1// Copyright 2003-2009 The RE2 Authors.  All Rights Reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5#ifndef RE2_RE2_H
6#define RE2_RE2_H
7
8// C++ interface to the re2 regular-expression library.
9// RE2 supports Perl-style regular expressions (with extensions like
10// \d, \w, \s, ...).
11//
12// -----------------------------------------------------------------------
13// REGEXP SYNTAX:
14//
15// This module uses the re2 library and hence supports
16// its syntax for regular expressions, which is similar to Perl's with
17// some of the more complicated things thrown away.  In particular,
18// backreferences and generalized assertions are not available, nor is \Z.
19//
20// See http://code.google.com/p/re2/wiki/Syntax for the syntax
21// supported by RE2, and a comparison with PCRE and PERL regexps.
22//
23// For those not familiar with Perl's regular expressions,
24// here are some examples of the most commonly used extensions:
25//
26//   "hello (\\w+) world"  -- \w matches a "word" character
27//   "version (\\d+)"      -- \d matches a digit
28//   "hello\\s+world"      -- \s matches any whitespace character
29//   "\\b(\\w+)\\b"        -- \b matches non-empty string at word boundary
30//   "(?i)hello"           -- (?i) turns on case-insensitive matching
31//   "/\\*(.*?)\\*/"       -- .*? matches . minimum no. of times possible
32//
33// -----------------------------------------------------------------------
34// MATCHING INTERFACE:
35//
36// The "FullMatch" operation checks that supplied text matches a
37// supplied pattern exactly.
38//
39// Example: successful match
40//    CHECK(RE2::FullMatch("hello", "h.*o"));
41//
42// Example: unsuccessful match (requires full match):
43//    CHECK(!RE2::FullMatch("hello", "e"));
44//
45// -----------------------------------------------------------------------
46// UTF-8 AND THE MATCHING INTERFACE:
47//
48// By default, the pattern and input text are interpreted as UTF-8.
49// The RE2::Latin1 option causes them to be interpreted as Latin-1.
50//
51// Example:
52//    CHECK(RE2::FullMatch(utf8_string, RE2(utf8_pattern)));
53//    CHECK(RE2::FullMatch(latin1_string, RE2(latin1_pattern, RE2::Latin1)));
54//
55// -----------------------------------------------------------------------
56// MATCHING WITH SUB-STRING EXTRACTION:
57//
58// You can supply extra pointer arguments to extract matched subpieces.
59//
60// Example: extracts "ruby" into "s" and 1234 into "i"
61//    int i;
62//    string s;
63//    CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s, &i));
64//
65// Example: fails because string cannot be stored in integer
66//    CHECK(!RE2::FullMatch("ruby", "(.*)", &i));
67//
68// Example: fails because there aren't enough sub-patterns:
69//    CHECK(!RE2::FullMatch("ruby:1234", "\\w+:\\d+", &s));
70//
71// Example: does not try to extract any extra sub-patterns
72//    CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s));
73//
74// Example: does not try to extract into NULL
75//    CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", NULL, &i));
76//
77// Example: integer overflow causes failure
78//    CHECK(!RE2::FullMatch("ruby:1234567891234", "\\w+:(\\d+)", &i));
79//
80// NOTE(rsc): Asking for substrings slows successful matches quite a bit.
81// This may get a little faster in the future, but right now is slower
82// than PCRE.  On the other hand, failed matches run *very* fast (faster
83// than PCRE), as do matches without substring extraction.
84//
85// -----------------------------------------------------------------------
86// PARTIAL MATCHES
87//
88// You can use the "PartialMatch" operation when you want the pattern
89// to match any substring of the text.
90//
91// Example: simple search for a string:
92//      CHECK(RE2::PartialMatch("hello", "ell"));
93//
94// Example: find first number in a string
95//      int number;
96//      CHECK(RE2::PartialMatch("x*100 + 20", "(\\d+)", &number));
97//      CHECK_EQ(number, 100);
98//
99// -----------------------------------------------------------------------
100// PRE-COMPILED REGULAR EXPRESSIONS
101//
102// RE2 makes it easy to use any string as a regular expression, without
103// requiring a separate compilation step.
104//
105// If speed is of the essence, you can create a pre-compiled "RE2"
106// object from the pattern and use it multiple times.  If you do so,
107// you can typically parse text faster than with sscanf.
108//
109// Example: precompile pattern for faster matching:
110//    RE2 pattern("h.*o");
111//    while (ReadLine(&str)) {
112//      if (RE2::FullMatch(str, pattern)) ...;
113//    }
114//
115// -----------------------------------------------------------------------
116// SCANNING TEXT INCREMENTALLY
117//
118// The "Consume" operation may be useful if you want to repeatedly
119// match regular expressions at the front of a string and skip over
120// them as they match.  This requires use of the "StringPiece" type,
121// which represents a sub-range of a real string.
122//
123// Example: read lines of the form "var = value" from a string.
124//      string contents = ...;          // Fill string somehow
125//      StringPiece input(contents);    // Wrap a StringPiece around it
126//
127//      string var;
128//      int value;
129//      while (RE2::Consume(&input, "(\\w+) = (\\d+)\n", &var, &value)) {
130//        ...;
131//      }
132//
133// Each successful call to "Consume" will set "var/value", and also
134// advance "input" so it points past the matched text.  Note that if the
135// regular expression matches an empty string, input will advance
136// by 0 bytes.  If the regular expression being used might match
137// an empty string, the loop body must check for this case and either
138// advance the string or break out of the loop.
139//
140// The "FindAndConsume" operation is similar to "Consume" but does not
141// anchor your match at the beginning of the string.  For example, you
142// could extract all words from a string by repeatedly calling
143//     RE2::FindAndConsume(&input, "(\\w+)", &word)
144//
145// -----------------------------------------------------------------------
146// USING VARIABLE NUMBER OF ARGUMENTS
147//
148// The above operations require you to know the number of arguments
149// when you write the code.  This is not always possible or easy (for
150// example, the regular expression may be calculated at run time).
151// You can use the "N" version of the operations when the number of
152// match arguments are determined at run time.
153//
154// Example:
155//   const RE2::Arg* args[10];
156//   int n;
157//   // ... populate args with pointers to RE2::Arg values ...
158//   // ... set n to the number of RE2::Arg objects ...
159//   bool match = RE2::FullMatchN(input, pattern, args, n);
160//
161// The last statement is equivalent to
162//
163//   bool match = RE2::FullMatch(input, pattern,
164//                               *args[0], *args[1], ..., *args[n - 1]);
165//
166// -----------------------------------------------------------------------
167// PARSING HEX/OCTAL/C-RADIX NUMBERS
168//
169// By default, if you pass a pointer to a numeric value, the
170// corresponding text is interpreted as a base-10 number.  You can
171// instead wrap the pointer with a call to one of the operators Hex(),
172// Octal(), or CRadix() to interpret the text in another base.  The
173// CRadix operator interprets C-style "0" (base-8) and "0x" (base-16)
174// prefixes, but defaults to base-10.
175//
176// Example:
177//   int a, b, c, d;
178//   CHECK(RE2::FullMatch("100 40 0100 0x40", "(.*) (.*) (.*) (.*)",
179//         RE2::Octal(&a), RE2::Hex(&b), RE2::CRadix(&c), RE2::CRadix(&d));
180// will leave 64 in a, b, c, and d.
181
182
183#include <stdint.h>
184#include <map>
185#include <string>
186#include "re2/stringpiece.h"
187#include "re2/variadic_function.h"
188
189namespace re2 {
190
191using std::string;
192using std::map;
193class Mutex;
194class Prog;
195class Regexp;
196
197// The following enum should be used only as a constructor argument to indicate
198// that the variable has static storage class, and that the constructor should
199// do nothing to its state.  It indicates to the reader that it is legal to
200// declare a static instance of the class, provided the constructor is given
201// the LINKER_INITIALIZED argument.  Normally, it is unsafe to declare a
202// static variable that has a constructor or a destructor because invocation
203// order is undefined.  However, IF the type can be initialized by filling with
204// zeroes (which the loader does for static variables), AND the type's
205// destructor does nothing to the storage, then a constructor for static
206// initialization can be declared as
207//       explicit MyClass(LinkerInitialized x) {}
208// and invoked as
209//       static MyClass my_variable_name(LINKER_INITIALIZED);
210enum LinkerInitialized { LINKER_INITIALIZED };
211
212// Interface for regular expression matching.  Also corresponds to a
213// pre-compiled regular expression.  An "RE2" object is safe for
214// concurrent use by multiple threads.
215class RE2 {
216 public:
217  // We convert user-passed pointers into special Arg objects
218  class Arg;
219  class Options;
220
221  // Defined in set.h.
222  class Set;
223
224  enum ErrorCode {
225    NoError = 0,
226
227    // Unexpected error
228    ErrorInternal,
229
230    // Parse errors
231    ErrorBadEscape,          // bad escape sequence
232    ErrorBadCharClass,       // bad character class
233    ErrorBadCharRange,       // bad character class range
234    ErrorMissingBracket,     // missing closing ]
235    ErrorMissingParen,       // missing closing )
236    ErrorTrailingBackslash,  // trailing \ at end of regexp
237    ErrorRepeatArgument,     // repeat argument missing, e.g. "*"
238    ErrorRepeatSize,         // bad repetition argument
239    ErrorRepeatOp,           // bad repetition operator
240    ErrorBadPerlOp,          // bad perl operator
241    ErrorBadUTF8,            // invalid UTF-8 in regexp
242    ErrorBadNamedCapture,    // bad named capture group
243    ErrorPatternTooLarge,    // pattern too large (compile failed)
244  };
245
246  // Predefined common options.
247  // If you need more complicated things, instantiate
248  // an Option class, possibly passing one of these to
249  // the Option constructor, change the settings, and pass that
250  // Option class to the RE2 constructor.
251  enum CannedOptions {
252    DefaultOptions = 0,
253    Latin1, // treat input as Latin-1 (default UTF-8)
254    POSIX, // POSIX syntax, leftmost-longest match
255    Quiet // do not log about regexp parse errors
256  };
257
258  // Need to have the const char* and const string& forms for implicit
259  // conversions when passing string literals to FullMatch and PartialMatch.
260  // Otherwise the StringPiece form would be sufficient.
261#ifndef SWIG
262  RE2(const char* pattern);
263  RE2(const string& pattern);
264#endif
265  RE2(const StringPiece& pattern);
266  RE2(const StringPiece& pattern, const Options& option);
267  ~RE2();
268
269  // Returns whether RE2 was created properly.
270  bool ok() const { return error_code() == NoError; }
271
272  // The string specification for this RE2.  E.g.
273  //   RE2 re("ab*c?d+");
274  //   re.pattern();    // "ab*c?d+"
275  const string& pattern() const { return pattern_; }
276
277  // If RE2 could not be created properly, returns an error string.
278  // Else returns the empty string.
279  const string& error() const { return *error_; }
280
281  // If RE2 could not be created properly, returns an error code.
282  // Else returns RE2::NoError (== 0).
283  ErrorCode error_code() const { return error_code_; }
284
285  // If RE2 could not be created properly, returns the offending
286  // portion of the regexp.
287  const string& error_arg() const { return error_arg_; }
288
289  // Returns the program size, a very approximate measure of a regexp's "cost".
290  // Larger numbers are more expensive than smaller numbers.
291  int ProgramSize() const;
292
293  // Returns the underlying Regexp; not for general use.
294  // Returns entire_regexp_ so that callers don't need
295  // to know about prefix_ and prefix_foldcase_.
296  re2::Regexp* Regexp() const { return entire_regexp_; }
297
298  /***** The useful part: the matching interface *****/
299
300  // Matches "text" against "pattern".  If pointer arguments are
301  // supplied, copies matched sub-patterns into them.
302  //
303  // You can pass in a "const char*" or a "string" for "text".
304  // You can pass in a "const char*" or a "string" or a "RE2" for "pattern".
305  //
306  // The provided pointer arguments can be pointers to any scalar numeric
307  // type, or one of:
308  //    string          (matched piece is copied to string)
309  //    StringPiece     (StringPiece is mutated to point to matched piece)
310  //    T               (where "bool T::ParseFrom(const char*, int)" exists)
311  //    (void*)NULL     (the corresponding matched sub-pattern is not copied)
312  //
313  // Returns true iff all of the following conditions are satisfied:
314  //   a. "text" matches "pattern" exactly
315  //   b. The number of matched sub-patterns is >= number of supplied pointers
316  //   c. The "i"th argument has a suitable type for holding the
317  //      string captured as the "i"th sub-pattern.  If you pass in
318  //      NULL for the "i"th argument, or pass fewer arguments than
319  //      number of sub-patterns, "i"th captured sub-pattern is
320  //      ignored.
321  //
322  // CAVEAT: An optional sub-pattern that does not exist in the
323  // matched string is assigned the empty string.  Therefore, the
324  // following will return false (because the empty string is not a
325  // valid number):
326  //    int number;
327  //    RE2::FullMatch("abc", "[a-z]+(\\d+)?", &number);
328  static bool FullMatchN(const StringPiece& text, const RE2& re,
329                         const Arg* const args[], int argc);
330  static const VariadicFunction2<
331      bool, const StringPiece&, const RE2&, Arg, RE2::FullMatchN> FullMatch;
332
333  // Exactly like FullMatch(), except that "pattern" is allowed to match
334  // a substring of "text".
335  static bool PartialMatchN(const StringPiece& text, const RE2& re, // 3..16 args
336                            const Arg* const args[], int argc);
337  static const VariadicFunction2<
338      bool, const StringPiece&, const RE2&, Arg, RE2::PartialMatchN> PartialMatch;
339
340  // Like FullMatch() and PartialMatch(), except that pattern has to
341  // match a prefix of "text", and "input" is advanced past the matched
342  // text.  Note: "input" is modified iff this routine returns true.
343  static bool ConsumeN(StringPiece* input, const RE2& pattern, // 3..16 args
344                       const Arg* const args[], int argc);
345  static const VariadicFunction2<
346      bool, StringPiece*, const RE2&, Arg, RE2::ConsumeN> Consume;
347
348  // Like Consume(..), but does not anchor the match at the beginning of the
349  // string.  That is, "pattern" need not start its match at the beginning of
350  // "input".  For example, "FindAndConsume(s, "(\\w+)", &word)" finds the next
351  // word in "s" and stores it in "word".
352  static bool FindAndConsumeN(StringPiece* input, const RE2& pattern,
353                             const Arg* const args[], int argc);
354  static const VariadicFunction2<
355      bool, StringPiece*, const RE2&, Arg, RE2::FindAndConsumeN> FindAndConsume;
356
357  // Replace the first match of "pattern" in "str" with "rewrite".
358  // Within "rewrite", backslash-escaped digits (\1 to \9) can be
359  // used to insert text matching corresponding parenthesized group
360  // from the pattern.  \0 in "rewrite" refers to the entire matching
361  // text.  E.g.,
362  //
363  //   string s = "yabba dabba doo";
364  //   CHECK(RE2::Replace(&s, "b+", "d"));
365  //
366  // will leave "s" containing "yada dabba doo"
367  //
368  // Returns true if the pattern matches and a replacement occurs,
369  // false otherwise.
370  static bool Replace(string *str,
371                      const RE2& pattern,
372                      const StringPiece& rewrite);
373
374  // Like Replace(), except replaces successive non-overlapping occurrences
375  // of the pattern in the string with the rewrite. E.g.
376  //
377  //   string s = "yabba dabba doo";
378  //   CHECK(RE2::GlobalReplace(&s, "b+", "d"));
379  //
380  // will leave "s" containing "yada dada doo"
381  // Replacements are not subject to re-matching.
382  //
383  // Because GlobalReplace only replaces non-overlapping matches,
384  // replacing "ana" within "banana" makes only one replacement, not two.
385  //
386  // Returns the number of replacements made.
387  static int GlobalReplace(string *str,
388                           const RE2& pattern,
389                           const StringPiece& rewrite);
390
391  // Like Replace, except that if the pattern matches, "rewrite"
392  // is copied into "out" with substitutions.  The non-matching
393  // portions of "text" are ignored.
394  //
395  // Returns true iff a match occurred and the extraction happened
396  // successfully;  if no match occurs, the string is left unaffected.
397  static bool Extract(const StringPiece &text,
398                      const RE2& pattern,
399                      const StringPiece &rewrite,
400                      string *out);
401
402  // Escapes all potentially meaningful regexp characters in
403  // 'unquoted'.  The returned string, used as a regular expression,
404  // will exactly match the original string.  For example,
405  //           1.5-2.0?
406  // may become:
407  //           1\.5\-2\.0\?
408  static string QuoteMeta(const StringPiece& unquoted);
409
410  // Computes range for any strings matching regexp. The min and max can in
411  // some cases be arbitrarily precise, so the caller gets to specify the
412  // maximum desired length of string returned.
413  //
414  // Assuming PossibleMatchRange(&min, &max, N) returns successfully, any
415  // string s that is an anchored match for this regexp satisfies
416  //   min <= s && s <= max.
417  //
418  // Note that PossibleMatchRange() will only consider the first copy of an
419  // infinitely repeated element (i.e., any regexp element followed by a '*' or
420  // '+' operator). Regexps with "{N}" constructions are not affected, as those
421  // do not compile down to infinite repetitions.
422  //
423  // Returns true on success, false on error.
424  bool PossibleMatchRange(string* min, string* max, int maxlen) const;
425
426  // Generic matching interface
427
428  // Type of match.
429  enum Anchor {
430    UNANCHORED,         // No anchoring
431    ANCHOR_START,       // Anchor at start only
432    ANCHOR_BOTH,        // Anchor at start and end
433  };
434
435  // Return the number of capturing subpatterns, or -1 if the
436  // regexp wasn't valid on construction.  The overall match ($0)
437  // does not count: if the regexp is "(a)(b)", returns 2.
438  int NumberOfCapturingGroups() const;
439
440
441  // Return a map from names to capturing indices.
442  // The map records the index of the leftmost group
443  // with the given name.
444  // Only valid until the re is deleted.
445  const map<string, int>& NamedCapturingGroups() const;
446
447  // Return a map from capturing indices to names.
448  // The map has no entries for unnamed groups.
449  // Only valid until the re is deleted.
450  const map<int, string>& CapturingGroupNames() const;
451
452  // General matching routine.
453  // Match against text starting at offset startpos
454  // and stopping the search at offset endpos.
455  // Returns true if match found, false if not.
456  // On a successful match, fills in match[] (up to nmatch entries)
457  // with information about submatches.
458  // I.e. matching RE2("(foo)|(bar)baz") on "barbazbla" will return true,
459  // setting match[0] = "barbaz", match[1] = NULL, match[2] = "bar",
460  // match[3] = NULL, ..., up to match[nmatch-1] = NULL.
461  //
462  // Don't ask for more match information than you will use:
463  // runs much faster with nmatch == 1 than nmatch > 1, and
464  // runs even faster if nmatch == 0.
465  // Doesn't make sense to use nmatch > 1 + NumberOfCapturingGroups(),
466  // but will be handled correctly.
467  //
468  // Passing text == StringPiece(NULL, 0) will be handled like any other
469  // empty string, but note that on return, it will not be possible to tell
470  // whether submatch i matched the empty string or did not match:
471  // either way, match[i] == NULL.
472  bool Match(const StringPiece& text,
473             int startpos,
474             int endpos,
475             Anchor anchor,
476             StringPiece *match,
477             int nmatch) const;
478
479  // Check that the given rewrite string is suitable for use with this
480  // regular expression.  It checks that:
481  //   * The regular expression has enough parenthesized subexpressions
482  //     to satisfy all of the \N tokens in rewrite
483  //   * The rewrite string doesn't have any syntax errors.  E.g.,
484  //     '\' followed by anything other than a digit or '\'.
485  // A true return value guarantees that Replace() and Extract() won't
486  // fail because of a bad rewrite string.
487  bool CheckRewriteString(const StringPiece& rewrite, string* error) const;
488
489  // Returns the maximum submatch needed for the rewrite to be done by
490  // Replace(). E.g. if rewrite == "foo \\2,\\1", returns 2.
491  static int MaxSubmatch(const StringPiece& rewrite);
492
493  // Append the "rewrite" string, with backslash subsitutions from "vec",
494  // to string "out".
495  // Returns true on success.  This method can fail because of a malformed
496  // rewrite string.  CheckRewriteString guarantees that the rewrite will
497  // be sucessful.
498  bool Rewrite(string *out,
499               const StringPiece &rewrite,
500               const StringPiece* vec,
501               int veclen) const;
502
503  // Constructor options
504  class Options {
505   public:
506    // The options are (defaults in parentheses):
507    //
508    //   utf8             (true)  text and pattern are UTF-8; otherwise Latin-1
509    //   posix_syntax     (false) restrict regexps to POSIX egrep syntax
510    //   longest_match    (false) search for longest match, not first match
511    //   log_errors       (true)  log syntax and execution errors to ERROR
512    //   max_mem          (see below)  approx. max memory footprint of RE2
513    //   literal          (false) interpret string as literal, not regexp
514    //   never_nl         (false) never match \n, even if it is in regexp
515    //   never_capture    (false) parse all parens as non-capturing
516    //   case_sensitive   (true)  match is case-sensitive (regexp can override
517    //                              with (?i) unless in posix_syntax mode)
518    //
519    // The following options are only consulted when posix_syntax == true.
520    // (When posix_syntax == false these features are always enabled and
521    // cannot be turned off.)
522    //   perl_classes     (false) allow Perl's \d \s \w \D \S \W
523    //   word_boundary    (false) allow Perl's \b \B (word boundary and not)
524    //   one_line         (false) ^ and $ only match beginning and end of text
525    //
526    // The max_mem option controls how much memory can be used
527    // to hold the compiled form of the regexp (the Prog) and
528    // its cached DFA graphs.  Code Search placed limits on the number
529    // of Prog instructions and DFA states: 10,000 for both.
530    // In RE2, those limits would translate to about 240 KB per Prog
531    // and perhaps 2.5 MB per DFA (DFA state sizes vary by regexp; RE2 does a
532    // better job of keeping them small than Code Search did).
533    // Each RE2 has two Progs (one forward, one reverse), and each Prog
534    // can have two DFAs (one first match, one longest match).
535    // That makes 4 DFAs:
536    //
537    //   forward, first-match    - used for UNANCHORED or ANCHOR_LEFT searches
538    //                               if opt.longest_match() == false
539    //   forward, longest-match  - used for all ANCHOR_BOTH searches,
540    //                               and the other two kinds if
541    //                               opt.longest_match() == true
542    //   reverse, first-match    - never used
543    //   reverse, longest-match  - used as second phase for unanchored searches
544    //
545    // The RE2 memory budget is statically divided between the two
546    // Progs and then the DFAs: two thirds to the forward Prog
547    // and one third to the reverse Prog.  The forward Prog gives half
548    // of what it has left over to each of its DFAs.  The reverse Prog
549    // gives it all to its longest-match DFA.
550    //
551    // Once a DFA fills its budget, it flushes its cache and starts over.
552    // If this happens too often, RE2 falls back on the NFA implementation.
553
554    // For now, make the default budget something close to Code Search.
555    static const int kDefaultMaxMem = 8<<20;
556
557    enum Encoding {
558      EncodingUTF8 = 1,
559      EncodingLatin1
560    };
561
562    Options() :
563      encoding_(EncodingUTF8),
564      posix_syntax_(false),
565      longest_match_(false),
566      log_errors_(true),
567      max_mem_(kDefaultMaxMem),
568      literal_(false),
569      never_nl_(false),
570      never_capture_(false),
571      case_sensitive_(true),
572      perl_classes_(false),
573      word_boundary_(false),
574      one_line_(false) {
575    }
576
577    /*implicit*/ Options(CannedOptions);
578
579    Encoding encoding() const { return encoding_; }
580    void set_encoding(Encoding encoding) { encoding_ = encoding; }
581
582    // Legacy interface to encoding.
583    // TODO(rsc): Remove once clients have been converted.
584    bool utf8() const { return encoding_ == EncodingUTF8; }
585    void set_utf8(bool b) {
586      if (b) {
587        encoding_ = EncodingUTF8;
588      } else {
589        encoding_ = EncodingLatin1;
590      }
591    }
592
593    bool posix_syntax() const { return posix_syntax_; }
594    void set_posix_syntax(bool b) { posix_syntax_ = b; }
595
596    bool longest_match() const { return longest_match_; }
597    void set_longest_match(bool b) { longest_match_ = b; }
598
599    bool log_errors() const { return log_errors_; }
600    void set_log_errors(bool b) { log_errors_ = b; }
601
602    int max_mem() const { return max_mem_; }
603    void set_max_mem(int m) { max_mem_ = m; }
604
605    bool literal() const { return literal_; }
606    void set_literal(bool b) { literal_ = b; }
607
608    bool never_nl() const { return never_nl_; }
609    void set_never_nl(bool b) { never_nl_ = b; }
610
611    bool never_capture() const { return never_capture_; }
612    void set_never_capture(bool b) { never_capture_ = b; }
613
614    bool case_sensitive() const { return case_sensitive_; }
615    void set_case_sensitive(bool b) { case_sensitive_ = b; }
616
617    bool perl_classes() const { return perl_classes_; }
618    void set_perl_classes(bool b) { perl_classes_ = b; }
619
620    bool word_boundary() const { return word_boundary_; }
621    void set_word_boundary(bool b) { word_boundary_ = b; }
622
623    bool one_line() const { return one_line_; }
624    void set_one_line(bool b) { one_line_ = b; }
625
626    void Copy(const Options& src) {
627      encoding_ = src.encoding_;
628      posix_syntax_ = src.posix_syntax_;
629      longest_match_ = src.longest_match_;
630      log_errors_ = src.log_errors_;
631      max_mem_ = src.max_mem_;
632      literal_ = src.literal_;
633      never_nl_ = src.never_nl_;
634      never_capture_ = src.never_capture_;
635      case_sensitive_ = src.case_sensitive_;
636      perl_classes_ = src.perl_classes_;
637      word_boundary_ = src.word_boundary_;
638      one_line_ = src.one_line_;
639    }
640
641    int ParseFlags() const;
642
643   private:
644    Encoding encoding_;
645    bool posix_syntax_;
646    bool longest_match_;
647    bool log_errors_;
648    int64_t max_mem_;
649    bool literal_;
650    bool never_nl_;
651    bool never_capture_;
652    bool case_sensitive_;
653    bool perl_classes_;
654    bool word_boundary_;
655    bool one_line_;
656
657    //DISALLOW_EVIL_CONSTRUCTORS(Options);
658    Options(const Options&);
659    void operator=(const Options&);
660  };
661
662  // Returns the options set in the constructor.
663  const Options& options() const { return options_; };
664
665  // Argument converters; see below.
666  static inline Arg CRadix(short* x);
667  static inline Arg CRadix(unsigned short* x);
668  static inline Arg CRadix(int* x);
669  static inline Arg CRadix(unsigned int* x);
670  static inline Arg CRadix(long* x);
671  static inline Arg CRadix(unsigned long* x);
672  static inline Arg CRadix(long long* x);
673  static inline Arg CRadix(unsigned long long* x);
674
675  static inline Arg Hex(short* x);
676  static inline Arg Hex(unsigned short* x);
677  static inline Arg Hex(int* x);
678  static inline Arg Hex(unsigned int* x);
679  static inline Arg Hex(long* x);
680  static inline Arg Hex(unsigned long* x);
681  static inline Arg Hex(long long* x);
682  static inline Arg Hex(unsigned long long* x);
683
684  static inline Arg Octal(short* x);
685  static inline Arg Octal(unsigned short* x);
686  static inline Arg Octal(int* x);
687  static inline Arg Octal(unsigned int* x);
688  static inline Arg Octal(long* x);
689  static inline Arg Octal(unsigned long* x);
690  static inline Arg Octal(long long* x);
691  static inline Arg Octal(unsigned long long* x);
692
693 private:
694  void Init(const StringPiece& pattern, const Options& options);
695
696  bool DoMatch(const StringPiece& text,
697                   Anchor anchor,
698                   int* consumed,
699                   const Arg* const args[],
700                   int n) const;
701
702  re2::Prog* ReverseProg() const;
703
704  mutable Mutex*           mutex_;
705  string                   pattern_;       // string regular expression
706  Options                  options_;       // option flags
707  string        prefix_;           // required prefix (before regexp_)
708  bool          prefix_foldcase_;  // prefix is ASCII case-insensitive
709  re2::Regexp*  entire_regexp_;    // parsed regular expression
710  re2::Regexp*  suffix_regexp_;    // parsed regular expression, prefix removed
711  re2::Prog*    prog_;             // compiled program for regexp
712  mutable re2::Prog* rprog_;       // reverse program for regexp
713  bool                     is_one_pass_;   // can use prog_->SearchOnePass?
714  mutable const string*    error_;         // Error indicator
715                                           // (or points to empty string)
716  mutable ErrorCode        error_code_;    // Error code
717  mutable string           error_arg_;     // Fragment of regexp showing error
718  mutable int              num_captures_;  // Number of capturing groups
719
720  // Map from capture names to indices
721  mutable const map<string, int>* named_groups_;
722
723  // Map from capture indices to names
724  mutable const map<int, string>* group_names_;
725
726  //DISALLOW_EVIL_CONSTRUCTORS(RE2);
727  RE2(const RE2&);
728  void operator=(const RE2&);
729};
730
731/***** Implementation details *****/
732
733// Hex/Octal/Binary?
734
735// Special class for parsing into objects that define a ParseFrom() method
736template <class T>
737class _RE2_MatchObject {
738 public:
739  static inline bool Parse(const char* str, int n, void* dest) {
740    if (dest == NULL) return true;
741    T* object = reinterpret_cast<T*>(dest);
742    return object->ParseFrom(str, n);
743  }
744};
745
746class RE2::Arg {
747 public:
748  // Empty constructor so we can declare arrays of RE2::Arg
749  Arg();
750
751  // Constructor specially designed for NULL arguments
752  Arg(void*);
753
754  typedef bool (*Parser)(const char* str, int n, void* dest);
755
756// Type-specific parsers
757#define MAKE_PARSER(type,name) \
758  Arg(type* p) : arg_(p), parser_(name) { } \
759  Arg(type* p, Parser parser) : arg_(p), parser_(parser) { } \
760
761
762  MAKE_PARSER(char,               parse_char);
763  MAKE_PARSER(signed char,        parse_char);
764  MAKE_PARSER(unsigned char,      parse_uchar);
765  MAKE_PARSER(short,              parse_short);
766  MAKE_PARSER(unsigned short,     parse_ushort);
767  MAKE_PARSER(int,                parse_int);
768  MAKE_PARSER(unsigned int,       parse_uint);
769  MAKE_PARSER(long,               parse_long);
770  MAKE_PARSER(unsigned long,      parse_ulong);
771  MAKE_PARSER(long long,          parse_longlong);
772  MAKE_PARSER(unsigned long long, parse_ulonglong);
773  MAKE_PARSER(float,              parse_float);
774  MAKE_PARSER(double,             parse_double);
775  MAKE_PARSER(string,             parse_string);
776  MAKE_PARSER(StringPiece,        parse_stringpiece);
777
778#undef MAKE_PARSER
779
780  // Generic constructor
781  template <class T> Arg(T*, Parser parser);
782  // Generic constructor template
783  template <class T> Arg(T* p)
784    : arg_(p), parser_(_RE2_MatchObject<T>::Parse) {
785  }
786
787  // Parse the data
788  bool Parse(const char* str, int n) const;
789
790 private:
791  void*         arg_;
792  Parser        parser_;
793
794  static bool parse_null          (const char* str, int n, void* dest);
795  static bool parse_char          (const char* str, int n, void* dest);
796  static bool parse_uchar         (const char* str, int n, void* dest);
797  static bool parse_float         (const char* str, int n, void* dest);
798  static bool parse_double        (const char* str, int n, void* dest);
799  static bool parse_string        (const char* str, int n, void* dest);
800  static bool parse_stringpiece   (const char* str, int n, void* dest);
801
802#define DECLARE_INTEGER_PARSER(name)                                        \
803 private:                                                                   \
804  static bool parse_ ## name(const char* str, int n, void* dest);           \
805  static bool parse_ ## name ## _radix(                                     \
806    const char* str, int n, void* dest, int radix);                         \
807 public:                                                                    \
808  static bool parse_ ## name ## _hex(const char* str, int n, void* dest);   \
809  static bool parse_ ## name ## _octal(const char* str, int n, void* dest); \
810  static bool parse_ ## name ## _cradix(const char* str, int n, void* dest)
811
812  DECLARE_INTEGER_PARSER(short);
813  DECLARE_INTEGER_PARSER(ushort);
814  DECLARE_INTEGER_PARSER(int);
815  DECLARE_INTEGER_PARSER(uint);
816  DECLARE_INTEGER_PARSER(long);
817  DECLARE_INTEGER_PARSER(ulong);
818  DECLARE_INTEGER_PARSER(longlong);
819  DECLARE_INTEGER_PARSER(ulonglong);
820
821#undef DECLARE_INTEGER_PARSER
822};
823
824inline RE2::Arg::Arg() : arg_(NULL), parser_(parse_null) { }
825inline RE2::Arg::Arg(void* p) : arg_(p), parser_(parse_null) { }
826
827inline bool RE2::Arg::Parse(const char* str, int n) const {
828  return (*parser_)(str, n, arg_);
829}
830
831// This part of the parser, appropriate only for ints, deals with bases
832#define MAKE_INTEGER_PARSER(type, name) \
833  inline RE2::Arg RE2::Hex(type* ptr) { \
834    return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _hex); } \
835  inline RE2::Arg RE2::Octal(type* ptr) { \
836    return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _octal); } \
837  inline RE2::Arg RE2::CRadix(type* ptr) { \
838    return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _cradix); }
839
840MAKE_INTEGER_PARSER(short,              short);
841MAKE_INTEGER_PARSER(unsigned short,     ushort);
842MAKE_INTEGER_PARSER(int,                int);
843MAKE_INTEGER_PARSER(unsigned int,       uint);
844MAKE_INTEGER_PARSER(long,               long);
845MAKE_INTEGER_PARSER(unsigned long,      ulong);
846MAKE_INTEGER_PARSER(long long,          longlong);
847MAKE_INTEGER_PARSER(unsigned long long, ulonglong);
848
849#undef MAKE_INTEGER_PARSER
850
851}  // namespace re2
852
853using re2::RE2;
854
855#endif /* RE2_RE2_H */
856