFA::SearchTFT(SearchParams* params) {
1544  return InlinedSearchLoop(params, 1, 0, 1);
1545}
1546bool DFA::SearchTTF(SearchParams* params) {
1547  return InlinedSearchLoop(params, 1, 1, 0);
1548}
1549bool DFA::SearchTTT(SearchParams* params) {
1550  return InlinedSearchLoop(params, 1, 1, 1);
1551}
1552
1553// For debugging, calls the general code directly.
1554bool DFA::SlowSearchLoop(SearchParams* params) {
1555  return InlinedSearchLoop(params,
1556                           params->firstbyte >= 0,
1557                           params->want_earliest_match,
1558                           params->run_forward);
1559}
1560
1561// For performance, calls the appropriate specialized version
1562// of InlinedSearchLoop.
1563bool DFA::FastSearchLoop(SearchParams* params) {
1564  // Because the methods are private, the Searches array
1565  // cannot be declared at top level.
1566  static bool (DFA::*Searches[])(SearchParams*) = {
1567    &DFA::SearchFFF,
1568    &DFA::SearchFFT,
1569    &DFA::SearchFTF,
1570    &DFA::SearchFTT,
1571    &DFA::SearchTFF,
1572    &DFA::SearchTFT,
1573    &DFA::SearchTTF,
1574    &DFA::SearchTTT,
1575  };
1576
1577  bool have_firstbyte = (params->firstbyte >= 0);
1578  int index = 4 * have_firstbyte +
1579              2 * params->want_earliest_match +
1580              1 * params->run_forward;
1581  return (this->*Searches[index])(params);
1582}
1583
1584
1585// The discussion of DFA execution above ignored the question of how
1586// to determine the initial state for the search loop.  There are two
1587// factors that influence the choice of start state.
1588//
1589// The first factor is whether the search is anchored or not.
1590// The regexp program (Prog*) itself has
1591// two different entry points: one for anchored searches and one for
1592// unanchored searches.  (The unanchored version starts with a leading ".*?"
1593// and then jumps to the anchored one.)
1594//
1595// The second factor is where text appears in the larger context, which
1596// determines which empty-string operators can be matched at the beginning
1597// of execution.  If text is at the very beginning of context, \A and ^ match.
1598// Otherwise if text is at the beginning of a line, then ^ matches.
1599// Otherwise it matters whether the character before text is a word character
1600// or a non-word character.
1601//
1602// The two cases (unanchored vs not) and four cases (empty-string flags)
1603// combine to make the eight cases recorded in the DFA's begin_text_[2],
1604// begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached
1605// StartInfos.  The start state for each is filled in the first time it
1606// is used for an actual search.
1607
1608// Examines text, context, and anchored to determine the right start
1609// state for the DFA search loop.  Fills in params and returns true on success.
1610// Returns false on failure.
1611bool DFA::AnalyzeSearch(SearchParams* params) {
1612  const StringPiece& text = params->text;
1613  const StringPiece& context = params->context;
1614
1615  // Sanity check: make sure that text lies within context.
1616  if (text.begin() < context.begin() || text.end() > context.end()) {
1617    LOG(DFATAL) << "Text is not inside context.";
1618    params->start = DeadState;
1619    return true;
1620  }
1621
1622  // Determine correct search type.
1623  int start;
1624  uint flags;
1625  if (params->run_forward) {
1626    if (text.begin() == context.begin()) {
1627      start = kStartBeginText;
1628      flags = kEmptyBeginText|kEmptyBeginLine;
1629    } else if (text.begin()[-1] == '\n') {
1630      start = kStartBeginLine;
1631      flags = kEmptyBeginLine;
1632    } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) {
1633      start = kStartAfterWordChar;
1634      flags = kFlagLastWord;
1635    } else {
1636      start = kStartAfterNonWordChar;
1637      flags = 0;
1638    }
1639  } else {
1640    if (text.end() == context.end()) {
1641      start = kStartBeginText;
1642      flags = kEmptyBeginText|kEmptyBeginLine;
1643    } else if (text.end()[0] == '\n') {
1644      start = kStartBeginLine;
1645      flags = kEmptyBeginLine;
1646    } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) {
1647      start = kStartAfterWordChar;
1648      flags = kFlagLastWord;
1649    } else {
1650      start = kStartAfterNonWordChar;
1651      flags = 0;
1652    }
1653  }
1654  if (params->anchored || prog_->anchor_start())
1655    start |= kStartAnchored;
1656  StartInfo* info = &start_[start];
1657
1658  // Try once without cache_lock for writing.
1659  // Try again after resetting the cache
1660  // (ResetCache will relock cache_lock for writing).
1661  if (!AnalyzeSearchHelper(params, info, flags)) {
1662    ResetCache(params->cache_lock);
1663    if (!AnalyzeSearchHelper(params, info, flags)) {
1664      LOG(DFATAL) << "Failed to analyze start state.";
1665      params->failed = true;
1666      return false;
1667    }
1668  }
1669
1670  if (DebugDFA)
1671    fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s firstbyte=%d\n",
1672            params->anchored, params->run_forward, flags,
1673            DumpState(info->start).c_str(), info->firstbyte);
1674
1675  params->start = info->start;
1676  params->firstbyte = ANNOTATE_UNPROTECTED_READ(info->firstbyte);
1677
1678  return true;
1679}
1680
1681// Fills in info if needed.  Returns true on success, false on failure.
1682bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
1683                              uint flags) {
1684  // Quick check; okay because of memory barriers below.
1685  if (ANNOTATE_UNPROTECTED_READ(info->firstbyte) != kFbUnknown) {
1686    ANNOTATE_HAPPENS_AFTER(&info->firstbyte);
1687    return true;
1688  }
1689
1690  MutexLock l(&mutex_);
1691  if (info->firstbyte != kFbUnknown) {
1692    ANNOTATE_HAPPENS_AFTER(&info->firstbyte);
1693    return true;
1694  }
1695
1696  q0_->clear();
1697  AddToQueue(q0_,
1698             params->anchored ? prog_->start() : prog_->start_unanchored(),
1699             flags);
1700  info->start = WorkqToCachedState(q0_, flags);
1701  if (info->start == NULL)
1702    return false;
1703
1704  if (info->start == DeadState) {
1705    ANNOTATE_HAPPENS_BEFORE(&info->firstbyte);
1706    WriteMemoryBarrier();  // Synchronize with "quick check" above.
1707    info->firstbyte = kFbNone;
1708    return true;
1709  }
1710
1711  if (info->start == FullMatchState) {
1712    ANNOTATE_HAPPENS_BEFORE(&info->firstbyte);
1713    WriteMemoryBarrier();  // Synchronize with "quick check" above.
1714    info->firstbyte = kFbNone;	// will be ignored
1715    return true;
1716  }
1717
1718  // Compute info->firstbyte by running state on all
1719  // possible byte values, looking for a single one that
1720  // leads to a different state.
1721  int firstbyte = kFbNone;
1722  for (int i = 0; i < 256; i++) {
1723    State* s = RunStateOnByte(info->start, i);
1724    if (s == NULL) {
1725      ANNOTATE_HAPPENS_BEFORE(&info->firstbyte);
1726      WriteMemoryBarrier();  // Synchronize with "quick check" above.
1727      info->firstbyte = firstbyte;
1728      return false;
1729    }
1730    if (s == info->start)
1731      continue;
1732    // Goes to new state...
1733    if (firstbyte == kFbNone) {
1734      firstbyte = i;        // ... first one
1735    } else {
1736      firstbyte = kFbMany;  // ... too many
1737      break;
1738    }
1739  }
1740  ANNOTATE_HAPPENS_BEFORE(&info->firstbyte);
1741  WriteMemoryBarrier();  // Synchronize with "quick check" above.
1742  info->firstbyte = firstbyte;
1743  return true;
1744}
1745
1746// The actual DFA search: calls AnalyzeSearch and then FastSearchLoop.
1747bool DFA::Search(const StringPiece& text,
1748                 const StringPiece& context,
1749                 bool anchored,
1750                 bool want_earliest_match,
1751                 bool run_forward,
1752                 bool* failed,
1753                 const char** epp,
1754                 vector<int>* matches) {
1755  *epp = NULL;
1756  if (!ok()) {
1757    *failed = true;
1758    return false;
1759  }
1760  *failed = false;
1761
1762  if (DebugDFA) {
1763    fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str());
1764    fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n",
1765            text.as_string().c_str(), anchored, want_earliest_match,
1766            run_forward, kind_);
1767  }
1768
1769  RWLocker l(&cache_mutex_);
1770  SearchParams params(text, context, &l);
1771  params.anchored = anchored;
1772  params.want_earliest_match = want_earliest_match;
1773  params.run_forward = run_forward;
1774  params.matches = matches;
1775
1776  if (!AnalyzeSearch(&params)) {
1777    *failed = true;
1778    return false;
1779  }
1780  if (params.start == DeadState)
1781    return false;
1782  if (params.start == FullMatchState) {
1783    if (run_forward == want_earliest_match)
1784      *epp = text.begin();
1785    else
1786      *epp = text.end();
1787    return true;
1788  }
1789  if (DebugDFA)
1790    fprintf(stderr, "start %s\n", DumpState(params.start).c_str());
1791  bool ret = FastSearchLoop(&params);
1792  if (params.failed) {
1793    *failed = true;
1794    return false;
1795  }
1796  *epp = params.ep;
1797  return ret;
1798}
1799
1800// Deletes dfa.
1801//
1802// This is a separate function so that
1803// prog.h can be used without moving the definition of
1804// class DFA out of this file.  If you set
1805//   prog->dfa_ = dfa;
1806// then you also have to set
1807//   prog->delete_dfa_ = DeleteDFA;
1808// so that ~Prog can delete the dfa.
1809static void DeleteDFA(DFA* dfa) {
1810  delete dfa;
1811}
1812
1813DFA* Prog::GetDFA(MatchKind kind) {
1814  DFA*volatile* pdfa;
1815  if (kind == kFirstMatch || kind == kManyMatch) {
1816    pdfa = &dfa_first_;
1817  } else {
1818    kind = kLongestMatch;
1819    pdfa = &dfa_longest_;
1820  }
1821
1822  // Quick check; okay because of memory barrier below.
1823  DFA *dfa = ANNOTATE_UNPROTECTED_READ(*pdfa);
1824  if (dfa != NULL) {
1825    ANNOTATE_HAPPENS_AFTER(dfa);
1826    return dfa;
1827  }
1828
1829  MutexLock l(&dfa_mutex_);
1830  dfa = *pdfa;
1831  if (dfa != NULL) {
1832    ANNOTATE_HAPPENS_AFTER(dfa);
1833    return dfa;
1834  }
1835
1836  // For a forward DFA, half the memory goes to each DFA.
1837  // For a reverse DFA, all the memory goes to the
1838  // "longest match" DFA, because RE2 never does reverse
1839  // "first match" searches.
1840  int64 m = dfa_mem_/2;
1841  if (reversed_) {
1842    if (kind == kLongestMatch || kind == kManyMatch)
1843      m = dfa_mem_;
1844    else
1845      m = 0;
1846  }
1847  dfa = new DFA(this, kind, m);
1848  delete_dfa_ = DeleteDFA;
1849
1850  // Synchronize with "quick check" above.
1851  ANNOTATE_HAPPENS_BEFORE(dfa);
1852  WriteMemoryBarrier();
1853  *pdfa = dfa;
1854
1855  return dfa;
1856}
1857
1858
1859// Executes the regexp program to search in text,
1860// which itself is inside the larger context.  (As a convenience,
1861// passing a NULL context is equivalent to passing text.)
1862// Returns true if a match is found, false if not.
1863// If a match is found, fills in match0->end() to point at the end of the match
1864// and sets match0->begin() to text.begin(), since the DFA can't track
1865// where the match actually began.
1866//
1867// This is the only external interface (class DFA only exists in this file).
1868//
1869bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context,
1870                     Anchor anchor, MatchKind kind,
1871                     StringPiece* match0, bool* failed, vector<int>* matches) {
1872  *failed = false;
1873
1874  StringPiece context = const_context;
1875  if (context.begin() == NULL)
1876    context = text;
1877  bool carat = anchor_start();
1878  bool dollar = anchor_end();
1879  if (reversed_) {
1880    bool t = carat;
1881    carat = dollar;
1882    dollar = t;
1883  }
1884  if (carat && context.begin() != text.begin())
1885    return false;
1886  if (dollar && context.end() != text.end())
1887    return false;
1888
1889  // Handle full match by running an anchored longest match
1890  // and then checking if it covers all of text.
1891  bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch;
1892  bool endmatch = false;
1893  if (kind == kManyMatch) {
1894    endmatch = true;
1895  } else if (kind == kFullMatch || anchor_end()) {
1896    endmatch = true;
1897    kind = kLongestMatch;
1898  }
1899
1900  // If the caller doesn't care where the match is (just whether one exists),
1901  // then we can stop at the very first match we find, the so-called
1902  // "shortest match".
1903  bool want_shortest_match = false;
1904  if (match0 == NULL && !endmatch) {
1905    want_shortest_match = true;
1906    kind = kLongestMatch;
1907  }
1908
1909  DFA* dfa = GetDFA(kind);
1910  const char* ep;
1911  bool matched = dfa->Search(text, context, anchored,
1912                             want_shortest_match, !reversed_,
1913                             failed, &ep, matches);
1914  if (*failed)
1915    return false;
1916  if (!matched)
1917    return false;
1918  if (endmatch && ep != (reversed_ ? text.begin() : text.end()))
1919    return false;
1920
1921  // If caller cares, record the boundary of the match.
1922  // We only know where it ends, so use the boundary of text
1923  // as the beginning.
1924  if (match0) {
1925    if (reversed_)
1926      *match0 = StringPiece(ep, text.end() - ep);
1927    else
1928      *match0 = StringPiece(text.begin(), ep - text.begin());
1929  }
1930  return true;
1931}
1932
1933// Build out all states in DFA.  Returns number of states.
1934int DFA::BuildAllStates() {
1935  if (!ok())
1936    return 0;
1937
1938  // Pick out start state for unanchored search
1939  // at beginning of text.
1940  RWLocker l(&cache_mutex_);
1941  SearchParams params(NULL, NULL, &l);
1942  params.anchored = false;
1943  if (!AnalyzeSearch(&params) || params.start <= SpecialStateMax)
1944    return 0;
1945
1946  // Add start state to work queue.
1947  StateSet queued;
1948  vector<State*> q;
1949  queued.insert(params.start);
1950  q.push_back(params.start);
1951
1952  // Flood to expand every state.
1953  for (int i = 0; i < q.size(); i++) {
1954    State* s = q[i];
1955    for (int c = 0; c < 257; c++) {
1956      State* ns = RunStateOnByteUnlocked(s, c);
1957      if (ns > SpecialStateMax && queued.find(ns) == queued.end()) {
1958        queued.insert(ns);
1959        q.push_back(ns);
1960      }
1961    }
1962  }
1963
1964  return q.size();
1965}
1966
1967// Build out all states in DFA for kind.  Returns number of states.
1968int Prog::BuildEntireDFA(MatchKind kind) {
1969  //LOG(ERROR) << "BuildEntireDFA is only for testing.";
1970  return GetDFA(kind)->BuildAllStates();
1971}
1972
1973// Computes min and max for matching string.
1974// Won't return strings bigger than maxlen.
1975bool DFA::PossibleMatchRange(string* min, string* max, int maxlen) {
1976  if (!ok())
1977    return false;
1978
1979  // NOTE: if future users of PossibleMatchRange want more precision when
1980  // presented with infinitely repeated elements, consider making this a
1981  // parameter to PossibleMatchRange.
1982  static int kMaxEltRepetitions = 0;
1983
1984  // Keep track of the number of times we've visited states previously. We only
1985  // revisit a given state if it's part of a repeated group, so if the value
1986  // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set
1987  // |*max| to |PrefixSuccessor(*max)|.
1988  //
1989  // Also note that previously_visited_states[UnseenStatePtr] will, in the STL
1990  // tradition, implicitly insert a '0' value at first use. We take advantage
1991  // of that property below.
1992  map<State*, int> previously_visited_states;
1993
1994  // Pick out start state for anchored search at beginning of text.
1995  RWLocker l(&cache_mutex_);
1996  SearchParams params(NULL, NULL, &l);
1997  params.anchored = true;
1998  if (!AnalyzeSearch(&params))
1999    return false;
2000  if (params.start == DeadState) {  // No matching strings
2001    *min = "";
2002    *max = "";
2003    return true;
2004  }
2005  if (params.start == FullMatchState)  // Every string matches: no max
2006    return false;
2007
2008  // The DFA is essentially a big graph rooted at params.start,
2009  // and paths in the graph correspond to accepted strings.
2010  // Each node in the graph has potentially 256+1 arrows
2011  // coming out, one for each byte plus the magic end of
2012  // text character kByteEndText.
2013
2014  // To find the smallest possible prefix of an accepted
2015  // string, we just walk the graph preferring to follow
2016  // arrows with the lowest bytes possible.  To find the
2017  // largest possible prefix, we follow the largest bytes
2018  // possible.
2019
2020  // The test for whether there is an arrow from s on byte j is
2021  //    ns = RunStateOnByteUnlocked(s, j);
2022  //    if (ns == NULL)
2023  //      return false;
2024  //    if (ns != DeadState && ns->ninst > 0)
2025  // The RunStateOnByteUnlocked call asks the DFA to build out the graph.
2026  // It returns NULL only if the DFA has run out of memory,
2027  // in which case we can't be sure of anything.
2028  // The second check sees whether there was graph built
2029  // and whether it is interesting graph.  Nodes might have
2030  // ns->ninst == 0 if they exist only to represent the fact
2031  // that a match was found on the previous byte.
2032
2033  // Build minimum prefix.
2034  State* s = params.start;
2035  min->clear();
2036  for (int i = 0; i < maxlen; i++) {
2037    if (previously_visited_states[s] > kMaxEltRepetitions) {
2038      VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions
2039        << " for state s=" << s << " and min=" << CEscape(*min);
2040      break;
2041    }
2042    previously_visited_states[s]++;
2043
2044    // Stop if min is a match.
2045    State* ns = RunStateOnByteUnlocked(s, kByteEndText);
2046    if (ns == NULL)  // DFA out of memory
2047      return false;
2048    if (ns != DeadState && (ns == FullMatchState || ns->IsMatch()))
2049      break;
2050
2051    // Try to extend the string with low bytes.
2052    bool extended = false;
2053    for (int j = 0; j < 256; j++) {
2054      ns = RunStateOnByteUnlocked(s, j);
2055      if (ns == NULL)  // DFA out of memory
2056        return false;
2057      if (ns == FullMatchState ||
2058          (ns > SpecialStateMax && ns->ninst_ > 0)) {
2059        extended = true;
2060        min->append(1, j);
2061        s = ns;
2062        break;
2063      }
2064    }
2065    if (!extended)
2066      break;
2067  }
2068
2069  // Build maximum prefix.
2070  previously_visited_states.clear();
2071  s = params.start;
2072  max->clear();
2073  for (int i = 0; i < maxlen; i++) {
2074    if (previously_visited_states[s] > kMaxEltRepetitions) {
2075      VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions
2076        << " for state s=" << s << " and max=" << CEscape(*max);
2077      break;
2078    }
2079    previously_visited_states[s] += 1;
2080
2081    // Try to extend the string with high bytes.
2082    bool extended = false;
2083    for (int j = 255; j >= 0; j--) {
2084      State* ns = RunStateOnByteUnlocked(s, j);
2085      if (ns == NULL)
2086        return false;
2087      if (ns == FullMatchState ||
2088          (ns > SpecialStateMax && ns->ninst_ > 0)) {
2089        extended = true;
2090        max->append(1, j);
2091        s = ns;
2092        break;
2093      }
2094    }
2095    if (!extended) {
2096      // Done, no need for PrefixSuccessor.
2097      return true;
2098    }
2099  }
2100
2101  // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b
2102  *max = PrefixSuccessor(*max);
2103
2104  // If there are no bytes left, we have no way to say "there is no maximum
2105  // string".  We could make the interface more complicated and be able to
2106  // return "there is no maximum but here is a minimum", but that seems like
2107  // overkill -- the most common no-max case is all possible strings, so not
2108  // telling the caller that the empty string is the minimum match isn't a
2109  // great loss.
2110  if (max->empty())
2111    return false;
2112
2113  return true;
2114}
2115
2116// PossibleMatchRange for a Prog.
2117bool Prog::PossibleMatchRange(string* min, string* max, int maxlen) {
2118  DFA* dfa = NULL;
2119  {
2120    MutexLock l(&dfa_mutex_);
2121    // Have to use dfa_longest_ to get all strings for full matches.
2122    // For example, (a|aa) never matches aa in first-match mode.
2123    if (dfa_longest_ == NULL) {
2124      dfa_longest_ = new DFA(this, Prog::kLongestMatch, dfa_mem_/2);
2125      delete_dfa_ = DeleteDFA;
2126    }
2127    dfa = dfa_longest_;
2128  }
2129  return dfa->PossibleMatchRange(min, max, maxlen);
2130}
2131
2132}  // namespace re2
2133