Simplify.cpp revision 15fa138f2276a77679530fb608463ff5b4133f7b
1/*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7#include "CurveIntersection.h"
8#include "Intersections.h"
9#include "LineIntersection.h"
10#include "SkPath.h"
11#include "SkRect.h"
12#include "SkTArray.h"
13#include "SkTDArray.h"
14#include "ShapeOps.h"
15#include "TSearch.h"
16#include <algorithm> // used for std::min
17
18#undef SkASSERT
19#define SkASSERT(cond) while (!(cond)) { sk_throw(); }
20
21// Terminology:
22// A Path contains one of more Contours
23// A Contour is made up of Segment array
24// A Segment is described by a Verb and a Point array
25// A Verb is one of Line, Quad(ratic), and Cubic
26// A Segment contains a Span array
27// A Span is describes a portion of a Segment using starting and ending T
28// T values range from 0 to 1, where 0 is the first Point in the Segment
29
30// FIXME: remove once debugging is complete
31#if 0 // set to 1 for no debugging whatsoever
32
33//const bool gxRunTestsInOneThread = false;
34
35#define DEBUG_ADD_INTERSECTING_TS 0
36#define DEBUG_BRIDGE 0
37#define DEBUG_DUMP 0
38
39#else
40
41//const bool gRunTestsInOneThread = true;
42
43#define DEBUG_ADD_INTERSECTING_TS 1
44#define DEBUG_BRIDGE 1
45#define DEBUG_DUMP 1
46
47#endif
48
49#if DEBUG_DUMP
50static const char* kLVerbStr[] = {"", "line", "quad", "cubic"};
51static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"};
52static int gContourID;
53static int gSegmentID;
54#endif
55
56static int LineIntersect(const SkPoint a[2], const SkPoint b[2],
57        Intersections& intersections) {
58    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
59    const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
60    return intersect(aLine, bLine, intersections.fT[0], intersections.fT[1]);
61}
62
63static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2],
64        Intersections& intersections) {
65    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
66    const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
67    intersect(aQuad, bLine, intersections);
68    return intersections.fUsed;
69}
70
71static int CubicLineIntersect(const SkPoint a[2], const SkPoint b[3],
72        Intersections& intersections) {
73    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
74            {a[3].fX, a[3].fY}};
75    const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
76    return intersect(aCubic, bLine, intersections.fT[0], intersections.fT[1]);
77}
78
79static int QuadIntersect(const SkPoint a[3], const SkPoint b[3],
80        Intersections& intersections) {
81    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
82    const Quadratic bQuad = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}};
83    intersect(aQuad, bQuad, intersections);
84    return intersections.fUsed;
85}
86
87static int CubicIntersect(const SkPoint a[4], const SkPoint b[4],
88        Intersections& intersections) {
89    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
90            {a[3].fX, a[3].fY}};
91    const Cubic bCubic = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY},
92            {b[3].fX, b[3].fY}};
93    intersect(aCubic, bCubic, intersections);
94    return intersections.fUsed;
95}
96
97static int HLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right,
98        SkScalar y, bool flipped, Intersections& intersections) {
99    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
100    return horizontalIntersect(aLine, left, right, y, flipped, intersections);
101}
102
103static int VLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right,
104        SkScalar y, bool flipped, Intersections& intersections) {
105    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
106    return verticalIntersect(aLine, left, right, y, flipped, intersections);
107}
108
109static int HQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right,
110        SkScalar y, bool flipped, Intersections& intersections) {
111    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
112    return horizontalIntersect(aQuad, left, right, y, flipped, intersections);
113}
114
115static int VQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right,
116        SkScalar y, bool flipped, Intersections& intersections) {
117    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
118    return verticalIntersect(aQuad, left, right, y, flipped, intersections);
119}
120
121static int HCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right,
122        SkScalar y, bool flipped, Intersections& intersections) {
123    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
124            {a[3].fX, a[3].fY}};
125    return horizontalIntersect(aCubic, left, right, y, flipped, intersections);
126}
127
128static int VCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right,
129        SkScalar y, bool flipped, Intersections& intersections) {
130    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
131            {a[3].fX, a[3].fY}};
132    return verticalIntersect(aCubic, left, right, y, flipped, intersections);
133}
134
135static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) {
136    const _Line line = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
137    double x, y;
138    xy_at_t(line, t, x, y);
139    out->fX = SkDoubleToScalar(x);
140    out->fY = SkDoubleToScalar(y);
141}
142
143static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) {
144    const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
145    double x, y;
146    xy_at_t(quad, t, x, y);
147    out->fX = SkDoubleToScalar(x);
148    out->fY = SkDoubleToScalar(y);
149}
150
151static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) {
152    const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
153            {a[3].fX, a[3].fY}};
154    double x, y;
155    xy_at_t(cubic, t, x, y);
156    out->fX = SkDoubleToScalar(x);
157    out->fY = SkDoubleToScalar(y);
158}
159
160static void (* const SegmentXYAtT[])(const SkPoint [], double , SkPoint* ) = {
161    NULL,
162    LineXYAtT,
163    QuadXYAtT,
164    CubicXYAtT
165};
166
167static SkScalar LineXAtT(const SkPoint a[2], double t) {
168    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
169    double x;
170    xy_at_t(aLine, t, x, *(double*) 0);
171    return SkDoubleToScalar(x);
172}
173
174static SkScalar QuadXAtT(const SkPoint a[3], double t) {
175    const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
176    double x;
177    xy_at_t(quad, t, x, *(double*) 0);
178    return SkDoubleToScalar(x);
179}
180
181static SkScalar CubicXAtT(const SkPoint a[4], double t) {
182    const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
183            {a[3].fX, a[3].fY}};
184    double x;
185    xy_at_t(cubic, t, x, *(double*) 0);
186    return SkDoubleToScalar(x);
187}
188
189static SkScalar (* const SegmentXAtT[])(const SkPoint [], double ) = {
190    NULL,
191    LineXAtT,
192    QuadXAtT,
193    CubicXAtT
194};
195
196static SkScalar LineYAtT(const SkPoint a[2], double t) {
197    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
198    double y;
199    xy_at_t(aLine, t, *(double*) 0, y);
200    return SkDoubleToScalar(y);
201}
202
203static SkScalar QuadYAtT(const SkPoint a[3], double t) {
204    const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
205    double y;
206    xy_at_t(quad, t, *(double*) 0, y);
207    return SkDoubleToScalar(y);
208}
209
210static SkScalar CubicYAtT(const SkPoint a[4], double t) {
211    const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
212            {a[3].fX, a[3].fY}};
213    double y;
214    xy_at_t(cubic, t, *(double*) 0, y);
215    return SkDoubleToScalar(y);
216}
217
218static SkScalar (* const SegmentYAtT[])(const SkPoint [], double ) = {
219    NULL,
220    LineYAtT,
221    QuadYAtT,
222    CubicYAtT
223};
224
225static void LineSubDivide(const SkPoint a[2], double startT, double endT,
226        SkPoint sub[2]) {
227    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
228    _Line dst;
229    sub_divide(aLine, startT, endT, dst);
230    sub[0].fX = SkDoubleToScalar(dst[0].x);
231    sub[0].fY = SkDoubleToScalar(dst[0].y);
232    sub[1].fX = SkDoubleToScalar(dst[1].x);
233    sub[1].fY = SkDoubleToScalar(dst[1].y);
234}
235
236static void QuadSubDivide(const SkPoint a[3], double startT, double endT,
237        SkPoint sub[3]) {
238    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
239            {a[2].fX, a[2].fY}};
240    Quadratic dst;
241    sub_divide(aQuad, startT, endT, dst);
242    sub[0].fX = SkDoubleToScalar(dst[0].x);
243    sub[0].fY = SkDoubleToScalar(dst[0].y);
244    sub[1].fX = SkDoubleToScalar(dst[1].x);
245    sub[1].fY = SkDoubleToScalar(dst[1].y);
246    sub[2].fX = SkDoubleToScalar(dst[2].x);
247    sub[2].fY = SkDoubleToScalar(dst[2].y);
248}
249
250static void CubicSubDivide(const SkPoint a[4], double startT, double endT,
251        SkPoint sub[4]) {
252    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
253            {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
254    Cubic dst;
255    sub_divide(aCubic, startT, endT, dst);
256    sub[0].fX = SkDoubleToScalar(dst[0].x);
257    sub[0].fY = SkDoubleToScalar(dst[0].y);
258    sub[1].fX = SkDoubleToScalar(dst[1].x);
259    sub[1].fY = SkDoubleToScalar(dst[1].y);
260    sub[2].fX = SkDoubleToScalar(dst[2].x);
261    sub[2].fY = SkDoubleToScalar(dst[2].y);
262    sub[3].fX = SkDoubleToScalar(dst[3].x);
263    sub[3].fY = SkDoubleToScalar(dst[3].y);
264}
265
266static void QuadSubBounds(const SkPoint a[3], double startT, double endT,
267        SkRect& bounds) {
268    SkPoint dst[3];
269    QuadSubDivide(a, startT, endT, dst);
270    bounds.fLeft = bounds.fRight = dst[0].fX;
271    bounds.fTop = bounds.fBottom = dst[0].fY;
272    for (int index = 1; index < 3; ++index) {
273        bounds.growToInclude(dst[index].fX, dst[index].fY);
274    }
275}
276
277static void CubicSubBounds(const SkPoint a[4], double startT, double endT,
278        SkRect& bounds) {
279    SkPoint dst[4];
280    CubicSubDivide(a, startT, endT, dst);
281    bounds.fLeft = bounds.fRight = dst[0].fX;
282    bounds.fTop = bounds.fBottom = dst[0].fY;
283    for (int index = 1; index < 4; ++index) {
284        bounds.growToInclude(dst[index].fX, dst[index].fY);
285    }
286}
287
288static SkPath::Verb QuadReduceOrder(const SkPoint a[3],
289        SkTDArray<SkPoint>& reducePts) {
290    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
291            {a[2].fX, a[2].fY}};
292    Quadratic dst;
293    int order = reduceOrder(aQuad, dst);
294    for (int index = 0; index < order; ++index) {
295        SkPoint* pt = reducePts.append();
296        pt->fX = SkDoubleToScalar(dst[index].x);
297        pt->fY = SkDoubleToScalar(dst[index].y);
298    }
299    return (SkPath::Verb) (order - 1);
300}
301
302static SkPath::Verb CubicReduceOrder(const SkPoint a[4],
303        SkTDArray<SkPoint>& reducePts) {
304    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
305            {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
306    Cubic dst;
307    int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed);
308    for (int index = 0; index < order; ++index) {
309        SkPoint* pt = reducePts.append();
310        pt->fX = SkDoubleToScalar(dst[index].x);
311        pt->fY = SkDoubleToScalar(dst[index].y);
312    }
313    return (SkPath::Verb) (order - 1);
314}
315
316static bool QuadIsLinear(const SkPoint a[3]) {
317    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
318            {a[2].fX, a[2].fY}};
319    return isLinear(aQuad, 0, 2);
320}
321
322static bool CubicIsLinear(const SkPoint a[4]) {
323    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
324            {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
325    return isLinear(aCubic, 0, 3);
326}
327
328static SkScalar LineLeftMost(const SkPoint a[2], double startT, double endT) {
329    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
330    double x[2];
331    xy_at_t(aLine, startT, x[0], *(double*) 0);
332    xy_at_t(aLine, endT, x[0], *(double*) 0);
333    return startT < endT ? startT : endT;
334}
335
336static SkScalar QuadLeftMost(const SkPoint a[3], double startT, double endT) {
337    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
338            {a[2].fX, a[2].fY}};
339    return leftMostT(aQuad, startT, endT);
340}
341
342static SkScalar CubicLeftMost(const SkPoint a[4], double startT, double endT) {
343    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
344            {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
345    return leftMostT(aCubic, startT, endT);
346}
347
348static SkScalar (* const SegmentLeftMost[])(const SkPoint [], double , double) = {
349    NULL,
350    LineLeftMost,
351    QuadLeftMost,
352    CubicLeftMost
353};
354
355static bool IsCoincident(const SkPoint a[2], const SkPoint& above,
356        const SkPoint& below) {
357    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
358    const _Line bLine = {{above.fX, above.fY}, {below.fX, below.fY}};
359    return implicit_matches_ulps(aLine, bLine, 32);
360}
361
362// sorting angles
363// given angles of {dx dy ddx ddy dddx dddy} sort them
364class Angle {
365public:
366    bool operator<(const Angle& rh) const {
367        if ((dy < 0) ^ (rh.dy < 0)) {
368            return dy < 0;
369        }
370        SkScalar cmp = dx * rh.dy - rh.dx * dy;
371        if (cmp) {
372            return cmp < 0;
373        }
374        if ((ddy < 0) ^ (rh.ddy < 0)) {
375            return ddy < 0;
376        }
377        cmp = ddx * rh.ddy - rh.ddx * ddy;
378        if (cmp) {
379            return cmp < 0;
380        }
381        if ((dddy < 0) ^ (rh.dddy < 0)) {
382            return ddy < 0;
383        }
384        return dddx * rh.dddy < rh.dddx * dddy;
385    }
386
387    void set(SkPoint* pts, SkPath::Verb verb) {
388        dx = pts[1].fX - pts[0].fX; // b - a
389        dy = pts[1].fY - pts[0].fY;
390        if (verb == SkPath::kLine_Verb) {
391            ddx = ddy = dddx = dddy = 0;
392            return;
393        }
394        ddx = pts[2].fX - pts[1].fX - dx; // a - 2b + c
395        ddy = pts[2].fY - pts[2].fY - dy;
396        if (verb == SkPath::kQuad_Verb) {
397            dddx = dddy = 0;
398            return;
399        }
400        dddx = pts[3].fX + 3 * (pts[1].fX - pts[2].fX) - pts[0].fX;
401        dddy = pts[3].fY + 3 * (pts[1].fY - pts[2].fY) - pts[0].fY;
402    }
403
404private:
405    SkScalar dx;
406    SkScalar dy;
407    SkScalar ddx;
408    SkScalar ddy;
409    SkScalar dddx;
410    SkScalar dddy;
411};
412
413// Bounds, unlike Rect, does not consider a vertical line to be empty.
414struct Bounds : public SkRect {
415    static bool Intersects(const Bounds& a, const Bounds& b) {
416        return a.fLeft <= b.fRight && b.fLeft <= a.fRight &&
417                a.fTop <= b.fBottom && b.fTop <= a.fBottom;
418    }
419
420    bool isEmpty() {
421        return fLeft > fRight || fTop > fBottom
422                || fLeft == fRight && fTop == fBottom
423                || isnan(fLeft) || isnan(fRight)
424                || isnan(fTop) || isnan(fBottom);
425    }
426
427    void setCubicBounds(const SkPoint a[4]) {
428        _Rect dRect;
429        Cubic cubic  = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
430            {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
431        dRect.setBounds(cubic);
432        set(dRect.left, dRect.top, dRect.right, dRect.bottom);
433    }
434
435    void setQuadBounds(const SkPoint a[3]) {
436        const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
437                {a[2].fX, a[2].fY}};
438        _Rect dRect;
439        dRect.setBounds(quad);
440        set(dRect.left, dRect.top, dRect.right, dRect.bottom);
441    }
442};
443
444class Segment;
445
446struct Span {
447    double fT;
448    Segment* fOther;
449    double fOtherT;
450    int fWinding; // accumulated from contours surrounding this one
451    // OPTIMIZATION: done needs only 2 bits (values are -1, 0, 1)
452    int fDone; // set when t to t+fDone is processed
453    // OPTIMIZATION: done needs only 2 bits (values are -1, 0, 1)
454    int fCoincident; // -1 start of coincidence, 0 no coincidence, 1 end
455};
456
457class Segment {
458public:
459    Segment() {
460#if DEBUG_DUMP
461        fID = ++gSegmentID;
462#endif
463    }
464
465    void addAngle(SkTDArray<Angle>& angles, double start, double end) {
466        // FIXME complete this
467        // start here;
468    }
469
470    bool addCubic(const SkPoint pts[4]) {
471        fPts = pts;
472        fVerb = SkPath::kCubic_Verb;
473        fBounds.setCubicBounds(pts);
474    }
475
476    bool addLine(const SkPoint pts[2]) {
477        fPts = pts;
478        fVerb = SkPath::kLine_Verb;
479        fBounds.set(pts, 2);
480    }
481
482    // add 2 to edge or out of range values to get T extremes
483    void addOtherT(int index, double other) {
484        fTs[index].fOtherT = other;
485    }
486
487    bool addQuad(const SkPoint pts[3]) {
488        fPts = pts;
489        fVerb = SkPath::kQuad_Verb;
490        fBounds.setQuadBounds(pts);
491    }
492
493    int addT(double newT, Segment& other, int coincident) {
494        // FIXME: in the pathological case where there is a ton of intercepts,
495        //  binary search?
496        int insertedAt = -1;
497        Span* span;
498        size_t tCount = fTs.count();
499        double delta;
500        for (size_t idx2 = 0; idx2 < tCount; ++idx2) {
501            // OPTIMIZATION: if there are three or more identical Ts, then
502            // the fourth and following could be further insertion-sorted so
503            // that all the edges are clockwise or counterclockwise.
504            // This could later limit segment tests to the two adjacent
505            // neighbors, although it doesn't help with determining which
506            // circular direction to go in.
507            if (newT <= fTs[idx2].fT) {
508                insertedAt = idx2;
509                span = fTs.insert(idx2);
510                goto finish;
511            }
512        }
513        insertedAt = tCount;
514        span = fTs.append();
515finish:
516        span->fT = newT;
517        span->fOther = &other;
518        span->fWinding = 1;
519        span->fDone = 0;
520        span->fCoincident = coincident;
521        fCoincident |= coincident;
522        return insertedAt;
523    }
524
525    const Bounds& bounds() const {
526        return fBounds;
527    }
528
529    bool done() const {
530        return fDone;
531    }
532
533    int findCoincidentEnd(int start) const {
534        int tCount = fTs.count();
535        SkASSERT(start < tCount);
536        const Span& span = fTs[start];
537        SkASSERT(span.fCoincident);
538        for (int index = start + 1; index < tCount; ++index) {
539            const Span& match = fTs[index];
540            if (match.fOther == span.fOther) {
541                SkASSERT(match.fCoincident);
542                return index;
543            }
544        }
545        SkASSERT(0); // should never get here
546        return -1;
547    }
548
549    // start is the index of the beginning T of this edge
550    // it is guaranteed to have an end which describes a non-zero length (?)
551    // winding -1 means ccw, 1 means cw
552    // step is in/out -1 or 1
553    // spanIndex is returned
554    Segment* findNext(int start, int winding, int& step, int& spanIndex) {
555        SkASSERT(step == 1 || step == -1);
556        int count = fTs.count();
557        SkASSERT(step > 0 ? start < count - 1 : start > 0);
558        Span* startSpan = &fTs[start];
559        // FIXME:
560        // since Ts can be stepped either way, done markers must be careful
561        // not to assume that segment was only ascending in T. This shouldn't
562        // be a problem unless pathologically a segment can be partially
563        // ascending and partially descending -- maybe quads/cubic can do this?
564        startSpan->fDone = step;
565        SkPoint startLoc; // OPTIMIZATION: store this in the t span?
566        xyAtT(startSpan->fT, &startLoc);
567        SkPoint endLoc;
568        Span* endSpan;
569        int end = nextSpan(start, step, startLoc, startSpan, &endLoc, &endSpan);
570
571        // if we hit the end looking for span end, is that always an error?
572        SkASSERT(step > 0 ? end + 1 < count : end - 1 >= 0);
573
574        // preflight for coincidence -- if present, it may change winding
575        // considerations and whether reversed edges can be followed
576        bool foundCoincident = false;
577        int last = lastSpan(end, step, &startLoc, startSpan, foundCoincident);
578
579        // Discard opposing direction candidates if no coincidence was found.
580        int candidateCount = abs(last - end);
581        if (candidateCount == 1) {
582            SkASSERT(!foundCoincident);
583            // move in winding direction until edge in correct direction
584            // balance wrong direction edges before finding correct one
585            // this requres that the intersection is angularly sorted
586            // for a single intersection, special case -- choose the opposite
587            // edge that steps the same
588            Segment* other = endSpan->fOther;
589            SkASSERT(!other->fDone);
590            spanIndex = other->matchSpan(this, endSpan->fT);
591            SkASSERT(step < 0 ? spanIndex > 0 : spanIndex < other->fTs.count() - 1);
592            return other;
593        }
594
595        // find the next T that describes a length
596        SkTDArray<Angle> angles;
597        Segment* segmentCandidate = NULL;
598        int spanCandidate = -1;
599        int directionCandidate;
600        do {
601            endSpan = &fTs[end];
602            Segment* other = endSpan->fOther;
603            if (other->fDone) {
604                continue;
605            }
606        // if there is only one live crossing, and no coincidence, continue
607        // in the same direction
608        // if there is coincidence, the only choice may be to reverse direction
609            // find edge on either side of intersection
610            int oCount = other->fTs.count();
611            for (int oIndex = 0; oIndex < oCount; ++oIndex) {
612                Span& otherSpan = other->fTs[oIndex];
613                if (otherSpan.fOther != this) {
614                    continue;
615                }
616                if (otherSpan.fOtherT != endSpan->fT) {
617                    continue;
618                }
619                // if done == -1, prior span has already been processed
620                int next = other->nextSpan(oIndex, step, endLoc, &otherSpan,
621                        NULL, NULL);
622                if (next < 0) {
623                    continue;
624                }
625                bool otherIsCoincident;
626                last = other->lastSpan(next, step, &endLoc, &otherSpan,
627                        otherIsCoincident);
628                if (step < 0) {
629
630                    if (otherSpan.fDone >= 0 && oIndex > 0) {
631                        // FIXME: this needs to loop on -- until t && pt are different
632                        Span& prior = other->fTs[oIndex - 1];
633                        if (prior.fDone > 0) {
634                            continue;
635                        }
636
637                    }
638                } else { // step == 1
639                    if (otherSpan.fDone <= 0 && oIndex < oCount - 1) {
640                        // FIXME: this needs to loop on ++ until t && pt are different
641                        Span& next = other->fTs[oIndex + 1];
642                        if (next.fDone < 0) {
643                            continue;
644                        }
645                    }
646                }
647                if (!segmentCandidate) {
648                    segmentCandidate = other;
649                    spanCandidate = oIndex;
650                    directionCandidate = step;
651                    continue;
652                }
653                // there's two or more matches
654                if (spanCandidate >= 0) { // retrieve first stored candidate
655                    // add edge leading into junction
656                    addAngle(angles, endSpan->fT, startSpan->fT);
657                    // add edge leading away from junction
658                    double nextT = nextSpan(end, step, endLoc, endSpan, NULL,
659                            NULL);
660                    if (nextT >= 0) {
661                        addAngle(angles, endSpan->fT, nextT);
662                    }
663                    // add first stored candidate into junction
664                    segmentCandidate->addAngle(angles,
665                            segmentCandidate->fTs[spanCandidate - 1].fT,
666                            segmentCandidate->fTs[spanCandidate].fT);
667                    // add first stored candidate away from junction
668                    segmentCandidate->addAngle(angles,
669                            segmentCandidate->fTs[spanCandidate].fT,
670                            segmentCandidate->fTs[spanCandidate + 1].fT);
671                }
672                // add candidate into and away from junction
673
674
675           //     start here;
676                // more than once viable candidate -- need to
677                //  measure angles to find best
678                // noncoincident quads/cubics may have the same initial angle
679                // as lines, so must sort by derivatives as well
680                // while we're here, figure out all connections given the
681                //  initial winding info
682                // so the span needs to contain the pairing info found here
683                // this should include the winding computed for the edge, and
684                //  what edge it connects to, and whether it is discarded
685                //  (maybe discarded == abs(winding) > 1) ?
686                // only need derivatives for duration of sorting, add a new struct
687                // for pairings, remove extra spans that have zero length and
688                //  reference an unused other
689                // for coincident, the last span on the other may be marked done
690                //  (always?)
691            }
692        } while ((end += step) != last);
693        // if loop is exhausted, contour may be closed.
694        // FIXME: pass in close point so we can check for closure
695
696        // given a segment, and a sense of where 'inside' is, return the next
697        // segment. If this segment has an intersection, or ends in multiple
698        // segments, find the mate that continues the outside.
699        // note that if there are multiples, but no coincidence, we can limit
700        // choices to connections in the correct direction
701
702        // mark found segments as done
703    }
704
705    void findTooCloseToCall(int winding) {
706        int count = fTs.count();
707        if (count < 3) { // require t=0, x, 1 at minimum
708            return;
709        }
710        int matchIndex = 0;
711        int moCount;
712        Span* match;
713        Segment* mOther;
714        do {
715            match = &fTs[matchIndex];
716            mOther = match->fOther;
717            moCount = mOther->fTs.count();
718        } while (moCount >= 3 || ++matchIndex < count - 1); // require t=0, x, 1 at minimum
719        SkPoint matchPt;
720        // OPTIMIZATION: defer matchPt until qualifying toCount is found?
721        xyAtT(match->fT, &matchPt);
722        // look for a pair of nearby T values that map to the same (x,y) value
723        // if found, see if the pair of other segments share a common point. If
724        // so, the span from here to there is coincident.
725        for (int index = matchIndex + 1; index < count; ++index) {
726            Span* test = &fTs[index];
727            Segment* tOther = test->fOther;
728            int toCount = tOther->fTs.count();
729            if (toCount < 3) { // require t=0, x, 1 at minimum
730                continue;
731            }
732            SkPoint testPt;
733            xyAtT(test->fT, &testPt);
734            if (matchPt != testPt) {
735                matchIndex = index;
736                moCount = toCount;
737                match = test;
738                mOther = tOther;
739                matchPt = testPt;
740                continue;
741            }
742            int moStart = -1; // FIXME: initialization is debugging only
743            for (int moIndex = 0; moIndex < moCount; ++moIndex) {
744                Span& moSpan = mOther->fTs[moIndex];
745                if (moSpan.fOther == this) {
746                    if (moSpan.fOtherT == match->fT) {
747                        moStart = moIndex;
748                    }
749                    continue;
750                }
751                if (moSpan.fOther != tOther) {
752                    continue;
753                }
754                int toStart = -1;
755                int toIndex; // FIXME: initialization is debugging only
756                bool found = false;
757                for (toIndex = 0; toIndex < toCount; ++toIndex) {
758                    Span& toSpan = tOther->fTs[toIndex];
759                    if (toSpan.fOther == this) {
760                        if (toSpan.fOtherT == test->fT) {
761                            toStart = toIndex;
762                        }
763                        continue;
764                    }
765                    if (toSpan.fOther == mOther && toSpan.fOtherT
766                            == moSpan.fT) {
767                        found = true;
768                        break;
769                    }
770                }
771                if (!found) {
772                    continue;
773                }
774                SkASSERT(moStart >= 0);
775                SkASSERT(toStart >= 0);
776                // test to see if the segment between there and here is linear
777                if (!mOther->isLinear(moStart, moIndex)
778                        || !tOther->isLinear(toStart, toIndex)) {
779                    continue;
780                }
781                mOther->fTs[moStart].fCoincident = -1;
782                tOther->fTs[toStart].fCoincident = -1;
783                mOther->fTs[moIndex].fCoincident = 1;
784                tOther->fTs[toIndex].fCoincident = 1;
785            }
786    nextStart:
787            ;
788        }
789    }
790
791    int findByT(double t, const Segment* match) const {
792        // OPTIMIZATION: bsearch if count is honkin huge
793        int count = fTs.count();
794        for (int index = 0; index < count; ++index) {
795            const Span& span = fTs[index];
796            if (t == span.fT && match == span.fOther) {
797                return index;
798            }
799        }
800        SkASSERT(0); // should never get here
801        return -1;
802    }
803
804    // find the adjacent T that is leftmost, with a point != base
805    int findLefty(int tIndex, const SkPoint& base) const {
806        int bestTIndex;
807        SkPoint test;
808        SkScalar bestX = DBL_MAX;
809        int testTIndex = tIndex;
810        while (--testTIndex >= 0) {
811            xyAtT(testTIndex, &test);
812            if (test != base) {
813                continue;
814            }
815            bestX = test.fX;
816            bestTIndex = testTIndex;
817            break;
818        }
819        int count = fTs.count();
820        testTIndex = tIndex;
821        while (++testTIndex < count) {
822            xyAtT(testTIndex, &test);
823            if (test == base) {
824                continue;
825            }
826            return bestX > test.fX ? testTIndex : bestTIndex;
827        }
828        SkASSERT(0); // can't get here (?)
829        return -1;
830    }
831
832    // OPTIMIZATION : for a pair of lines, can we compute points at T (cached)
833    // and use more concise logic like the old edge walker code?
834    // FIXME: this needs to deal with coincident edges
835    const Segment* findTop(int& tIndex) const {
836        // iterate through T intersections and return topmost
837        // topmost tangent from y-min to first pt is closer to horizontal
838        int firstT = 0;
839        int lastT = 0;
840        SkScalar topY = fPts[0].fY;
841        int count = fTs.count();
842        int index;
843        for (index = 1; index < count; ++index) {
844            const Span& span = fTs[index];
845            double t = span.fT;
846            SkScalar yIntercept = yAtT(t);
847            if (topY > yIntercept) {
848                topY = yIntercept;
849                firstT = lastT = index;
850            } else if (topY == yIntercept) {
851                lastT = index;
852            }
853        }
854        // if there's only a pair of segments, go with the endpoint chosen above
855        if (firstT == lastT && (firstT == 0 || firstT == count - 1)) {
856            tIndex = firstT;
857            return this;
858        }
859        // if the topmost T is not on end, or is three-way or more, find left
860        SkPoint leftBase;
861        xyAtT(firstT, &leftBase);
862        int tLeft = findLefty(firstT, leftBase);
863        const Segment* leftSegment = this;
864        // look for left-ness from tLeft to firstT (matching y of other)
865        for (index = firstT; index <= lastT; ++index) {
866            const Segment* other = fTs[index].fOther;
867            double otherT = fTs[index].fOtherT;
868            int otherTIndex = other->findByT(otherT, this);
869            // pick companionT closest (but not too close) on either side
870            int otherTLeft = other->findLefty(otherTIndex, leftBase);
871            // within this span, find highest y
872            SkPoint testPt, otherPt;
873            testPt.fY = yAtT(tLeft);
874            otherPt.fY = other->yAtT(otherTLeft);
875            // FIXME: incomplete
876            // find the y intercept with the opposite segment
877            if (testPt.fY < otherPt.fY) {
878
879            } else if (testPt.fY > otherPt.fY) {
880
881            }
882            // FIXME: leftMost no good. Use y intercept instead
883#if 0
884            SkScalar otherMost = other->leftMost(otherTIndex, otherTLeft);
885            if (otherMost < left) {
886                leftSegment = other;
887            }
888#endif
889        }
890        return leftSegment;
891    }
892
893    bool intersected() const {
894        return fTs.count() > 0;
895    }
896
897    bool isLinear(int start, int end) const {
898        if (fVerb == SkPath::kLine_Verb) {
899            return true;
900        }
901        if (fVerb == SkPath::kQuad_Verb) {
902            SkPoint qPart[3];
903            QuadSubDivide(fPts, fTs[start].fT, fTs[end].fT, qPart);
904            return QuadIsLinear(qPart);
905        } else {
906            SkASSERT(fVerb == SkPath::kCubic_Verb);
907            SkPoint cPart[4];
908            CubicSubDivide(fPts, fTs[start].fT, fTs[end].fT, cPart);
909            return CubicIsLinear(cPart);
910        }
911    }
912
913    bool isHorizontal() const {
914        return fBounds.fTop == fBounds.fBottom;
915    }
916
917    bool isVertical() const {
918        return fBounds.fLeft == fBounds.fRight;
919    }
920
921    int lastSpan(int end, int step, const SkPoint* startLoc,
922            const Span* startSpan, bool& coincident) {
923        int last = end;
924        int count = fTs.count();
925        coincident = false;
926        SkPoint lastLoc;
927        do {
928            if (fTs[last].fCoincident == -step) {
929                coincident = true;
930            }
931            if (step > 0 ? ++last < count : --last >= 0) {
932                break;
933            }
934            Span* lastSpan = &fTs[last];
935            if (lastSpan->fT == startSpan->fT) {
936                continue;
937            }
938            xyAtT(lastSpan->fT, &lastLoc);
939        } while (*startLoc == lastLoc);
940    }
941
942    SkScalar leftMost(int start, int end) const {
943        return (*SegmentLeftMost[fVerb])(fPts, fTs[start].fT, fTs[end].fT);
944    }
945
946    int matchSpan(const Segment* match, double matchT)
947    {
948        int count = fTs.count();
949        for (int index = 0; index < count; ++index) {
950            Span& span = fTs[index];
951            if (span.fOther != match) {
952                continue;
953            }
954            if (span.fOtherT != matchT) {
955                continue;
956            }
957            return index;
958        }
959        SkASSERT(0); // should never get here
960        return -1;
961    }
962
963    int nextSpan(int from, int step, const SkPoint& fromLoc,
964            const Span* fromSpan, SkPoint* toLoc, Span** toSpan) {
965        int count = fTs.count();
966        int to = from;
967        while (step > 0 ? ++to < count : --to >= 0) {
968            Span* span = &fTs[to];
969            if (span->fT == fromSpan->fT) {
970                continue;
971            }
972            SkPoint loc;
973            xyAtT(span->fT, &loc);
974            if (fromLoc == loc) {
975                continue;
976            }
977            if (toLoc) {
978                *toLoc = loc;
979            }
980            if (toSpan) {
981                *toSpan = span;
982            }
983            return to;
984        }
985        return -1;
986    }
987
988    const SkPoint* pts() const {
989        return fPts;
990    }
991
992    void reset() {
993        fPts = NULL;
994        fVerb = (SkPath::Verb) -1;
995        fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
996        fTs.reset();
997        fDone = false;
998        fCoincident = 0;
999    }
1000
1001    // OPTIMIZATION: remove this function if it's never called
1002    double t(int tIndex) const {
1003        return fTs[tIndex].fT;
1004    }
1005
1006    SkPath::Verb verb() const {
1007        return fVerb;
1008    }
1009
1010    SkScalar xAtT(double t) const {
1011        return (*SegmentXAtT[fVerb])(fPts, t);
1012    }
1013
1014    void xyAtT(double t, SkPoint* pt) const {
1015        (*SegmentXYAtT[fVerb])(fPts, t, pt);
1016    }
1017
1018    SkScalar yAtT(double t) const {
1019        return (*SegmentYAtT[fVerb])(fPts, t);
1020    }
1021
1022#if DEBUG_DUMP
1023    void dump() const {
1024        const char className[] = "Segment";
1025        const int tab = 4;
1026        for (int i = 0; i < fTs.count(); ++i) {
1027            SkPoint out;
1028            (*SegmentXYAtT[fVerb])(fPts, t(i), &out);
1029            SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d"
1030                    " otherT=%1.9g winding=%d\n",
1031                    tab + sizeof(className), className, fID,
1032                    kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY,
1033                    fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fWinding);
1034        }
1035        SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)",
1036                tab + sizeof(className), className, fID,
1037                fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom);
1038    }
1039#endif
1040
1041private:
1042    const SkPoint* fPts;
1043    SkPath::Verb fVerb;
1044    Bounds fBounds;
1045    SkTDArray<Span> fTs; // two or more (always includes t=0 t=1)
1046    // FIXME: coincident only needs two bits (-1, 0, 1)
1047    int fCoincident; // non-zero if some coincident span inside
1048    bool fDone;
1049#if DEBUG_DUMP
1050    int fID;
1051#endif
1052};
1053
1054class Contour {
1055public:
1056    Contour() {
1057        reset();
1058#if DEBUG_DUMP
1059        fID = ++gContourID;
1060#endif
1061    }
1062
1063    bool operator<(const Contour& rh) const {
1064        return fBounds.fTop == rh.fBounds.fTop
1065                ? fBounds.fLeft < rh.fBounds.fLeft
1066                : fBounds.fTop < rh.fBounds.fTop;
1067    }
1068
1069    void addCubic(const SkPoint pts[4]) {
1070        fSegments.push_back().addCubic(pts);
1071        fContainsCurves = true;
1072    }
1073
1074    void addLine(const SkPoint pts[2]) {
1075        fSegments.push_back().addLine(pts);
1076    }
1077
1078    void addQuad(const SkPoint pts[3]) {
1079        fSegments.push_back().addQuad(pts);
1080        fContainsCurves = true;
1081    }
1082
1083    const Bounds& bounds() const {
1084        return fBounds;
1085    }
1086
1087    void complete() {
1088        setBounds();
1089        fContainsIntercepts = false;
1090    }
1091
1092    void containsIntercepts() {
1093        fContainsIntercepts = true;
1094    }
1095
1096    void findTooCloseToCall(int winding) {
1097        int segmentCount = fSegments.count();
1098        for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
1099            fSegments[sIndex].findTooCloseToCall(winding);
1100        }
1101    }
1102
1103    void reset() {
1104        fSegments.reset();
1105        fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
1106        fContainsCurves = fContainsIntercepts = false;
1107    }
1108
1109    // OPTIMIZATION: feel pretty uneasy about this. It seems like once again
1110    // we need to sort and walk edges in y, but that on the surface opens the
1111    // same can of worms as before. But then, this is a rough sort based on
1112    // segments' top, and not a true sort, so it could be ameniable to regular
1113    // sorting instead of linear searching. Still feel like I'm missing something
1114    Segment* topSegment() {
1115        int segmentCount = fSegments.count();
1116        SkASSERT(segmentCount > 0);
1117        int best = -1;
1118        Segment* bestSegment = NULL;
1119        while (++best < segmentCount) {
1120            Segment* testSegment = &fSegments[best];
1121            if (testSegment->done()) {
1122                continue;
1123            }
1124            bestSegment = testSegment;
1125            break;
1126        }
1127        if (!bestSegment) {
1128            return NULL;
1129        }
1130        SkScalar bestTop = bestSegment->bounds().fTop;
1131        for (int test = best + 1; test < segmentCount; ++test) {
1132            Segment* testSegment = &fSegments[test];
1133            if (testSegment->done()) {
1134                continue;
1135            }
1136            SkScalar testTop = testSegment->bounds().fTop;
1137            if (bestTop > testTop) {
1138                bestTop = testTop;
1139                bestSegment = testSegment;
1140            }
1141        }
1142        return bestSegment;
1143    }
1144
1145#if DEBUG_DUMP
1146    void dump() {
1147        int i;
1148        const char className[] = "Contour";
1149        const int tab = 4;
1150        SkDebugf("%s %p (contour=%d)\n", className, this, fID);
1151        for (i = 0; i < fSegments.count(); ++i) {
1152            SkDebugf("%*s.fSegments[%d]:\n", tab + sizeof(className),
1153                    className, i);
1154            fSegments[i].dump();
1155        }
1156        SkDebugf("%*s.fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)\n",
1157                tab + sizeof(className), className,
1158                fBounds.fLeft, fBounds.fTop,
1159                fBounds.fRight, fBounds.fBottom);
1160        SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className),
1161                className, fContainsIntercepts);
1162        SkDebugf("%*s.fContainsCurves=%d\n", tab + sizeof(className),
1163                className, fContainsCurves);
1164    }
1165#endif
1166
1167protected:
1168    void setBounds() {
1169        int count = fSegments.count();
1170        if (count == 0) {
1171            SkDebugf("%s empty contour\n", __FUNCTION__);
1172            SkASSERT(0);
1173            // FIXME: delete empty contour?
1174            return;
1175        }
1176        fBounds = fSegments.front().bounds();
1177        for (int index = 1; index < count; ++index) {
1178            fBounds.growToInclude(fSegments[index].bounds());
1179        }
1180    }
1181
1182public:
1183    SkTArray<Segment> fSegments; // not worth accessor functions?
1184
1185private:
1186    Bounds fBounds;
1187    bool fContainsIntercepts;
1188    bool fContainsCurves;
1189#if DEBUG_DUMP
1190    int fID;
1191#endif
1192};
1193
1194class EdgeBuilder {
1195public:
1196
1197EdgeBuilder(const SkPath& path, SkTArray<Contour>& contours)
1198    : fPath(path)
1199    , fCurrentContour(NULL)
1200    , fContours(contours)
1201{
1202#if DEBUG_DUMP
1203    gContourID = 0;
1204    gSegmentID = 0;
1205#endif
1206    walk();
1207}
1208
1209protected:
1210
1211void complete() {
1212    if (fCurrentContour && fCurrentContour->fSegments.count()) {
1213        fCurrentContour->complete();
1214        fCurrentContour = NULL;
1215    }
1216}
1217
1218void startContour() {
1219    if (!fCurrentContour) {
1220        fCurrentContour = fContours.push_back_n(1);
1221    }
1222}
1223
1224void walk() {
1225    // FIXME:remove once we can access path pts directly
1226    SkPath::RawIter iter(fPath); // FIXME: access path directly when allowed
1227    SkPoint pts[4];
1228    SkPath::Verb verb;
1229    do {
1230        verb = iter.next(pts);
1231        *fPathVerbs.append() = verb;
1232        if (verb == SkPath::kMove_Verb) {
1233            *fPathPts.append() = pts[0];
1234        } else if (verb >= SkPath::kLine_Verb && verb <= SkPath::kCubic_Verb) {
1235            fPathPts.append(verb, &pts[1]);
1236        }
1237    } while (verb != SkPath::kDone_Verb);
1238    // FIXME: end of section to remove once path pts are accessed directly
1239
1240    SkPath::Verb reducedVerb;
1241    uint8_t* verbPtr = fPathVerbs.begin();
1242    const SkPoint* pointsPtr = fPathPts.begin();
1243    while ((verb = (SkPath::Verb) *verbPtr++) != SkPath::kDone_Verb) {
1244        switch (verb) {
1245            case SkPath::kMove_Verb:
1246                complete();
1247                startContour();
1248                pointsPtr += 1;
1249                continue;
1250            case SkPath::kLine_Verb:
1251                // skip degenerate points
1252                if (pointsPtr[-1].fX != pointsPtr[0].fX
1253                        || pointsPtr[-1].fY != pointsPtr[0].fY) {
1254                    fCurrentContour->addLine(&pointsPtr[-1]);
1255                }
1256                break;
1257            case SkPath::kQuad_Verb:
1258                reducedVerb = QuadReduceOrder(&pointsPtr[-1], fReducePts);
1259                if (reducedVerb == 0) {
1260                    break; // skip degenerate points
1261                }
1262                if (reducedVerb == 1) {
1263                    fCurrentContour->addLine(fReducePts.end() - 2);
1264                    break;
1265                }
1266                fCurrentContour->addQuad(&pointsPtr[-1]);
1267                break;
1268            case SkPath::kCubic_Verb:
1269                reducedVerb = CubicReduceOrder(&pointsPtr[-1], fReducePts);
1270                if (reducedVerb == 0) {
1271                    break; // skip degenerate points
1272                }
1273                if (reducedVerb == 1) {
1274                    fCurrentContour->addLine(fReducePts.end() - 2);
1275                    break;
1276                }
1277                if (reducedVerb == 2) {
1278                    fCurrentContour->addQuad(fReducePts.end() - 3);
1279                    break;
1280                }
1281                fCurrentContour->addCubic(&pointsPtr[-1]);
1282                break;
1283            case SkPath::kClose_Verb:
1284                SkASSERT(fCurrentContour);
1285                complete();
1286                continue;
1287            default:
1288                SkDEBUGFAIL("bad verb");
1289                return;
1290        }
1291        pointsPtr += verb;
1292        SkASSERT(fCurrentContour);
1293    }
1294    complete();
1295    if (fCurrentContour && !fCurrentContour->fSegments.count()) {
1296        fContours.pop_back();
1297    }
1298}
1299
1300private:
1301    const SkPath& fPath;
1302    SkTDArray<SkPoint> fPathPts; // FIXME: point directly to path pts instead
1303    SkTDArray<uint8_t> fPathVerbs; // FIXME: remove
1304    Contour* fCurrentContour;
1305    SkTArray<Contour>& fContours;
1306    SkTDArray<SkPoint> fReducePts; // segments created on the fly
1307};
1308
1309class Work {
1310public:
1311    enum SegmentType {
1312        kHorizontalLine_Segment = -1,
1313        kVerticalLine_Segment = 0,
1314        kLine_Segment = SkPath::kLine_Verb,
1315        kQuad_Segment = SkPath::kQuad_Verb,
1316        kCubic_Segment = SkPath::kCubic_Verb,
1317    };
1318
1319    void addOtherT(int index, double other) {
1320        fContour->fSegments[fIndex].addOtherT(index, other);
1321    }
1322
1323    // Avoid collapsing t values that are close to the same since
1324    // we walk ts to describe consecutive intersections. Since a pair of ts can
1325    // be nearly equal, any problems caused by this should be taken care
1326    // of later.
1327    // On the edge or out of range values are negative; add 2 to get end
1328    int addT(double newT, const Work& other, int coincident) {
1329        fContour->containsIntercepts();
1330        return fContour->fSegments[fIndex].addT(newT,
1331                other.fContour->fSegments[other.fIndex], coincident);
1332    }
1333
1334    bool advance() {
1335        return ++fIndex < fLast;
1336    }
1337
1338    SkScalar bottom() const {
1339        return bounds().fBottom;
1340    }
1341
1342    const Bounds& bounds() const {
1343        return fContour->fSegments[fIndex].bounds();
1344    }
1345
1346    const SkPoint* cubic() const {
1347        return fCubic;
1348    }
1349
1350    void init(Contour* contour) {
1351        fContour = contour;
1352        fIndex = 0;
1353        fLast = contour->fSegments.count();
1354    }
1355
1356    SkScalar left() const {
1357        return bounds().fLeft;
1358    }
1359
1360    void promoteToCubic() {
1361        fCubic[0] = pts()[0];
1362        fCubic[2] = pts()[1];
1363        fCubic[3] = pts()[2];
1364        fCubic[1].fX = (fCubic[0].fX + fCubic[2].fX * 2) / 3;
1365        fCubic[1].fY = (fCubic[0].fY + fCubic[2].fY * 2) / 3;
1366        fCubic[2].fX = (fCubic[3].fX + fCubic[2].fX * 2) / 3;
1367        fCubic[2].fY = (fCubic[3].fY + fCubic[2].fY * 2) / 3;
1368    }
1369
1370    const SkPoint* pts() const {
1371        return fContour->fSegments[fIndex].pts();
1372    }
1373
1374    SkScalar right() const {
1375        return bounds().fRight;
1376    }
1377
1378    ptrdiff_t segmentIndex() const {
1379        return fIndex;
1380    }
1381
1382    SegmentType segmentType() const {
1383        const Segment& segment = fContour->fSegments[fIndex];
1384        SegmentType type = (SegmentType) segment.verb();
1385        if (type != kLine_Segment) {
1386            return type;
1387        }
1388        if (segment.isHorizontal()) {
1389            return kHorizontalLine_Segment;
1390        }
1391        if (segment.isVertical()) {
1392            return kVerticalLine_Segment;
1393        }
1394        return kLine_Segment;
1395    }
1396
1397    bool startAfter(const Work& after) {
1398        fIndex = after.fIndex;
1399        return advance();
1400    }
1401
1402    SkScalar top() const {
1403        return bounds().fTop;
1404    }
1405
1406    SkPath::Verb verb() const {
1407        return fContour->fSegments[fIndex].verb();
1408    }
1409
1410    SkScalar x() const {
1411        return bounds().fLeft;
1412    }
1413
1414    bool xFlipped() const {
1415        return x() != pts()[0].fX;
1416    }
1417
1418    SkScalar y() const {
1419        return bounds().fTop;
1420    }
1421
1422    bool yFlipped() const {
1423        return y() != pts()[0].fX;
1424    }
1425
1426protected:
1427    Contour* fContour;
1428    SkPoint fCubic[4];
1429    int fIndex;
1430    int fLast;
1431};
1432
1433static void debugShowLineIntersection(int pts, const Work& wt,
1434        const Work& wn, const double wtTs[2], const double wnTs[2]) {
1435#if DEBUG_ADD_INTERSECTING_TS
1436    if (!pts) {
1437        return;
1438    }
1439    SkPoint wtOutPt, wnOutPt;
1440    LineXYAtT(wt.pts(), wtTs[0], &wtOutPt);
1441    LineXYAtT(wn.pts(), wnTs[0], &wnOutPt);
1442    SkDebugf("%s wtTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n",
1443            __FUNCTION__,
1444            wtTs[0], wt.pts()[0].fX, wt.pts()[0].fY,
1445            wt.pts()[1].fX, wt.pts()[1].fY, wtOutPt.fX, wtOutPt.fY);
1446    if (pts == 2) {
1447        SkDebugf("%s wtTs[1]=%g\n", __FUNCTION__, wtTs[1]);
1448    }
1449    SkDebugf("%s wnTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n",
1450            __FUNCTION__,
1451            wnTs[0], wn.pts()[0].fX, wn.pts()[0].fY,
1452            wn.pts()[1].fX, wn.pts()[1].fY, wnOutPt.fX, wnOutPt.fY);
1453    if (pts == 2) {
1454        SkDebugf("%s wnTs[1]=%g\n", __FUNCTION__, wnTs[1]);
1455    }
1456#endif
1457}
1458
1459static bool addIntersectTs(Contour* test, Contour* next, int winding) {
1460    if (test != next) {
1461        if (test->bounds().fBottom < next->bounds().fTop) {
1462            return false;
1463        }
1464        if (!Bounds::Intersects(test->bounds(), next->bounds())) {
1465            return true;
1466        }
1467    }
1468    Work wt, wn;
1469    wt.init(test);
1470    wn.init(next);
1471    do {
1472        if (test == next && !wn.startAfter(wt)) {
1473            continue;
1474        }
1475        do {
1476            if (!Bounds::Intersects(wt.bounds(), wn.bounds())) {
1477                continue;
1478            }
1479            int pts;
1480            Intersections ts;
1481            bool swap = false;
1482            switch (wt.segmentType()) {
1483                case Work::kHorizontalLine_Segment:
1484                    swap = true;
1485                    switch (wn.segmentType()) {
1486                        case Work::kHorizontalLine_Segment:
1487                        case Work::kVerticalLine_Segment:
1488                        case Work::kLine_Segment: {
1489                            pts = HLineIntersect(wn.pts(), wt.left(),
1490                                    wt.right(), wt.y(), wt.xFlipped(), ts);
1491                            break;
1492                        }
1493                        case Work::kQuad_Segment: {
1494                            pts = HQuadIntersect(wn.pts(), wt.left(),
1495                                    wt.right(), wt.y(), wt.xFlipped(), ts);
1496                            break;
1497                        }
1498                        case Work::kCubic_Segment: {
1499                            pts = HCubicIntersect(wn.pts(), wt.left(),
1500                                    wt.right(), wt.y(), wt.xFlipped(), ts);
1501                            break;
1502                        }
1503                        default:
1504                            SkASSERT(0);
1505                    }
1506                    break;
1507                case Work::kVerticalLine_Segment:
1508                    swap = true;
1509                    switch (wn.segmentType()) {
1510                        case Work::kHorizontalLine_Segment:
1511                        case Work::kVerticalLine_Segment:
1512                        case Work::kLine_Segment: {
1513                            pts = VLineIntersect(wn.pts(), wt.top(),
1514                                    wt.bottom(), wt.x(), wt.yFlipped(), ts);
1515                            break;
1516                        }
1517                        case Work::kQuad_Segment: {
1518                            pts = VQuadIntersect(wn.pts(), wt.top(),
1519                                    wt.bottom(), wt.x(), wt.yFlipped(), ts);
1520                            break;
1521                        }
1522                        case Work::kCubic_Segment: {
1523                            pts = VCubicIntersect(wn.pts(), wt.top(),
1524                                    wt.bottom(), wt.x(), wt.yFlipped(), ts);
1525                            break;
1526                        }
1527                        default:
1528                            SkASSERT(0);
1529                    }
1530                    break;
1531                case Work::kLine_Segment:
1532                    switch (wn.segmentType()) {
1533                        case Work::kHorizontalLine_Segment:
1534                            pts = HLineIntersect(wt.pts(), wn.left(),
1535                                    wn.right(), wn.y(), wn.xFlipped(), ts);
1536                            break;
1537                        case Work::kVerticalLine_Segment:
1538                            pts = VLineIntersect(wt.pts(), wn.top(),
1539                                    wn.bottom(), wn.x(), wn.yFlipped(), ts);
1540                            break;
1541                        case Work::kLine_Segment: {
1542                            pts = LineIntersect(wt.pts(), wn.pts(), ts);
1543                            debugShowLineIntersection(pts, wt, wn,
1544                                    ts.fT[1], ts.fT[0]);
1545                            break;
1546                        }
1547                        case Work::kQuad_Segment: {
1548                            swap = true;
1549                            pts = QuadLineIntersect(wn.pts(), wt.pts(), ts);
1550                            break;
1551                        }
1552                        case Work::kCubic_Segment: {
1553                            swap = true;
1554                            pts = CubicLineIntersect(wn.pts(), wt.pts(), ts);
1555                            break;
1556                        }
1557                        default:
1558                            SkASSERT(0);
1559                    }
1560                    break;
1561                case Work::kQuad_Segment:
1562                    switch (wn.segmentType()) {
1563                        case Work::kHorizontalLine_Segment:
1564                            pts = HQuadIntersect(wt.pts(), wn.left(),
1565                                    wn.right(), wn.y(), wn.xFlipped(), ts);
1566                            break;
1567                        case Work::kVerticalLine_Segment:
1568                            pts = VQuadIntersect(wt.pts(), wn.top(),
1569                                    wn.bottom(), wn.x(), wn.yFlipped(), ts);
1570                            break;
1571                        case Work::kLine_Segment: {
1572                            pts = QuadLineIntersect(wt.pts(), wn.pts(), ts);
1573                            break;
1574                        }
1575                        case Work::kQuad_Segment: {
1576                            pts = QuadIntersect(wt.pts(), wn.pts(), ts);
1577                            break;
1578                        }
1579                        case Work::kCubic_Segment: {
1580                            wt.promoteToCubic();
1581                            pts = CubicIntersect(wt.cubic(), wn.pts(), ts);
1582                            break;
1583                        }
1584                        default:
1585                            SkASSERT(0);
1586                    }
1587                    break;
1588                case Work::kCubic_Segment:
1589                    switch (wn.segmentType()) {
1590                        case Work::kHorizontalLine_Segment:
1591                            pts = HCubicIntersect(wt.pts(), wn.left(),
1592                                    wn.right(), wn.y(), wn.xFlipped(), ts);
1593                            break;
1594                        case Work::kVerticalLine_Segment:
1595                            pts = VCubicIntersect(wt.pts(), wn.top(),
1596                                    wn.bottom(), wn.x(), wn.yFlipped(), ts);
1597                            break;
1598                        case Work::kLine_Segment: {
1599                            pts = CubicLineIntersect(wt.pts(), wn.pts(), ts);
1600                            break;
1601                        }
1602                        case Work::kQuad_Segment: {
1603                            wn.promoteToCubic();
1604                            pts = CubicIntersect(wt.pts(), wn.cubic(), ts);
1605                            break;
1606                        }
1607                        case Work::kCubic_Segment: {
1608                            pts = CubicIntersect(wt.pts(), wn.pts(), ts);
1609                            break;
1610                        }
1611                        default:
1612                            SkASSERT(0);
1613                    }
1614                    break;
1615                default:
1616                    SkASSERT(0);
1617            }
1618            // in addition to recording T values, record matching segment
1619            int coincident = pts == 2 && wn.segmentType() <= Work::kLine_Segment
1620                    && wt.segmentType() <= Work::kLine_Segment ? -1 :0;
1621            for (int pt = 0; pt < pts; ++pt) {
1622                SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1);
1623                SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1);
1624                int testTAt = wt.addT(ts.fT[swap][pt], wn, coincident);
1625                int nextTAt = wn.addT(ts.fT[!swap][pt], wt, coincident);
1626                wt.addOtherT(testTAt, ts.fT[!swap][pt]);
1627                wn.addOtherT(nextTAt, ts.fT[swap][pt]);
1628                coincident = -coincident;
1629            }
1630        } while (wn.advance());
1631    } while (wt.advance());
1632    return true;
1633}
1634
1635// see if coincidence is formed by clipping non-concident segments
1636static void coincidenceCheck(SkTDArray<Contour*>& contourList, int winding) {
1637    int contourCount = contourList.count();
1638    for (size_t cIndex = 0; cIndex < contourCount; ++cIndex) {
1639        Contour* contour = contourList[cIndex];
1640        contour->findTooCloseToCall(winding);
1641    }
1642}
1643
1644// Each segment may have an inside or an outside. Segments contained within
1645// winding may have insides on either side, and form a contour that should be
1646// ignored. Segments that are coincident with opposing direction segments may
1647// have outsides on either side, and should also disappear.
1648// 'Normal' segments will have one inside and one outside. Subsequent connections
1649// when winding should follow the intersection direction. If more than one edge
1650// is an option, choose first edge that continues the inside.
1651
1652static void bridge(SkTDArray<Contour*>& contourList) {
1653    int contourCount = contourList.count();
1654    do {
1655    // OPTIMIZATION: not crazy about linear search here to find top active y.
1656    // seems like we should break down and do the sort, or maybe sort each
1657    // contours' segments?
1658    // Once the segment array is built, there's no reason I can think of not to
1659    // sort it in Y. hmmm
1660        int cIndex = 0;
1661        Segment* topStart;
1662        do {
1663            Contour* topContour = contourList[cIndex];
1664            topStart = topContour->topSegment();
1665        } while (!topStart && ++cIndex < contourCount);
1666        if (!topStart) {
1667            break;
1668        }
1669        SkScalar top = topStart->bounds().fTop;
1670        for (int cTest = cIndex + 1; cTest < contourCount; ++cTest) {
1671            Contour* contour = contourList[cTest];
1672            if (top < contour->bounds().fTop) {
1673                continue;
1674            }
1675            Segment* test = contour->topSegment();
1676            if (top > test->bounds().fTop) {
1677                cIndex = cTest;
1678                topStart = test;
1679                top = test->bounds().fTop;
1680            }
1681        }
1682        int index;
1683        const Segment* topSegment = topStart->findTop(index);
1684        // Start at the top. Above the top is outside, below is inside.
1685        // follow edges to intersection
1686        // at intersection, stay on outside, but mark remaining edges as inside
1687            // or, only mark first pair as inside?
1688            // how is this going to work for contained (but not intersecting)
1689            //  segments?
1690 //   start here ;
1691    // find span
1692    // mark neighbors winding coverage
1693    // output span
1694    // mark span as processed
1695
1696    } while (true);
1697
1698
1699}
1700
1701static void makeContourList(SkTArray<Contour>& contours, Contour& sentinel,
1702        SkTDArray<Contour*>& list) {
1703    int count = contours.count();
1704    if (count == 0) {
1705        return;
1706    }
1707    for (int index = 0; index < count; ++index) {
1708        *list.append() = &contours[index];
1709    }
1710    *list.append() = &sentinel;
1711    QSort<Contour>(list.begin(), list.end() - 1);
1712}
1713
1714void simplifyx(const SkPath& path, bool asFill, SkPath& simple) {
1715    // returns 1 for evenodd, -1 for winding, regardless of inverse-ness
1716    int winding = (path.getFillType() & 1) ? 1 : -1;
1717    simple.reset();
1718    simple.setFillType(SkPath::kEvenOdd_FillType);
1719
1720    // turn path into list of segments
1721    SkTArray<Contour> contours;
1722    // FIXME: add self-intersecting cubics' T values to segment
1723    EdgeBuilder builder(path, contours);
1724    SkTDArray<Contour*> contourList;
1725    Contour sentinel;
1726    sentinel.reset();
1727    makeContourList(contours, sentinel, contourList);
1728    Contour** currentPtr = contourList.begin();
1729    if (!currentPtr) {
1730        return;
1731    }
1732    // find all intersections between segments
1733    do {
1734        Contour** nextPtr = currentPtr;
1735        Contour* current = *currentPtr++;
1736        Contour* next;
1737        do {
1738            next = *nextPtr++;
1739        } while (next != &sentinel && addIntersectTs(current, next, winding));
1740    } while (*currentPtr != &sentinel);
1741    // eat through coincident edges
1742    coincidenceCheck(contourList, winding);
1743    // construct closed contours
1744    bridge(contourList);
1745}
1746
1747