Simplify.cpp revision 18063441c23b334ab2ee7075c39ceeb8378e6fcf
1/*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7#include "Simplify.h"
8
9#undef SkASSERT
10#define SkASSERT(cond) while (!(cond)) { sk_throw(); }
11
12// Terminology:
13// A Path contains one of more Contours
14// A Contour is made up of Segment array
15// A Segment is described by a Verb and a Point array with 2, 3, or 4 points
16// A Verb is one of Line, Quad(ratic), or Cubic
17// A Segment contains a Span array
18// A Span is describes a portion of a Segment using starting and ending T
19// T values range from 0 to 1, where 0 is the first Point in the Segment
20// An Edge is a Segment generated from a Span
21
22// FIXME: remove once debugging is complete
23#ifdef SK_DEBUG
24int gDebugMaxWindSum = SK_MaxS32;
25int gDebugMaxWindValue = SK_MaxS32;
26#endif
27
28#define DEBUG_UNUSED 0 // set to expose unused functions
29
30#if 0 // set to 1 for multiple thread -- no debugging
31
32const bool gRunTestsInOneThread = false;
33
34#define DEBUG_ACTIVE_SPANS 0
35#define DEBUG_ADD_INTERSECTING_TS 0
36#define DEBUG_ADD_T_PAIR 0
37#define DEBUG_CONCIDENT 0
38#define DEBUG_CROSS 0
39#define DEBUG_DUMP 0
40#define DEBUG_MARK_DONE 0
41#define DEBUG_PATH_CONSTRUCTION 0
42#define DEBUG_SORT 0
43#define DEBUG_WIND_BUMP 0
44#define DEBUG_WINDING 0
45
46#else
47
48const bool gRunTestsInOneThread = true;
49
50#define DEBUG_ACTIVE_SPANS 1
51#define DEBUG_ADD_INTERSECTING_TS 0
52#define DEBUG_ADD_T_PAIR 0
53#define DEBUG_CONCIDENT 01
54#define DEBUG_CROSS 1
55#define DEBUG_DUMP 1
56#define DEBUG_MARK_DONE 1
57#define DEBUG_PATH_CONSTRUCTION 1
58#define DEBUG_SORT 1
59#define DEBUG_WIND_BUMP 0
60#define DEBUG_WINDING 1
61
62#endif
63
64#if (DEBUG_ACTIVE_SPANS || DEBUG_CONCIDENT) && !DEBUG_DUMP
65#undef DEBUG_DUMP
66#define DEBUG_DUMP 1
67#endif
68
69#if DEBUG_DUMP
70static const char* kLVerbStr[] = {"", "line", "quad", "cubic"};
71// static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"};
72static int gContourID;
73static int gSegmentID;
74#endif
75
76#ifndef DEBUG_TEST
77#define DEBUG_TEST 0
78#endif
79
80static int LineIntersect(const SkPoint a[2], const SkPoint b[2],
81        Intersections& intersections) {
82    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
83    const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
84    return intersect(aLine, bLine, intersections.fT[0], intersections.fT[1]);
85}
86
87static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2],
88        Intersections& intersections) {
89    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
90    const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
91    intersect(aQuad, bLine, intersections);
92    return intersections.fUsed;
93}
94
95static int CubicLineIntersect(const SkPoint a[2], const SkPoint b[3],
96        Intersections& intersections) {
97    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
98            {a[3].fX, a[3].fY}};
99    const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
100    return intersect(aCubic, bLine, intersections.fT[0], intersections.fT[1]);
101}
102
103static int QuadIntersect(const SkPoint a[3], const SkPoint b[3],
104        Intersections& intersections) {
105    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
106    const Quadratic bQuad = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}};
107    intersect(aQuad, bQuad, intersections);
108    return intersections.fUsed;
109}
110
111static int CubicIntersect(const SkPoint a[4], const SkPoint b[4],
112        Intersections& intersections) {
113    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
114            {a[3].fX, a[3].fY}};
115    const Cubic bCubic = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY},
116            {b[3].fX, b[3].fY}};
117    intersect(aCubic, bCubic, intersections);
118    return intersections.fUsed;
119}
120
121static int HLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right,
122        SkScalar y, bool flipped, Intersections& intersections) {
123    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
124    return horizontalIntersect(aLine, left, right, y, flipped, intersections);
125}
126
127static int HQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right,
128        SkScalar y, bool flipped, Intersections& intersections) {
129    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
130    return horizontalIntersect(aQuad, left, right, y, flipped, intersections);
131}
132
133static int HCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right,
134        SkScalar y, bool flipped, Intersections& intersections) {
135    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
136            {a[3].fX, a[3].fY}};
137    return horizontalIntersect(aCubic, left, right, y, flipped, intersections);
138}
139
140static int VLineIntersect(const SkPoint a[2], SkScalar top, SkScalar bottom,
141        SkScalar x, bool flipped, Intersections& intersections) {
142    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
143    return verticalIntersect(aLine, top, bottom, x, flipped, intersections);
144}
145
146static int VQuadIntersect(const SkPoint a[3], SkScalar top, SkScalar bottom,
147        SkScalar x, bool flipped, Intersections& intersections) {
148    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
149    return verticalIntersect(aQuad, top, bottom, x, flipped, intersections);
150}
151
152static int VCubicIntersect(const SkPoint a[4], SkScalar top, SkScalar bottom,
153        SkScalar x, bool flipped, Intersections& intersections) {
154    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
155            {a[3].fX, a[3].fY}};
156    return verticalIntersect(aCubic, top, bottom, x, flipped, intersections);
157}
158
159static int (* const VSegmentIntersect[])(const SkPoint [], SkScalar ,
160        SkScalar , SkScalar , bool , Intersections& ) = {
161    NULL,
162    VLineIntersect,
163    VQuadIntersect,
164    VCubicIntersect
165};
166
167static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) {
168    const _Line line = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
169    double x, y;
170    xy_at_t(line, t, x, y);
171    out->fX = SkDoubleToScalar(x);
172    out->fY = SkDoubleToScalar(y);
173}
174
175static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) {
176    const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
177    double x, y;
178    xy_at_t(quad, t, x, y);
179    out->fX = SkDoubleToScalar(x);
180    out->fY = SkDoubleToScalar(y);
181}
182
183static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) {
184    const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
185            {a[3].fX, a[3].fY}};
186    double x, y;
187    xy_at_t(cubic, t, x, y);
188    out->fX = SkDoubleToScalar(x);
189    out->fY = SkDoubleToScalar(y);
190}
191
192static void (* const SegmentXYAtT[])(const SkPoint [], double , SkPoint* ) = {
193    NULL,
194    LineXYAtT,
195    QuadXYAtT,
196    CubicXYAtT
197};
198
199static SkScalar LineXAtT(const SkPoint a[2], double t) {
200    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
201    double x;
202    xy_at_t(aLine, t, x, *(double*) 0);
203    return SkDoubleToScalar(x);
204}
205
206static SkScalar QuadXAtT(const SkPoint a[3], double t) {
207    const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
208    double x;
209    xy_at_t(quad, t, x, *(double*) 0);
210    return SkDoubleToScalar(x);
211}
212
213static SkScalar CubicXAtT(const SkPoint a[4], double t) {
214    const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
215            {a[3].fX, a[3].fY}};
216    double x;
217    xy_at_t(cubic, t, x, *(double*) 0);
218    return SkDoubleToScalar(x);
219}
220
221static SkScalar (* const SegmentXAtT[])(const SkPoint [], double ) = {
222    NULL,
223    LineXAtT,
224    QuadXAtT,
225    CubicXAtT
226};
227
228static SkScalar LineYAtT(const SkPoint a[2], double t) {
229    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
230    double y;
231    xy_at_t(aLine, t, *(double*) 0, y);
232    return SkDoubleToScalar(y);
233}
234
235static SkScalar QuadYAtT(const SkPoint a[3], double t) {
236    const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
237    double y;
238    xy_at_t(quad, t, *(double*) 0, y);
239    return SkDoubleToScalar(y);
240}
241
242static SkScalar CubicYAtT(const SkPoint a[4], double t) {
243    const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
244            {a[3].fX, a[3].fY}};
245    double y;
246    xy_at_t(cubic, t, *(double*) 0, y);
247    return SkDoubleToScalar(y);
248}
249
250static SkScalar (* const SegmentYAtT[])(const SkPoint [], double ) = {
251    NULL,
252    LineYAtT,
253    QuadYAtT,
254    CubicYAtT
255};
256
257static SkScalar LineDXAtT(const SkPoint a[2], double ) {
258    return a[1].fX - a[0].fX;
259}
260
261static SkScalar QuadDXAtT(const SkPoint a[3], double t) {
262    const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
263    double x;
264    dxdy_at_t(quad, t, x, *(double*) 0);
265    return SkDoubleToScalar(x);
266}
267
268static SkScalar CubicDXAtT(const SkPoint a[4], double t) {
269    const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
270            {a[3].fX, a[3].fY}};
271    double x;
272    dxdy_at_t(cubic, t, x, *(double*) 0);
273    return SkDoubleToScalar(x);
274}
275
276static SkScalar (* const SegmentDXAtT[])(const SkPoint [], double ) = {
277    NULL,
278    LineDXAtT,
279    QuadDXAtT,
280    CubicDXAtT
281};
282
283static void LineSubDivide(const SkPoint a[2], double startT, double endT,
284        SkPoint sub[2]) {
285    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
286    _Line dst;
287    sub_divide(aLine, startT, endT, dst);
288    sub[0].fX = SkDoubleToScalar(dst[0].x);
289    sub[0].fY = SkDoubleToScalar(dst[0].y);
290    sub[1].fX = SkDoubleToScalar(dst[1].x);
291    sub[1].fY = SkDoubleToScalar(dst[1].y);
292}
293
294static void QuadSubDivide(const SkPoint a[3], double startT, double endT,
295        SkPoint sub[3]) {
296    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
297            {a[2].fX, a[2].fY}};
298    Quadratic dst;
299    sub_divide(aQuad, startT, endT, dst);
300    sub[0].fX = SkDoubleToScalar(dst[0].x);
301    sub[0].fY = SkDoubleToScalar(dst[0].y);
302    sub[1].fX = SkDoubleToScalar(dst[1].x);
303    sub[1].fY = SkDoubleToScalar(dst[1].y);
304    sub[2].fX = SkDoubleToScalar(dst[2].x);
305    sub[2].fY = SkDoubleToScalar(dst[2].y);
306}
307
308static void CubicSubDivide(const SkPoint a[4], double startT, double endT,
309        SkPoint sub[4]) {
310    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
311            {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
312    Cubic dst;
313    sub_divide(aCubic, startT, endT, dst);
314    sub[0].fX = SkDoubleToScalar(dst[0].x);
315    sub[0].fY = SkDoubleToScalar(dst[0].y);
316    sub[1].fX = SkDoubleToScalar(dst[1].x);
317    sub[1].fY = SkDoubleToScalar(dst[1].y);
318    sub[2].fX = SkDoubleToScalar(dst[2].x);
319    sub[2].fY = SkDoubleToScalar(dst[2].y);
320    sub[3].fX = SkDoubleToScalar(dst[3].x);
321    sub[3].fY = SkDoubleToScalar(dst[3].y);
322}
323
324static void (* const SegmentSubDivide[])(const SkPoint [], double , double ,
325        SkPoint []) = {
326    NULL,
327    LineSubDivide,
328    QuadSubDivide,
329    CubicSubDivide
330};
331
332#if DEBUG_UNUSED
333static void QuadSubBounds(const SkPoint a[3], double startT, double endT,
334        SkRect& bounds) {
335    SkPoint dst[3];
336    QuadSubDivide(a, startT, endT, dst);
337    bounds.fLeft = bounds.fRight = dst[0].fX;
338    bounds.fTop = bounds.fBottom = dst[0].fY;
339    for (int index = 1; index < 3; ++index) {
340        bounds.growToInclude(dst[index].fX, dst[index].fY);
341    }
342}
343
344static void CubicSubBounds(const SkPoint a[4], double startT, double endT,
345        SkRect& bounds) {
346    SkPoint dst[4];
347    CubicSubDivide(a, startT, endT, dst);
348    bounds.fLeft = bounds.fRight = dst[0].fX;
349    bounds.fTop = bounds.fBottom = dst[0].fY;
350    for (int index = 1; index < 4; ++index) {
351        bounds.growToInclude(dst[index].fX, dst[index].fY);
352    }
353}
354#endif
355
356static SkPath::Verb QuadReduceOrder(const SkPoint a[3],
357        SkTDArray<SkPoint>& reducePts) {
358    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
359            {a[2].fX, a[2].fY}};
360    Quadratic dst;
361    int order = reduceOrder(aQuad, dst);
362    if (order == 3) {
363        return SkPath::kQuad_Verb;
364    }
365    for (int index = 0; index < order; ++index) {
366        SkPoint* pt = reducePts.append();
367        pt->fX = SkDoubleToScalar(dst[index].x);
368        pt->fY = SkDoubleToScalar(dst[index].y);
369    }
370    return (SkPath::Verb) (order - 1);
371}
372
373static SkPath::Verb CubicReduceOrder(const SkPoint a[4],
374        SkTDArray<SkPoint>& reducePts) {
375    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
376            {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
377    Cubic dst;
378    int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed);
379    if (order == 4) {
380        return SkPath::kCubic_Verb;
381    }
382    for (int index = 0; index < order; ++index) {
383        SkPoint* pt = reducePts.append();
384        pt->fX = SkDoubleToScalar(dst[index].x);
385        pt->fY = SkDoubleToScalar(dst[index].y);
386    }
387    return (SkPath::Verb) (order - 1);
388}
389
390static bool QuadIsLinear(const SkPoint a[3]) {
391    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
392            {a[2].fX, a[2].fY}};
393    return isLinear(aQuad, 0, 2);
394}
395
396static bool CubicIsLinear(const SkPoint a[4]) {
397    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
398            {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
399    return isLinear(aCubic, 0, 3);
400}
401
402static SkScalar LineLeftMost(const SkPoint a[2], double startT, double endT) {
403    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
404    double x[2];
405    xy_at_t(aLine, startT, x[0], *(double*) 0);
406    xy_at_t(aLine, endT, x[1], *(double*) 0);
407    return SkMinScalar((float) x[0], (float) x[1]);
408}
409
410static SkScalar QuadLeftMost(const SkPoint a[3], double startT, double endT) {
411    const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
412            {a[2].fX, a[2].fY}};
413    return (float) leftMostT(aQuad, startT, endT);
414}
415
416static SkScalar CubicLeftMost(const SkPoint a[4], double startT, double endT) {
417    const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
418            {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
419    return (float) leftMostT(aCubic, startT, endT);
420}
421
422static SkScalar (* const SegmentLeftMost[])(const SkPoint [], double , double) = {
423    NULL,
424    LineLeftMost,
425    QuadLeftMost,
426    CubicLeftMost
427};
428
429#if DEBUG_UNUSED
430static bool IsCoincident(const SkPoint a[2], const SkPoint& above,
431        const SkPoint& below) {
432    const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
433    const _Line bLine = {{above.fX, above.fY}, {below.fX, below.fY}};
434    return implicit_matches_ulps(aLine, bLine, 32);
435}
436#endif
437
438class Segment;
439
440// sorting angles
441// given angles of {dx dy ddx ddy dddx dddy} sort them
442class Angle {
443public:
444    // FIXME: this is bogus for quads and cubics
445    // if the quads and cubics' line from end pt to ctrl pt are coincident,
446    // there's no obvious way to determine the curve ordering from the
447    // derivatives alone. In particular, if one quadratic's coincident tangent
448    // is longer than the other curve, the final control point can place the
449    // longer curve on either side of the shorter one.
450    // Using Bezier curve focus http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf
451    // may provide some help, but nothing has been figured out yet.
452    bool operator<(const Angle& rh) const {
453        if ((fDy < 0) ^ (rh.fDy < 0)) {
454            return fDy < 0;
455        }
456        if (fDy == 0 && rh.fDy == 0 && fDx != rh.fDx) {
457            return fDx < rh.fDx;
458        }
459        SkScalar cmp = fDx * rh.fDy - rh.fDx * fDy;
460        if (cmp) {
461            return cmp < 0;
462        }
463        if ((fDDy < 0) ^ (rh.fDDy < 0)) {
464            return fDDy < 0;
465        }
466        if (fDDy == 0 && rh.fDDy == 0 && fDDx != rh.fDDx) {
467            return fDDx < rh.fDDx;
468        }
469        cmp = fDDx * rh.fDDy - rh.fDDx * fDDy;
470        if (cmp) {
471            return cmp < 0;
472        }
473        if ((fDDDy < 0) ^ (rh.fDDDy < 0)) {
474            return fDDDy < 0;
475        }
476        if (fDDDy == 0 && rh.fDDDy == 0) {
477            return fDDDx < rh.fDDDx;
478        }
479        return fDDDx * rh.fDDDy < rh.fDDDx * fDDDy;
480    }
481
482    double dx() const {
483        return fDx;
484    }
485
486    int end() const {
487        return fEnd;
488    }
489
490    bool firstBump(int contourWinding, int sumWinding) const {
491        return sign() * sumWinding > 0;
492    }
493
494    bool isHorizontal() const {
495        return fDy == 0 && fDDy == 0 && fDDDy == 0;
496    }
497
498    // since all angles share a point, this needs to know which point
499    // is the common origin, i.e., whether the center is at pts[0] or pts[verb]
500    // practically, this should only be called by addAngle
501    void set(const SkPoint* pts, SkPath::Verb verb, const Segment* segment,
502            int start, int end) {
503        SkASSERT(start != end);
504        fSegment = segment;
505        fStart = start;
506        fEnd = end;
507        fDx = pts[1].fX - pts[0].fX; // b - a
508        fDy = pts[1].fY - pts[0].fY;
509        if (verb == SkPath::kLine_Verb) {
510            fDDx = fDDy = fDDDx = fDDDy = 0;
511            return;
512        }
513        fDDx = pts[2].fX - pts[1].fX - fDx; // a - 2b + c
514        fDDy = pts[2].fY - pts[1].fY - fDy;
515        if (verb == SkPath::kQuad_Verb) {
516            fDDDx = fDDDy = 0;
517            return;
518        }
519        fDDDx = pts[3].fX + 3 * (pts[1].fX - pts[2].fX) - pts[0].fX;
520        fDDDy = pts[3].fY + 3 * (pts[1].fY - pts[2].fY) - pts[0].fY;
521    }
522
523    // noncoincident quads/cubics may have the same initial angle
524    // as lines, so must sort by derivatives as well
525    // if flatness turns out to be a reasonable way to sort, use the below:
526    void setFlat(const SkPoint* pts, SkPath::Verb verb, Segment* segment,
527            int start, int end) {
528        fSegment = segment;
529        fStart = start;
530        fEnd = end;
531        fDx = pts[1].fX - pts[0].fX; // b - a
532        fDy = pts[1].fY - pts[0].fY;
533        if (verb == SkPath::kLine_Verb) {
534            fDDx = fDDy = fDDDx = fDDDy = 0;
535            return;
536        }
537        if (verb == SkPath::kQuad_Verb) {
538            int uplsX = FloatAsInt(pts[2].fX - pts[1].fY - fDx);
539            int uplsY = FloatAsInt(pts[2].fY - pts[1].fY - fDy);
540            int larger = std::max(abs(uplsX), abs(uplsY));
541            int shift = 0;
542            double flatT;
543            SkPoint ddPt; // FIXME: get rid of copy (change fDD_ to point)
544            LineParameters implicitLine;
545            _Line tangent = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}};
546            implicitLine.lineEndPoints(tangent);
547            implicitLine.normalize();
548            while (larger > UlpsEpsilon * 1024) {
549                larger >>= 2;
550                ++shift;
551                flatT = 0.5 / (1 << shift);
552                QuadXYAtT(pts, flatT, &ddPt);
553                _Point _pt = {ddPt.fX, ddPt.fY};
554                double distance = implicitLine.pointDistance(_pt);
555                if (approximately_zero(distance)) {
556                    SkDebugf("%s ulps too small %1.9g\n", __FUNCTION__, distance);
557                    break;
558                }
559            }
560            flatT = 0.5 / (1 << shift);
561            QuadXYAtT(pts, flatT, &ddPt);
562            fDDx = ddPt.fX - pts[0].fX;
563            fDDy = ddPt.fY - pts[0].fY;
564            SkASSERT(fDDx != 0 || fDDy != 0);
565            fDDDx = fDDDy = 0;
566            return;
567        }
568        SkASSERT(0); // FIXME: add cubic case
569    }
570
571    Segment* segment() const {
572        return const_cast<Segment*>(fSegment);
573    }
574
575    int sign() const {
576        return SkSign32(fStart - fEnd);
577    }
578
579    int start() const {
580        return fStart;
581    }
582
583private:
584    SkScalar fDx;
585    SkScalar fDy;
586    SkScalar fDDx;
587    SkScalar fDDy;
588    SkScalar fDDDx;
589    SkScalar fDDDy;
590    const Segment* fSegment;
591    int fStart;
592    int fEnd;
593};
594
595static void sortAngles(SkTDArray<Angle>& angles, SkTDArray<Angle*>& angleList) {
596    int angleCount = angles.count();
597    int angleIndex;
598    angleList.setReserve(angleCount);
599    for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
600        *angleList.append() = &angles[angleIndex];
601    }
602    QSort<Angle>(angleList.begin(), angleList.end() - 1);
603}
604
605// Bounds, unlike Rect, does not consider a line to be empty.
606struct Bounds : public SkRect {
607    static bool Intersects(const Bounds& a, const Bounds& b) {
608        return a.fLeft <= b.fRight && b.fLeft <= a.fRight &&
609                a.fTop <= b.fBottom && b.fTop <= a.fBottom;
610    }
611
612    void add(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
613        if (left < fLeft) {
614            fLeft = left;
615        }
616        if (top < fTop) {
617            fTop = top;
618        }
619        if (right > fRight) {
620            fRight = right;
621        }
622        if (bottom > fBottom) {
623            fBottom = bottom;
624        }
625    }
626
627    void add(const Bounds& toAdd) {
628        add(toAdd.fLeft, toAdd.fTop, toAdd.fRight, toAdd.fBottom);
629    }
630
631    bool isEmpty() {
632        return fLeft > fRight || fTop > fBottom
633                || fLeft == fRight && fTop == fBottom
634                || isnan(fLeft) || isnan(fRight)
635                || isnan(fTop) || isnan(fBottom);
636    }
637
638    void setCubicBounds(const SkPoint a[4]) {
639        _Rect dRect;
640        Cubic cubic  = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
641            {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
642        dRect.setBounds(cubic);
643        set((float) dRect.left, (float) dRect.top, (float) dRect.right,
644                (float) dRect.bottom);
645    }
646
647    void setQuadBounds(const SkPoint a[3]) {
648        const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
649                {a[2].fX, a[2].fY}};
650        _Rect dRect;
651        dRect.setBounds(quad);
652        set((float) dRect.left, (float) dRect.top, (float) dRect.right,
653                (float) dRect.bottom);
654    }
655};
656
657struct Span {
658    Segment* fOther;
659    mutable SkPoint const* fPt; // lazily computed as needed
660    double fT;
661    double fOtherT; // value at fOther[fOtherIndex].fT
662    int fOtherIndex;  // can't be used during intersection
663    int fWindSum; // accumulated from contours surrounding this one
664    int fWindValue; // 0 == canceled; 1 == normal; >1 == coincident
665    bool fDone; // if set, this span to next higher T has been processed
666};
667
668class Segment {
669public:
670    Segment() {
671#if DEBUG_DUMP
672        fID = ++gSegmentID;
673#endif
674    }
675
676    bool activeAngle(int index, int& done, SkTDArray<Angle>& angles) const {
677        if (activeAngleInner(index, done, angles)) {
678            return true;
679        }
680        double referenceT = fTs[index].fT;
681        int lesser = index;
682        while (--lesser >= 0 && referenceT - fTs[lesser].fT < FLT_EPSILON) {
683            if (activeAngleOther(lesser, done, angles)) {
684                return true;
685            }
686        }
687        do {
688            if (activeAngleOther(index, done, angles)) {
689                return true;
690            }
691        } while (++index < fTs.count() && fTs[index].fT - referenceT < FLT_EPSILON);
692        return false;
693    }
694
695    bool activeAngleOther(int index, int& done, SkTDArray<Angle>& angles) const {
696        Span* span = &fTs[index];
697        Segment* other = span->fOther;
698        int oIndex = span->fOtherIndex;
699        return other->activeAngleInner(oIndex, done, angles);
700    }
701
702    bool activeAngleInner(int index, int& done, SkTDArray<Angle>& angles) const {
703        int next = nextSpan(index, 1);
704        if (next > 0) {
705            const Span& upSpan = fTs[index];
706            if (upSpan.fWindValue) {
707                addAngle(angles, index, next);
708                if (upSpan.fDone) {
709                    done++;
710                } else if (upSpan.fWindSum != SK_MinS32) {
711                    return true;
712                }
713            }
714        }
715        int prev = nextSpan(index, -1);
716        // edge leading into junction
717        if (prev >= 0) {
718            const Span& downSpan = fTs[prev];
719            if (downSpan.fWindValue) {
720                addAngle(angles, index, prev);
721                if (downSpan.fDone) {
722                    done++;
723                 } else if (downSpan.fWindSum != SK_MinS32) {
724                    return true;
725                }
726            }
727        }
728        return false;
729    }
730
731    SkScalar activeTop() const {
732        SkASSERT(!done());
733        int count = fTs.count();
734        SkScalar result = SK_ScalarMax;
735        bool lastDone = true;
736        for (int index = 0; index < count; ++index) {
737            bool done = fTs[index].fDone;
738            if (!done || !lastDone) {
739                SkScalar y = yAtT(index);
740                if (result > y) {
741                    result = y;
742                }
743            }
744            lastDone = done;
745        }
746        SkASSERT(result < SK_ScalarMax);
747        return result;
748    }
749
750    void addAngle(SkTDArray<Angle>& angles, int start, int end) const {
751        SkASSERT(start != end);
752        SkPoint edge[4];
753        (*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge);
754        Angle* angle = angles.append();
755        angle->set(edge, fVerb, this, start, end);
756    }
757
758    void addCubic(const SkPoint pts[4]) {
759        init(pts, SkPath::kCubic_Verb);
760        fBounds.setCubicBounds(pts);
761    }
762
763    // FIXME: this needs to defer add for aligned consecutive line segments
764    SkPoint addCurveTo(int start, int end, SkPath& path, bool active) {
765        SkPoint edge[4];
766        // OPTIMIZE? if not active, skip remainder and return xy_at_t(end)
767        (*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge);
768        if (active) {
769    #if DEBUG_PATH_CONSTRUCTION
770            SkDebugf("%s %s (%1.9g,%1.9g)", __FUNCTION__,
771                    kLVerbStr[fVerb], edge[1].fX, edge[1].fY);
772            if (fVerb > 1) {
773                SkDebugf(" (%1.9g,%1.9g)", edge[2].fX, edge[2].fY);
774            }
775            if (fVerb > 2) {
776                SkDebugf(" (%1.9g,%1.9g)", edge[3].fX, edge[3].fY);
777            }
778            SkDebugf("\n");
779    #endif
780            switch (fVerb) {
781                case SkPath::kLine_Verb:
782                    path.lineTo(edge[1].fX, edge[1].fY);
783                    break;
784                case SkPath::kQuad_Verb:
785                    path.quadTo(edge[1].fX, edge[1].fY, edge[2].fX, edge[2].fY);
786                    break;
787                case SkPath::kCubic_Verb:
788                    path.cubicTo(edge[1].fX, edge[1].fY, edge[2].fX, edge[2].fY,
789                            edge[3].fX, edge[3].fY);
790                    break;
791            }
792        }
793        return edge[fVerb];
794    }
795
796    void addLine(const SkPoint pts[2]) {
797        init(pts, SkPath::kLine_Verb);
798        fBounds.set(pts, 2);
799    }
800
801    const SkPoint& addMoveTo(int tIndex, SkPath& path, bool active) {
802        const SkPoint& pt = xyAtT(tIndex);
803        if (active) {
804    #if DEBUG_PATH_CONSTRUCTION
805            SkDebugf("%s (%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY);
806    #endif
807            path.moveTo(pt.fX, pt.fY);
808        }
809        return pt;
810    }
811
812    // add 2 to edge or out of range values to get T extremes
813    void addOtherT(int index, double otherT, int otherIndex) {
814        Span& span = fTs[index];
815        span.fOtherT = otherT;
816        span.fOtherIndex = otherIndex;
817    }
818
819    void addQuad(const SkPoint pts[3]) {
820        init(pts, SkPath::kQuad_Verb);
821        fBounds.setQuadBounds(pts);
822    }
823
824    // Defer all coincident edge processing until
825    // after normal intersections have been computed
826
827// no need to be tricky; insert in normal T order
828// resolve overlapping ts when considering coincidence later
829
830    // add non-coincident intersection. Resulting edges are sorted in T.
831    int addT(double newT, Segment* other) {
832        // FIXME: in the pathological case where there is a ton of intercepts,
833        //  binary search?
834        int insertedAt = -1;
835        size_t tCount = fTs.count();
836        for (size_t index = 0; index < tCount; ++index) {
837            // OPTIMIZATION: if there are three or more identical Ts, then
838            // the fourth and following could be further insertion-sorted so
839            // that all the edges are clockwise or counterclockwise.
840            // This could later limit segment tests to the two adjacent
841            // neighbors, although it doesn't help with determining which
842            // circular direction to go in.
843            if (newT < fTs[index].fT) {
844                insertedAt = index;
845                break;
846            }
847        }
848        Span* span;
849        if (insertedAt >= 0) {
850            span = fTs.insert(insertedAt);
851        } else {
852            insertedAt = tCount;
853            span = fTs.append();
854        }
855        span->fT = newT;
856        span->fOther = other;
857        span->fPt = NULL;
858        span->fWindSum = SK_MinS32;
859        span->fWindValue = 1;
860        if ((span->fDone = newT == 1)) {
861            ++fDoneSpans;
862        }
863        return insertedAt;
864    }
865
866    // set spans from start to end to decrement by one
867    // note this walks other backwards
868    // FIMXE: there's probably an edge case that can be constructed where
869    // two span in one segment are separated by float epsilon on one span but
870    // not the other, if one segment is very small. For this
871    // case the counts asserted below may or may not be enough to separate the
872    // spans. Even if the counts work out, what if the spanw aren't correctly
873    // sorted? It feels better in such a case to match the span's other span
874    // pointer since both coincident segments must contain the same spans.
875    void addTCancel(double startT, double endT, Segment& other,
876            double oStartT, double oEndT) {
877        SkASSERT(endT - startT >= FLT_EPSILON);
878        SkASSERT(oEndT - oStartT >= FLT_EPSILON);
879        int index = 0;
880        while (startT - fTs[index].fT >= FLT_EPSILON) {
881            ++index;
882        }
883        int oIndex = other.fTs.count();
884        while (other.fTs[--oIndex].fT - oEndT > -FLT_EPSILON)
885            ;
886        Span* test = &fTs[index];
887        Span* oTest = &other.fTs[oIndex];
888        SkTDArray<double> outsideTs;
889        SkTDArray<double> oOutsideTs;
890        do {
891            bool decrement = test->fWindValue && oTest->fWindValue;
892            Span* end = test;
893            double startT = end->fT;
894            double oStartT = oTest->fT;
895            do {
896                if (decrement) {
897                    decrementSpan(end);
898                } else {
899                    TrackOutside(outsideTs, end->fT, oStartT);
900                }
901                end = &fTs[++index];
902            } while (end->fT - test->fT < FLT_EPSILON);
903            Span* oTestStart = oTest;
904            do {
905                if (decrement) {
906                    other.decrementSpan(oTestStart);
907                } else {
908                    TrackOutside(oOutsideTs, oTestStart->fT, startT);
909                }
910                if (!oIndex) {
911                    break;
912                }
913                oTestStart = &other.fTs[--oIndex];
914            } while (oTest->fT - oTestStart->fT < FLT_EPSILON);
915            test = end;
916            oTest = oTestStart;
917        } while (test->fT < endT - FLT_EPSILON);
918        SkASSERT(!oIndex || oTest->fT <= oStartT - FLT_EPSILON);
919        // FIXME: determine if canceled edges need outside ts added
920        if (false && !done() && outsideTs.count()) {
921            addTOutsides(outsideTs, other, oEndT);
922        }
923        if (false && !other.done() && oOutsideTs.count()) {
924            other.addTOutsides(oOutsideTs, *this, endT);
925        }
926    }
927
928    // set spans from start to end to increment the greater by one and decrement
929    // the lesser
930    void addTCoincident(double startT, double endT, Segment& other,
931            double oStartT, double oEndT) {
932        SkASSERT(endT - startT >= FLT_EPSILON);
933        SkASSERT(oEndT - oStartT >= FLT_EPSILON);
934        int index = 0;
935        while (startT - fTs[index].fT >= FLT_EPSILON) {
936            ++index;
937        }
938        int oIndex = 0;
939        while (oStartT - other.fTs[oIndex].fT >= FLT_EPSILON) {
940            ++oIndex;
941        }
942        Span* test = &fTs[index];
943        Span* oTest = &other.fTs[oIndex];
944        SkTDArray<double> outsideTs;
945        SkTDArray<double> oOutsideTs;
946        do {
947            bool transfer = test->fWindValue && oTest->fWindValue;
948            bool decrementOther = test->fWindValue >= oTest->fWindValue;
949            Span* end = test;
950            double startT = end->fT;
951            double oStartT = oTest->fT;
952            do {
953                if (transfer) {
954                    if (decrementOther) {
955                        SkASSERT(abs(end->fWindValue) < gDebugMaxWindValue);
956                        ++(end->fWindValue);
957                    } else if (decrementSpan(end)) {
958                        TrackOutside(outsideTs, end->fT, oStartT);
959                    }
960                }
961                end = &fTs[++index];
962            } while (end->fT - test->fT < FLT_EPSILON);
963            Span* oEnd = oTest;
964            do {
965                if (transfer) {
966                    if (!decrementOther) {
967                        SkASSERT(abs(oEnd->fWindValue) < gDebugMaxWindValue);
968                        ++(oEnd->fWindValue);
969                    } else if (other.decrementSpan(oEnd)) {
970                        TrackOutside(oOutsideTs, oEnd->fT, startT);
971                    }
972                }
973                oEnd = &other.fTs[++oIndex];
974            } while (oEnd->fT - oTest->fT < FLT_EPSILON);
975            test = end;
976            oTest = oEnd;
977        } while (test->fT < endT - FLT_EPSILON);
978        SkASSERT(oTest->fT < oEndT + FLT_EPSILON);
979        SkASSERT(oTest->fT > oEndT - FLT_EPSILON);
980        if (!done() && outsideTs.count()) {
981            addTOutsides(outsideTs, other, oEndT);
982        }
983        if (!other.done() && oOutsideTs.count()) {
984            other.addTOutsides(oOutsideTs, *this, endT);
985        }
986    }
987
988    void addTOutsides(const SkTDArray<double>& outsideTs, Segment& other,
989            double oEnd) {
990        // walk this to outsideTs[0]
991        // walk other to outsideTs[1]
992        // if either is > 0, add a pointer to the other, copying adjacent winding
993        int tIndex = -1;
994        int tCount = fTs.count();
995        int oIndex = -1;
996        int oCount = other.fTs.count();
997        double tStart = outsideTs[0];
998        double oStart = outsideTs[1];
999        Span* tSpan;
1000        Span* oSpan;
1001        do {
1002            tSpan = &fTs[++tIndex];
1003            if (tStart - tSpan->fT < FLT_EPSILON) {
1004                break;
1005            }
1006        } while (tIndex < tCount);
1007        do {
1008            oSpan = &other.fTs[++oIndex];
1009            if (oStart - oSpan->fT < FLT_EPSILON) {
1010                break;
1011            }
1012        } while (oIndex < oCount);
1013        if (tIndex > 0 || oIndex > 0) {
1014            addTPair(tStart, other, oStart);
1015            // note: counts for fT, other.fT are one greater
1016        } else {
1017            --tCount;
1018            --oCount;
1019        }
1020        tStart = fTs[tIndex].fT;
1021        oStart = other.fTs[oIndex].fT;
1022        do {
1023            do {
1024                tSpan = &fTs[++tIndex];
1025            } while (tSpan->fT - tStart < FLT_EPSILON && tIndex < tCount);
1026            tStart = fTs[tIndex].fT;
1027            do {
1028                oSpan = &other.fTs[++oIndex];
1029            } while (oSpan->fT - oStart < FLT_EPSILON && oIndex < oCount);
1030            oStart = other.fTs[oIndex].fT;
1031            if (tStart == 1 && oStart == 1) {
1032                break;
1033            }
1034            addTPair(tStart, other, oStart);
1035            ++tCount;
1036            ++oCount;
1037        } while (tStart < 1 && oStart < 1 && oEnd - oSpan->fT >= FLT_EPSILON);
1038    }
1039
1040    void addTPair(double t, Segment& other, double otherT) {
1041#if DEBUG_ADD_T_PAIR
1042        SkDebugf("%s addTPair this=%d %1.9g other=%d %1.9g\n",
1043                __FUNCTION__, fID, t, other.fID, otherT);
1044#endif
1045        int insertedAt = addT(t, &other);
1046        int otherInsertedAt = other.addT(otherT, this);
1047        addOtherT(insertedAt, otherT, otherInsertedAt);
1048        other.addOtherT(otherInsertedAt, t, insertedAt);
1049        Span& newSpan = fTs[insertedAt];
1050        if (insertedAt > 0) {
1051            const Span& lastSpan = fTs[insertedAt - 1];
1052            if (t - lastSpan.fT < FLT_EPSILON) {
1053                int tWind = lastSpan.fWindValue;
1054                newSpan.fWindValue = tWind;
1055                if (!tWind) {
1056                    newSpan.fDone = true;
1057                    ++fDoneSpans;
1058                }
1059            }
1060        }
1061        int oIndex = newSpan.fOtherIndex;
1062        if (oIndex > 0) {
1063            const Span& lastOther = other.fTs[oIndex - 1];
1064            if (otherT - lastOther.fT < FLT_EPSILON) {
1065                int oWind = lastOther.fWindValue;
1066                Span& otherSpan = other.fTs[oIndex];
1067                otherSpan.fWindValue = oWind;
1068                if (!oWind) {
1069                    otherSpan.fDone = true;
1070                    ++(other.fDoneSpans);
1071                }
1072            }
1073        }
1074    }
1075
1076    void addTwoAngles(int start, int end, SkTDArray<Angle>& angles) const {
1077        // add edge leading into junction
1078        if (fTs[SkMin32(end, start)].fWindValue > 0) {
1079            addAngle(angles, end, start);
1080        }
1081        // add edge leading away from junction
1082        int step = SkSign32(end - start);
1083        int tIndex = nextSpan(end, step);
1084        if (tIndex >= 0 && fTs[SkMin32(end, tIndex)].fWindValue > 0) {
1085            addAngle(angles, end, tIndex);
1086        }
1087    }
1088
1089    const Bounds& bounds() const {
1090        return fBounds;
1091    }
1092
1093    void buildAngles(int index, SkTDArray<Angle>& angles) const {
1094        double referenceT = fTs[index].fT;
1095        int lesser = index;
1096        while (--lesser >= 0 && referenceT - fTs[lesser].fT < FLT_EPSILON) {
1097            buildAnglesInner(lesser, angles);
1098        }
1099        do {
1100            buildAnglesInner(index, angles);
1101        } while (++index < fTs.count() && fTs[index].fT - referenceT < FLT_EPSILON);
1102    }
1103
1104    void buildAnglesInner(int index, SkTDArray<Angle>& angles) const {
1105        Span* span = &fTs[index];
1106        Segment* other = span->fOther;
1107    // if there is only one live crossing, and no coincidence, continue
1108    // in the same direction
1109    // if there is coincidence, the only choice may be to reverse direction
1110        // find edge on either side of intersection
1111        int oIndex = span->fOtherIndex;
1112        // if done == -1, prior span has already been processed
1113        int step = 1;
1114        int next = other->nextSpan(oIndex, step);
1115        if (next < 0) {
1116            step = -step;
1117            next = other->nextSpan(oIndex, step);
1118        }
1119        // add candidate into and away from junction
1120        other->addTwoAngles(next, oIndex, angles);
1121    }
1122
1123    bool cancels(const Segment& other) const {
1124        SkASSERT(fVerb == SkPath::kLine_Verb);
1125        SkASSERT(other.fVerb == SkPath::kLine_Verb);
1126        SkPoint dxy = fPts[0] - fPts[1];
1127        SkPoint odxy = other.fPts[0] - other.fPts[1];
1128        return dxy.fX * odxy.fX < 0 || dxy.fY * odxy.fY < 0;
1129    }
1130
1131    // figure out if the segment's ascending T goes clockwise or not
1132    // not enough context to write this as shown
1133    // instead, add all segments meeting at the top
1134    // sort them using buildAngleList
1135    // find the first in the sort
1136    // see if ascendingT goes to top
1137    bool clockwise(int /* tIndex */) const {
1138        SkASSERT(0); // incomplete
1139        return false;
1140    }
1141
1142    int crossedSpan(const SkPoint& basePt, SkScalar& bestY, double& hitT) const {
1143        int bestT = -1;
1144        SkScalar top = bounds().fTop;
1145        SkScalar bottom = bounds().fBottom;
1146        int end = 0;
1147        do {
1148            int start = end;
1149            end = nextSpan(start, 1);
1150            if (fTs[start].fWindValue == 0) {
1151                continue;
1152            }
1153            SkPoint edge[4];
1154            // OPTIMIZE: wrap this so that if start==0 end==fTCount-1 we can
1155            // work with the original data directly
1156            (*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge);
1157            // intersect ray starting at basePt with edge
1158            Intersections intersections;
1159            int pts = (*VSegmentIntersect[fVerb])(edge, top, bottom, basePt.fX,
1160                    false, intersections);
1161            if (pts == 0) {
1162                continue;
1163            }
1164            if (pts > 1 && fVerb == SkPath::kLine_Verb) {
1165            // if the intersection is edge on, wait for another one
1166                continue;
1167            }
1168            SkASSERT(pts == 1); // FIXME: more code required to disambiguate
1169            SkPoint pt;
1170            double foundT = intersections.fT[0][0];
1171            (*SegmentXYAtT[fVerb])(fPts, foundT, &pt);
1172            if (bestY < pt.fY) {
1173                bestY = pt.fY;
1174                bestT = foundT < 1 ? start : end;
1175                hitT = fTs[start].fT + (fTs[end].fT - fTs[start].fT) * foundT;
1176            }
1177        } while (fTs[end].fT != 1);
1178        return bestT;
1179    }
1180
1181    bool decrementSpan(Span* span) {
1182        SkASSERT(span->fWindValue > 0);
1183        if (--(span->fWindValue) == 0) {
1184            span->fDone = true;
1185            ++fDoneSpans;
1186            return true;
1187        }
1188        return false;
1189    }
1190
1191    bool done() const {
1192        SkASSERT(fDoneSpans <= fTs.count());
1193        return fDoneSpans == fTs.count();
1194    }
1195
1196    bool done(const Angle& angle) const {
1197        int start = angle.start();
1198        int end = angle.end();
1199        const Span& mSpan = fTs[SkMin32(start, end)];
1200        return mSpan.fDone;
1201    }
1202
1203    // so the span needs to contain the pairing info found here
1204    // this should include the winding computed for the edge, and
1205    //  what edge it connects to, and whether it is discarded
1206    //  (maybe discarded == abs(winding) > 1) ?
1207    // only need derivatives for duration of sorting, add a new struct
1208    // for pairings, remove extra spans that have zero length and
1209    //  reference an unused other
1210    // for coincident, the last span on the other may be marked done
1211    //  (always?)
1212
1213    // if loop is exhausted, contour may be closed.
1214    // FIXME: pass in close point so we can check for closure
1215
1216    // given a segment, and a sense of where 'inside' is, return the next
1217    // segment. If this segment has an intersection, or ends in multiple
1218    // segments, find the mate that continues the outside.
1219    // note that if there are multiples, but no coincidence, we can limit
1220    // choices to connections in the correct direction
1221
1222    // mark found segments as done
1223
1224    // start is the index of the beginning T of this edge
1225    // it is guaranteed to have an end which describes a non-zero length (?)
1226    // winding -1 means ccw, 1 means cw
1227    // firstFind allows coincident edges to be treated differently
1228    Segment* findNext(SkTDArray<Span*>& chase, int winding,
1229            int contourWinding, bool firstFind, bool active,
1230            const int startIndex, const int endIndex, int& nextStart,
1231            int& nextEnd, int& spanWinding) {
1232        int flipped = 1;
1233        int sumWinding = winding + spanWinding;
1234        if (sumWinding == 0) {
1235            sumWinding = spanWinding;
1236        }
1237        bool insideContour = contourWinding && contourWinding * sumWinding < 0;
1238        if (insideContour) {
1239            sumWinding = contourWinding;
1240        }
1241
1242    #if DEBUG_WINDING
1243        SkDebugf("%s winding=%d contourWinding=%d spanWinding=%d sumWinding=%d\n",
1244                __FUNCTION__, winding, contourWinding, spanWinding, sumWinding);
1245    #endif
1246        SkASSERT(startIndex != endIndex);
1247        int count = fTs.count();
1248        SkASSERT(startIndex < endIndex ? startIndex < count - 1
1249                : startIndex > 0);
1250        int step = SkSign32(endIndex - startIndex);
1251        int end = nextSpan(startIndex, step);
1252        SkASSERT(end >= 0);
1253        Span* endSpan = &fTs[end];
1254        Segment* other;
1255        if (isSimple(end)) {
1256        // mark the smaller of startIndex, endIndex done, and all adjacent
1257        // spans with the same T value (but not 'other' spans)
1258            markDone(SkMin32(startIndex, endIndex), sumWinding);
1259            other = endSpan->fOther;
1260            nextStart = endSpan->fOtherIndex;
1261            double startT = other->fTs[nextStart].fT;
1262            nextEnd = nextStart;
1263            do {
1264                nextEnd += step;
1265            } while (fabs(startT - other->fTs[nextEnd].fT) < FLT_EPSILON);
1266            SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count());
1267            return other;
1268        }
1269        // more than one viable candidate -- measure angles to find best
1270        SkTDArray<Angle> angles;
1271        SkASSERT(startIndex - endIndex != 0);
1272        SkASSERT((startIndex - endIndex < 0) ^ (step < 0));
1273        addTwoAngles(startIndex, end, angles);
1274        buildAngles(end, angles);
1275        SkTDArray<Angle*> sorted;
1276        sortAngles(angles, sorted);
1277        int angleCount = angles.count();
1278        int firstIndex = findStartingEdge(sorted, startIndex, end);
1279        SkASSERT(firstIndex >= 0);
1280    #if DEBUG_SORT
1281        debugShowSort(sorted, firstIndex, contourWinding, sumWinding);
1282    #endif
1283        bool doBump = sorted[firstIndex]->firstBump(contourWinding, sumWinding);
1284    #if DEBUG_WINDING
1285        SkDebugf("%s sumWinding=%d sign=%d (%sbump)\n", __FUNCTION__,
1286                sumWinding, sorted[firstIndex]->sign(), doBump ? "" : "no ");
1287    #endif
1288        bool innerSwap = active && (doBump || insideContour);
1289        int startWinding = sumWinding;
1290   //     SkASSERT(SkSign32(sumWinding) == SkSign32(winding) || winding == 0);
1291        if (doBump || insideContour) {
1292            sumWinding -= windBump(sorted[firstIndex]);
1293        }
1294        int nextIndex = firstIndex + 1;
1295        int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
1296        const Angle* foundAngle = NULL;
1297        bool foundDone = false;
1298        // iterate through the angle, and compute everyone's winding
1299        bool firstEdge = true;
1300        bool flopped = false;
1301        Segment* nextSegment;
1302        do {
1303            if (nextIndex == angleCount) {
1304                nextIndex = 0;
1305            }
1306            const Angle* nextAngle = sorted[nextIndex];
1307            int maxWinding = sumWinding;
1308            nextSegment = nextAngle->segment();
1309            sumWinding -= nextSegment->windBump(nextAngle);
1310            SkASSERT(abs(sumWinding) <= gDebugMaxWindSum);
1311    #if DEBUG_WINDING
1312            SkDebugf("%s maxWinding=%d sumWinding=%d sign=%d\n", __FUNCTION__,
1313                    maxWinding, sumWinding, nextAngle->sign());
1314    #endif
1315            if (maxWinding * sumWinding < 0) {
1316                flipped = -flipped;
1317                flopped = true;
1318    #if DEBUG_WINDING
1319                SkDebugf("flipped sign %d %d\n", maxWinding, sumWinding);
1320    #endif
1321            }
1322            firstEdge = false;
1323            if (!sumWinding) {
1324                if (!active) {
1325                    markDone(SkMin32(startIndex, endIndex), startWinding);
1326                    nextSegment->markWinding(SkMin32(nextAngle->start(),
1327                                nextAngle->end()), maxWinding);
1328    #if DEBUG_WINDING
1329                    SkDebugf("%s inactive\n", __FUNCTION__);
1330    #endif
1331                    return NULL;
1332                }
1333                if (!foundAngle || foundDone) {
1334                    foundAngle = nextAngle;
1335                    foundDone = nextSegment->done(*nextAngle);
1336                    if (!flopped && maxWinding * startWinding < 0) {
1337                        flipped = -flipped;
1338            #if DEBUG_WINDING
1339                        SkDebugf("flopped sign %d %d\n", maxWinding, startWinding);
1340            #endif
1341                    }
1342                }
1343                continue;
1344            }
1345            if (!maxWinding && innerSwap && !foundAngle) {
1346                foundAngle = nextAngle;
1347            }
1348            if (nextSegment->done()) {
1349                continue;
1350            }
1351            // if the winding is non-zero, nextAngle does not connect to
1352            // current chain. If we haven't done so already, mark the angle
1353            // as done, record the winding value, and mark connected unambiguous
1354            // segments as well.
1355            if (nextSegment->windSum(nextAngle) == SK_MinS32) {
1356                if (abs(maxWinding) < abs(sumWinding)) {
1357                    maxWinding = sumWinding;
1358                }
1359                Span* last;
1360                if (foundAngle || innerSwap) {
1361                    last = nextSegment->markAndChaseWinding(nextAngle, maxWinding);
1362                } else {
1363                    last = nextSegment->markAndChaseDone(nextAngle, maxWinding);
1364                }
1365                if (last) {
1366                    *chase.append() = last;
1367                }
1368            }
1369        } while (++nextIndex != lastIndex);
1370        SkASSERT(sorted[firstIndex]->segment() == this);
1371        markDone(SkMin32(startIndex, endIndex), startWinding);
1372        if (!foundAngle) {
1373            return NULL;
1374        }
1375        nextStart = foundAngle->start();
1376        nextEnd = foundAngle->end();
1377        nextSegment = foundAngle->segment();
1378        spanWinding = SkSign32(spanWinding) * flipped * nextSegment->windValue(
1379                SkMin32(nextStart, nextEnd));
1380        #if DEBUG_WINDING
1381            SkDebugf("%s spanWinding=%d\n", __FUNCTION__, spanWinding);
1382        #endif
1383        return nextSegment;
1384    }
1385
1386    int findStartingEdge(SkTDArray<Angle*>& sorted, int start, int end) {
1387        int angleCount = sorted.count();
1388        int firstIndex = -1;
1389        for (int angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
1390            const Angle* angle = sorted[angleIndex];
1391            if (angle->segment() == this && angle->start() == end &&
1392                    angle->end() == start) {
1393                firstIndex = angleIndex;
1394                break;
1395            }
1396        }
1397        return firstIndex;
1398    }
1399
1400    // FIXME: this is tricky code; needs its own unit test
1401    void findTooCloseToCall(int /* winding */ ) { // FIXME: winding should be considered
1402        int count = fTs.count();
1403        if (count < 3) { // require t=0, x, 1 at minimum
1404            return;
1405        }
1406        int matchIndex = 0;
1407        int moCount;
1408        Span* match;
1409        Segment* mOther;
1410        do {
1411            match = &fTs[matchIndex];
1412            mOther = match->fOther;
1413            moCount = mOther->fTs.count();
1414            if (moCount >= 3) {
1415                break;
1416            }
1417            if (++matchIndex >= count) {
1418                return;
1419            }
1420        } while (true); // require t=0, x, 1 at minimum
1421        // OPTIMIZATION: defer matchPt until qualifying toCount is found?
1422        const SkPoint* matchPt = &xyAtT(match);
1423        // look for a pair of nearby T values that map to the same (x,y) value
1424        // if found, see if the pair of other segments share a common point. If
1425        // so, the span from here to there is coincident.
1426        for (int index = matchIndex + 1; index < count; ++index) {
1427            Span* test = &fTs[index];
1428            if (test->fDone) {
1429                continue;
1430            }
1431            Segment* tOther = test->fOther;
1432            int toCount = tOther->fTs.count();
1433            if (toCount < 3) { // require t=0, x, 1 at minimum
1434                continue;
1435            }
1436            const SkPoint* testPt = &xyAtT(test);
1437            if (*matchPt != *testPt) {
1438                matchIndex = index;
1439                moCount = toCount;
1440                match = test;
1441                mOther = tOther;
1442                matchPt = testPt;
1443                continue;
1444            }
1445            int moStart = -1;
1446            int moEnd = -1;
1447            double moStartT, moEndT;
1448            for (int moIndex = 0; moIndex < moCount; ++moIndex) {
1449                Span& moSpan = mOther->fTs[moIndex];
1450                if (moSpan.fDone) {
1451                    continue;
1452                }
1453                if (moSpan.fOther == this) {
1454                    if (moSpan.fOtherT == match->fT) {
1455                        moStart = moIndex;
1456                        moStartT = moSpan.fT;
1457                    }
1458                    continue;
1459                }
1460                if (moSpan.fOther == tOther) {
1461                    SkASSERT(moEnd == -1);
1462                    moEnd = moIndex;
1463                    moEndT = moSpan.fT;
1464                }
1465            }
1466            if (moStart < 0 || moEnd < 0) {
1467                continue;
1468            }
1469            // FIXME: if moStartT, moEndT are initialized to NaN, can skip this test
1470            if (moStartT == moEndT) {
1471                continue;
1472            }
1473            int toStart = -1;
1474            int toEnd = -1;
1475            double toStartT, toEndT;
1476            for (int toIndex = 0; toIndex < toCount; ++toIndex) {
1477                Span& toSpan = tOther->fTs[toIndex];
1478                if (toSpan.fOther == this) {
1479                    if (toSpan.fOtherT == test->fT) {
1480                        toStart = toIndex;
1481                        toStartT = toSpan.fT;
1482                    }
1483                    continue;
1484                }
1485                if (toSpan.fOther == mOther && toSpan.fOtherT == moEndT) {
1486                    SkASSERT(toEnd == -1);
1487                    toEnd = toIndex;
1488                    toEndT = toSpan.fT;
1489                }
1490            }
1491            // FIXME: if toStartT, toEndT are initialized to NaN, can skip this test
1492            if (toStart <= 0 || toEnd <= 0) {
1493                continue;
1494            }
1495            if (toStartT == toEndT) {
1496                continue;
1497            }
1498            // test to see if the segment between there and here is linear
1499            if (!mOther->isLinear(moStart, moEnd)
1500                    || !tOther->isLinear(toStart, toEnd)) {
1501                continue;
1502            }
1503            // FIXME: defer implementation until the rest works
1504            // this may share code with regular coincident detection
1505            SkASSERT(0);
1506        #if 0
1507            if (flipped) {
1508                mOther->addTCancel(moStart, moEnd, tOther, tStart, tEnd);
1509            } else {
1510                mOther->addTCoincident(moStart, moEnd, tOther, tStart, tEnd);
1511            }
1512        #endif
1513        }
1514    }
1515
1516    // OPTIMIZATION : for a pair of lines, can we compute points at T (cached)
1517    // and use more concise logic like the old edge walker code?
1518    // FIXME: this needs to deal with coincident edges
1519    Segment* findTop(int& tIndex, int& endIndex) {
1520        // iterate through T intersections and return topmost
1521        // topmost tangent from y-min to first pt is closer to horizontal
1522        SkASSERT(!done());
1523        int firstT;
1524        int lastT;
1525        SkPoint topPt;
1526        topPt.fY = SK_ScalarMax;
1527        int count = fTs.count();
1528        // see if either end is not done since we want smaller Y of the pair
1529        bool lastDone = true;
1530        for (int index = 0; index < count; ++index) {
1531            const Span& span = fTs[index];
1532            if (!span.fDone || !lastDone) {
1533                const SkPoint& intercept = xyAtT(&span);
1534                if (topPt.fY > intercept.fY || (topPt.fY == intercept.fY
1535                        && topPt.fX > intercept.fX)) {
1536                    topPt = intercept;
1537                    firstT = lastT = index;
1538                } else if (topPt == intercept) {
1539                    lastT = index;
1540                }
1541            }
1542            lastDone = span.fDone;
1543        }
1544        // sort the edges to find the leftmost
1545        int step = 1;
1546        int end = nextSpan(firstT, step);
1547        if (end == -1) {
1548            step = -1;
1549            end = nextSpan(firstT, step);
1550            SkASSERT(end != -1);
1551        }
1552        // if the topmost T is not on end, or is three-way or more, find left
1553        // look for left-ness from tLeft to firstT (matching y of other)
1554        SkTDArray<Angle> angles;
1555        SkASSERT(firstT - end != 0);
1556        addTwoAngles(end, firstT, angles);
1557        buildAngles(firstT, angles);
1558        SkTDArray<Angle*> sorted;
1559        sortAngles(angles, sorted);
1560        // skip edges that have already been processed
1561        firstT = -1;
1562        Segment* leftSegment;
1563        do {
1564            const Angle* angle = sorted[++firstT];
1565            leftSegment = angle->segment();
1566            tIndex = angle->end();
1567            endIndex = angle->start();
1568        } while (leftSegment->fTs[SkMin32(tIndex, endIndex)].fDone);
1569        return leftSegment;
1570    }
1571
1572    // FIXME: not crazy about this
1573    // when the intersections are performed, the other index is into an
1574    // incomplete array. as the array grows, the indices become incorrect
1575    // while the following fixes the indices up again, it isn't smart about
1576    // skipping segments whose indices are already correct
1577    // assuming we leave the code that wrote the index in the first place
1578    void fixOtherTIndex() {
1579        int iCount = fTs.count();
1580        for (int i = 0; i < iCount; ++i) {
1581            Span& iSpan = fTs[i];
1582            double oT = iSpan.fOtherT;
1583            Segment* other = iSpan.fOther;
1584            int oCount = other->fTs.count();
1585            for (int o = 0; o < oCount; ++o) {
1586                Span& oSpan = other->fTs[o];
1587                if (oT == oSpan.fT && this == oSpan.fOther) {
1588                    iSpan.fOtherIndex = o;
1589                    break;
1590                }
1591            }
1592        }
1593    }
1594
1595    // OPTIMIZATION: uses tail recursion. Unwise?
1596    Span* innerChaseDone(int index, int step, int winding) {
1597        int end = nextSpan(index, step);
1598        SkASSERT(end >= 0);
1599        if (multipleSpans(end)) {
1600            return &fTs[end];
1601        }
1602        const Span& endSpan = fTs[end];
1603        Segment* other = endSpan.fOther;
1604        index = endSpan.fOtherIndex;
1605        int otherEnd = other->nextSpan(index, step);
1606        Span* last = other->innerChaseDone(index, step, winding);
1607        other->markDone(SkMin32(index, otherEnd), winding);
1608        return last;
1609    }
1610
1611    Span* innerChaseWinding(int index, int step, int winding) {
1612        int end = nextSpan(index, step);
1613        SkASSERT(end >= 0);
1614        if (multipleSpans(end)) {
1615            return &fTs[end];
1616        }
1617        const Span& endSpan = fTs[end];
1618        Segment* other = endSpan.fOther;
1619        index = endSpan.fOtherIndex;
1620        int otherEnd = other->nextSpan(index, step);
1621        int min = SkMin32(index, otherEnd);
1622        if (other->fTs[min].fWindSum != SK_MinS32) {
1623            SkASSERT(other->fTs[min].fWindSum == winding);
1624            return NULL;
1625        }
1626        Span* last = other->innerChaseWinding(index, step, winding);
1627        other->markWinding(min, winding);
1628        return last;
1629    }
1630
1631    void init(const SkPoint pts[], SkPath::Verb verb) {
1632        fPts = pts;
1633        fVerb = verb;
1634        fDoneSpans = 0;
1635    }
1636
1637    bool intersected() const {
1638        return fTs.count() > 0;
1639    }
1640
1641    bool isLinear(int start, int end) const {
1642        if (fVerb == SkPath::kLine_Verb) {
1643            return true;
1644        }
1645        if (fVerb == SkPath::kQuad_Verb) {
1646            SkPoint qPart[3];
1647            QuadSubDivide(fPts, fTs[start].fT, fTs[end].fT, qPart);
1648            return QuadIsLinear(qPart);
1649        } else {
1650            SkASSERT(fVerb == SkPath::kCubic_Verb);
1651            SkPoint cPart[4];
1652            CubicSubDivide(fPts, fTs[start].fT, fTs[end].fT, cPart);
1653            return CubicIsLinear(cPart);
1654        }
1655    }
1656
1657    // OPTIMIZE: successive calls could start were the last leaves off
1658    // or calls could specialize to walk forwards or backwards
1659    bool isMissing(double startT) const {
1660        size_t tCount = fTs.count();
1661        for (size_t index = 0; index < tCount; ++index) {
1662            if (fabs(startT - fTs[index].fT) < FLT_EPSILON) {
1663                return false;
1664            }
1665        }
1666        return true;
1667    }
1668
1669    bool isSimple(int end) const {
1670        int count = fTs.count();
1671        if (count == 2) {
1672            return true;
1673        }
1674        double t = fTs[end].fT;
1675        if (t < FLT_EPSILON) {
1676            return fTs[1].fT >= FLT_EPSILON;
1677        }
1678        if (t > 1 - FLT_EPSILON) {
1679            return fTs[count - 2].fT <= 1 - FLT_EPSILON;
1680        }
1681        return false;
1682    }
1683
1684    bool isHorizontal() const {
1685        return fBounds.fTop == fBounds.fBottom;
1686    }
1687
1688    bool isVertical() const {
1689        return fBounds.fLeft == fBounds.fRight;
1690    }
1691
1692    SkScalar leftMost(int start, int end) const {
1693        return (*SegmentLeftMost[fVerb])(fPts, fTs[start].fT, fTs[end].fT);
1694    }
1695
1696    // this span is excluded by the winding rule -- chase the ends
1697    // as long as they are unambiguous to mark connections as done
1698    // and give them the same winding value
1699    Span* markAndChaseDone(const Angle* angle, int winding) {
1700        int index = angle->start();
1701        int endIndex = angle->end();
1702        int step = SkSign32(endIndex - index);
1703        Span* last = innerChaseDone(index, step, winding);
1704        markDone(SkMin32(index, endIndex), winding);
1705        return last;
1706    }
1707
1708    Span* markAndChaseWinding(const Angle* angle, int winding) {
1709        int index = angle->start();
1710        int endIndex = angle->end();
1711        int min = SkMin32(index, endIndex);
1712        int step = SkSign32(endIndex - index);
1713        Span* last = innerChaseWinding(index, step, winding);
1714        markWinding(min, winding);
1715        return last;
1716    }
1717
1718    // FIXME: this should also mark spans with equal (x,y)
1719    // This may be called when the segment is already marked done. While this
1720    // wastes time, it shouldn't do any more than spin through the T spans.
1721    // OPTIMIZATION: abort on first done found (assuming that this code is
1722    // always called to mark segments done).
1723    void markDone(int index, int winding) {
1724      //  SkASSERT(!done());
1725        double referenceT = fTs[index].fT;
1726        int lesser = index;
1727        while (--lesser >= 0 && referenceT - fTs[lesser].fT < FLT_EPSILON) {
1728            Span& span = fTs[lesser];
1729            if (span.fDone) {
1730                continue;
1731            }
1732        #if DEBUG_MARK_DONE
1733            const SkPoint& pt = xyAtT(&span);
1734            SkDebugf("%s segment=%d index=%d t=%1.9g pt=(%1.9g,%1.9g) wind=%d\n",
1735                    __FUNCTION__, fID, lesser, span.fT, pt.fX, pt.fY, winding);
1736        #endif
1737            span.fDone = true;
1738            SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
1739            SkASSERT(abs(winding) <= gDebugMaxWindSum);
1740            span.fWindSum = winding;
1741            fDoneSpans++;
1742        }
1743        do {
1744            Span& span = fTs[index];
1745     //       SkASSERT(!span.fDone);
1746            if (span.fDone) {
1747                continue;
1748            }
1749        #if DEBUG_MARK_DONE
1750            const SkPoint& pt = xyAtT(&span);
1751            SkDebugf("%s segment=%d index=%d t=%1.9g pt=(%1.9g,%1.9g) wind=%d\n",
1752                    __FUNCTION__, fID, index, span.fT, pt.fX, pt.fY, winding);
1753        #endif
1754            span.fDone = true;
1755            SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
1756            SkASSERT(abs(winding) <= gDebugMaxWindSum);
1757            span.fWindSum = winding;
1758            fDoneSpans++;
1759        } while (++index < fTs.count() && fTs[index].fT - referenceT < FLT_EPSILON);
1760    }
1761
1762    void markWinding(int index, int winding) {
1763    //    SkASSERT(!done());
1764        double referenceT = fTs[index].fT;
1765        int lesser = index;
1766        while (--lesser >= 0 && referenceT - fTs[lesser].fT < FLT_EPSILON) {
1767            Span& span = fTs[lesser];
1768            if (span.fDone) {
1769                continue;
1770            }
1771      //      SkASSERT(span.fWindValue == 1 || winding == 0);
1772            SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
1773        #if DEBUG_MARK_DONE
1774            const SkPoint& pt = xyAtT(&span);
1775            SkDebugf("%s segment=%d index=%d t=%1.9g pt=(%1.9g,%1.9g) wind=%d\n",
1776                    __FUNCTION__, fID, lesser, span.fT, pt.fX, pt.fY, winding);
1777        #endif
1778            SkASSERT(abs(winding) <= gDebugMaxWindSum);
1779            span.fWindSum = winding;
1780        }
1781        do {
1782            Span& span = fTs[index];
1783     //       SkASSERT(!span.fDone || span.fCoincident);
1784            if (span.fDone) {
1785                continue;
1786            }
1787     //       SkASSERT(span.fWindValue == 1 || winding == 0);
1788            SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
1789        #if DEBUG_MARK_DONE
1790            const SkPoint& pt = xyAtT(&span);
1791            SkDebugf("%s segment=%d index=%d t=%1.9g pt=(%1.9g,%1.9g) wind=%d\n",
1792                    __FUNCTION__, fID, index, span.fT, pt.fX, pt.fY, winding);
1793        #endif
1794            SkASSERT(abs(winding) <= gDebugMaxWindSum);
1795            span.fWindSum = winding;
1796        } while (++index < fTs.count() && fTs[index].fT - referenceT < FLT_EPSILON);
1797    }
1798
1799    // return span if when chasing, two or more radiating spans are not done
1800    // OPTIMIZATION: ? multiple spans is detected when there is only one valid
1801    // candidate and the remaining spans have windValue == 0 (canceled by
1802    // coincidence). The coincident edges could either be removed altogether,
1803    // or this code could be more complicated in detecting this case. Worth it?
1804    bool multipleSpans(int end) const {
1805        return end > 0 && end < fTs.count() - 1;
1806    }
1807
1808    // This has callers for two different situations: one establishes the end
1809    // of the current span, and one establishes the beginning of the next span
1810    // (thus the name). When this is looking for the end of the current span,
1811    // coincidence is found when the beginning Ts contain -step and the end
1812    // contains step. When it is looking for the beginning of the next, the
1813    // first Ts found can be ignored and the last Ts should contain -step.
1814    // OPTIMIZATION: probably should split into two functions
1815    int nextSpan(int from, int step) const {
1816        const Span& fromSpan = fTs[from];
1817        int count = fTs.count();
1818        int to = from;
1819        while (step > 0 ? ++to < count : --to >= 0) {
1820            const Span& span = fTs[to];
1821            if ((step > 0 ? span.fT - fromSpan.fT : fromSpan.fT - span.fT) < FLT_EPSILON) {
1822                continue;
1823            }
1824            return to;
1825        }
1826        return -1;
1827    }
1828
1829    const SkPoint* pts() const {
1830        return fPts;
1831    }
1832
1833    void reset() {
1834        init(NULL, (SkPath::Verb) -1);
1835        fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
1836        fTs.reset();
1837    }
1838
1839    // OPTIMIZATION: mark as debugging only if used solely by tests
1840    const Span& span(int tIndex) const {
1841        return fTs[tIndex];
1842    }
1843
1844    int spanSign(int startIndex, int endIndex) const {
1845        return startIndex < endIndex ? -fTs[startIndex].fWindValue :
1846                fTs[endIndex].fWindValue;
1847    }
1848
1849    // OPTIMIZATION: mark as debugging only if used solely by tests
1850    double t(int tIndex) const {
1851        return fTs[tIndex].fT;
1852    }
1853
1854    static void TrackOutside(SkTDArray<double>& outsideTs, double end,
1855            double start) {
1856        int outCount = outsideTs.count();
1857        if (outCount == 0 || end - outsideTs[outCount - 2] >= FLT_EPSILON) {
1858            *outsideTs.append() = end;
1859            *outsideTs.append() = start;
1860        }
1861    }
1862
1863    void updatePts(const SkPoint pts[]) {
1864        fPts = pts;
1865    }
1866
1867    SkPath::Verb verb() const {
1868        return fVerb;
1869    }
1870
1871    int windBump(const Angle* angle) const {
1872        SkASSERT(angle->segment() == this);
1873        const Span& span = fTs[SkMin32(angle->start(), angle->end())];
1874        int result = angle->sign() * span.fWindValue;
1875#if DEBUG_WIND_BUMP
1876        SkDebugf("%s bump=%d\n", __FUNCTION__, result);
1877#endif
1878        return result;
1879    }
1880
1881    int windSum(int tIndex) const {
1882        return fTs[tIndex].fWindSum;
1883    }
1884
1885    int windSum(const Angle* angle) const {
1886        int start = angle->start();
1887        int end = angle->end();
1888        int index = SkMin32(start, end);
1889        return windSum(index);
1890    }
1891
1892    int windValue(int tIndex) const {
1893        return fTs[tIndex].fWindValue;
1894    }
1895
1896    int windValue(const Angle* angle) const {
1897        int start = angle->start();
1898        int end = angle->end();
1899        int index = SkMin32(start, end);
1900        return windValue(index);
1901    }
1902
1903    SkScalar xAtT(const Span* span) const {
1904        return xyAtT(span).fX;
1905    }
1906
1907    const SkPoint& xyAtT(int index) const {
1908        return xyAtT(&fTs[index]);
1909    }
1910
1911    const SkPoint& xyAtT(const Span* span) const {
1912        if (!span->fPt) {
1913            if (span->fT == 0) {
1914                span->fPt = &fPts[0];
1915            } else if (span->fT == 1) {
1916                span->fPt = &fPts[fVerb];
1917            } else {
1918                SkPoint* pt = fIntersections.append();
1919                (*SegmentXYAtT[fVerb])(fPts, span->fT, pt);
1920                span->fPt = pt;
1921            }
1922        }
1923        return *span->fPt;
1924    }
1925
1926    SkScalar yAtT(int index) const {
1927        return yAtT(&fTs[index]);
1928    }
1929
1930    SkScalar yAtT(const Span* span) const {
1931        return xyAtT(span).fY;
1932    }
1933
1934#if DEBUG_DUMP
1935    void dump() const {
1936        const char className[] = "Segment";
1937        const int tab = 4;
1938        for (int i = 0; i < fTs.count(); ++i) {
1939            SkPoint out;
1940            (*SegmentXYAtT[fVerb])(fPts, t(i), &out);
1941            SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d"
1942                    " otherT=%1.9g windSum=%d\n",
1943                    tab + sizeof(className), className, fID,
1944                    kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY,
1945                    fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fWindSum);
1946        }
1947        SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)",
1948                tab + sizeof(className), className, fID,
1949                fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom);
1950    }
1951#endif
1952
1953#if DEBUG_CONCIDENT
1954    void debugShowTs() {
1955        SkDebugf("%s %d", __FUNCTION__, fID);
1956        for (int i = 0; i < fTs.count(); ++i) {
1957            SkDebugf(" [o=%d %1.9g (%1.9g,%1.9g) w=%d]", fTs[i].fOther->fID,
1958                    fTs[i].fT, xAtT(&fTs[i]), yAtT(&fTs[i]), fTs[i].fWindValue);
1959        }
1960        SkDebugf("\n");
1961    }
1962#endif
1963
1964#if DEBUG_ACTIVE_SPANS
1965    void debugShowActiveSpans(int contourID, int segmentIndex) {
1966        if (done()) {
1967            return;
1968        }
1969        for (int i = 0; i < fTs.count(); ++i) {
1970            if (fTs[i].fDone) {
1971                continue;
1972            }
1973            SkDebugf("%s contour=%d segment=%d (%d)", __FUNCTION__, contourID,
1974                     segmentIndex, fID);
1975            SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY);
1976            for (int vIndex = 1; vIndex <= fVerb; ++vIndex) {
1977                SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY);
1978            }
1979            const Span* span = &fTs[i];
1980            SkDebugf(") fT=%d (%1.9g) (%1.9g,%1.9g)", i, fTs[i].fT,
1981                     xAtT(span), yAtT(i));
1982            const Segment* other = fTs[i].fOther;
1983            SkDebugf(" other=%d otherT=%1.9g otherIndex=%d", other->fID,
1984                     fTs[i].fOtherT, fTs[i].fOtherIndex);
1985            SkDebugf(" windSum=%d windValue=%d\n", fTs[i].fWindSum,
1986                     fTs[i].fWindValue);
1987        }
1988    }
1989#endif
1990
1991#if DEBUG_SORT
1992    void debugShowSort(const SkTDArray<Angle*>& angles, int first,
1993            int contourWinding, int sumWinding) {
1994        SkASSERT(angles[first]->segment() == this);
1995        bool doBump = angles[first]->firstBump(contourWinding, sumWinding);
1996        bool insideContour = contourWinding && contourWinding * sumWinding < 0;
1997        int windSum = insideContour ? contourWinding : sumWinding;
1998        int lastSum = windSum;
1999        if (insideContour || doBump) {
2000            windSum -= windBump(angles[first]);
2001        } else {
2002            lastSum += windBump(angles[first]);
2003        }
2004        int index = first;
2005        bool firstTime = true;
2006        do {
2007            const Angle& angle = *angles[index];
2008            const Segment& segment = *angle.segment();
2009            int start = angle.start();
2010            int end = angle.end();
2011            const Span& sSpan = segment.fTs[start];
2012            const Span& eSpan = segment.fTs[end];
2013            const Span& mSpan = segment.fTs[SkMin32(start, end)];
2014            if (firstTime) {
2015                firstTime = false;
2016            } else {
2017                lastSum = windSum;
2018                windSum -= segment.windBump(&angle);
2019            }
2020            SkDebugf("%s [%d] id=%d start=%d (%1.9g,%,1.9g) end=%d (%1.9g,%,1.9g)"
2021                     " sign=%d windValue=%d winding: %d->%d (max=%d) done=%d\n",
2022                     __FUNCTION__, index, segment.fID, start, segment.xAtT(&sSpan),
2023                     segment.yAtT(&sSpan), end, segment.xAtT(&eSpan),
2024                     segment.yAtT(&eSpan), angle.sign(), mSpan.fWindValue,
2025                     lastSum, windSum, abs(lastSum) > abs(windSum) ? lastSum :
2026                     windSum, mSpan.fDone);
2027            ++index;
2028            if (index == angles.count()) {
2029                index = 0;
2030            }
2031        } while (index != first);
2032    }
2033#endif
2034
2035private:
2036    const SkPoint* fPts;
2037    SkPath::Verb fVerb;
2038    Bounds fBounds;
2039    SkTDArray<Span> fTs; // two or more (always includes t=0 t=1)
2040    // OPTIMIZATION:if intersections array is a pointer, the it could only
2041    // be allocated as needed instead of always initialized -- though maybe
2042    // the initialization is lightweight enough that it hardly matters
2043    mutable SkTDArray<SkPoint> fIntersections;
2044    int fDoneSpans; // used for quick check that segment is finished
2045#if DEBUG_DUMP
2046    int fID;
2047#endif
2048};
2049
2050class Contour;
2051
2052struct Coincidence {
2053    Contour* fContours[2];
2054    int fSegments[2];
2055    double fTs[2][2];
2056};
2057
2058class Contour {
2059public:
2060    Contour() {
2061        reset();
2062#if DEBUG_DUMP
2063        fID = ++gContourID;
2064#endif
2065    }
2066
2067    bool operator<(const Contour& rh) const {
2068        return fBounds.fTop == rh.fBounds.fTop
2069                ? fBounds.fLeft < rh.fBounds.fLeft
2070                : fBounds.fTop < rh.fBounds.fTop;
2071    }
2072
2073    void addCoincident(int index, Contour* other, int otherIndex,
2074            const Intersections& ts, bool swap) {
2075        Coincidence& coincidence = *fCoincidences.append();
2076        coincidence.fContours[0] = this;
2077        coincidence.fContours[1] = other;
2078        coincidence.fSegments[0] = index;
2079        coincidence.fSegments[1] = otherIndex;
2080        coincidence.fTs[swap][0] = ts.fT[0][0];
2081        coincidence.fTs[swap][1] = ts.fT[0][1];
2082        coincidence.fTs[!swap][0] = ts.fT[1][0];
2083        coincidence.fTs[!swap][1] = ts.fT[1][1];
2084    }
2085
2086    void addCross(const Contour* crosser) {
2087#ifdef DEBUG_CROSS
2088        for (int index = 0; index < fCrosses.count(); ++index) {
2089            SkASSERT(fCrosses[index] != crosser);
2090        }
2091#endif
2092        *fCrosses.append() = crosser;
2093    }
2094
2095    void addCubic(const SkPoint pts[4]) {
2096        fSegments.push_back().addCubic(pts);
2097        fContainsCurves = true;
2098    }
2099
2100    int addLine(const SkPoint pts[2]) {
2101        fSegments.push_back().addLine(pts);
2102        return fSegments.count();
2103    }
2104
2105    void addOtherT(int segIndex, int tIndex, double otherT, int otherIndex) {
2106        fSegments[segIndex].addOtherT(tIndex, otherT, otherIndex);
2107    }
2108
2109    int addQuad(const SkPoint pts[3]) {
2110        fSegments.push_back().addQuad(pts);
2111        fContainsCurves = true;
2112        return fSegments.count();
2113    }
2114
2115    int addT(int segIndex, double newT, Contour* other, int otherIndex) {
2116        containsIntercepts();
2117        return fSegments[segIndex].addT(newT, &other->fSegments[otherIndex]);
2118    }
2119
2120    const Bounds& bounds() const {
2121        return fBounds;
2122    }
2123
2124    void complete() {
2125        setBounds();
2126        fContainsIntercepts = false;
2127    }
2128
2129    void containsIntercepts() {
2130        fContainsIntercepts = true;
2131    }
2132
2133    const Segment* crossedSegment(const SkPoint& basePt, SkScalar& bestY,
2134            int &tIndex, double& hitT) {
2135        int segmentCount = fSegments.count();
2136        const Segment* bestSegment = NULL;
2137        for (int test = 0; test < segmentCount; ++test) {
2138            Segment* testSegment = &fSegments[test];
2139            const SkRect& bounds = testSegment->bounds();
2140            if (bounds.fTop < bestY) {
2141                continue;
2142            }
2143            if (bounds.fTop > basePt.fY) {
2144                continue;
2145            }
2146            if (bounds.fLeft > basePt.fX) {
2147                continue;
2148            }
2149            if (bounds.fRight < basePt.fX) {
2150                continue;
2151            }
2152            double testHitT;
2153            int testT = testSegment->crossedSpan(basePt, bestY, testHitT);
2154            if (testT >= 0) {
2155                bestSegment = testSegment;
2156                tIndex = testT;
2157                hitT = testHitT;
2158            }
2159        }
2160        return bestSegment;
2161    }
2162
2163    bool crosses(const Contour* crosser) const {
2164        if (this == crosser) {
2165            return true;
2166        }
2167        for (int index = 0; index < fCrosses.count(); ++index) {
2168            if (fCrosses[index] == crosser) {
2169                return true;
2170            }
2171        }
2172        return false;
2173    }
2174
2175    void findTooCloseToCall(int winding) {
2176        int segmentCount = fSegments.count();
2177        for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
2178            fSegments[sIndex].findTooCloseToCall(winding);
2179        }
2180    }
2181
2182    void fixOtherTIndex() {
2183        int segmentCount = fSegments.count();
2184        for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
2185            fSegments[sIndex].fixOtherTIndex();
2186        }
2187    }
2188
2189    void reset() {
2190        fSegments.reset();
2191        fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
2192        fContainsCurves = fContainsIntercepts = false;
2193        fWindingSum = SK_MinS32;
2194    }
2195
2196    void resolveCoincidence(int winding) {
2197        int count = fCoincidences.count();
2198        for (int index = 0; index < count; ++index) {
2199            Coincidence& coincidence = fCoincidences[index];
2200            Contour* thisContour = coincidence.fContours[0];
2201            Contour* otherContour = coincidence.fContours[1];
2202            int thisIndex = coincidence.fSegments[0];
2203            int otherIndex = coincidence.fSegments[1];
2204            Segment& thisOne = thisContour->fSegments[thisIndex];
2205            Segment& other = otherContour->fSegments[otherIndex];
2206        #if DEBUG_CONCIDENT
2207            thisOne.debugShowTs();
2208            other.debugShowTs();
2209        #endif
2210            double startT = coincidence.fTs[0][0];
2211            double endT = coincidence.fTs[0][1];
2212            if (startT > endT) {
2213                SkTSwap<double>(startT, endT);
2214            }
2215            SkASSERT(endT - startT >= FLT_EPSILON);
2216            double oStartT = coincidence.fTs[1][0];
2217            double oEndT = coincidence.fTs[1][1];
2218            if (oStartT > oEndT) {
2219                SkTSwap<double>(oStartT, oEndT);
2220            }
2221            SkASSERT(oEndT - oStartT >= FLT_EPSILON);
2222            if (winding > 0 || thisOne.cancels(other)) {
2223                        // make sure startT and endT have t entries
2224                if (thisOne.isMissing(startT) || other.isMissing(oEndT)) {
2225                    thisOne.addTPair(startT, other, oEndT);
2226                }
2227                if (thisOne.isMissing(endT) || other.isMissing(oStartT)) {
2228                    other.addTPair(oStartT, thisOne, endT);
2229                }
2230                thisOne.addTCancel(startT, endT, other, oStartT, oEndT);
2231            } else {
2232                if (thisOne.isMissing(startT) || other.isMissing(oStartT)) {
2233                    thisOne.addTPair(startT, other, oStartT);
2234                }
2235                if (thisOne.isMissing(endT) || other.isMissing(oEndT)) {
2236                    other.addTPair(oEndT, thisOne, endT);
2237                }
2238                thisOne.addTCoincident(startT, endT, other, oStartT, oEndT);
2239            }
2240        #if DEBUG_CONCIDENT
2241            thisOne.debugShowTs();
2242            other.debugShowTs();
2243        #endif
2244        }
2245    }
2246
2247    const SkTArray<Segment>& segments() {
2248        return fSegments;
2249    }
2250
2251    void setWinding(int winding) {
2252        SkASSERT(fWindingSum < 0 || fWindingSum == winding);
2253        fWindingSum = winding;
2254    }
2255
2256    // OPTIMIZATION: feel pretty uneasy about this. It seems like once again
2257    // we need to sort and walk edges in y, but that on the surface opens the
2258    // same can of worms as before. But then, this is a rough sort based on
2259    // segments' top, and not a true sort, so it could be ameniable to regular
2260    // sorting instead of linear searching. Still feel like I'm missing something
2261    Segment* topSegment(SkScalar& bestY) {
2262        int segmentCount = fSegments.count();
2263        SkASSERT(segmentCount > 0);
2264        int best = -1;
2265        Segment* bestSegment = NULL;
2266        while (++best < segmentCount) {
2267            Segment* testSegment = &fSegments[best];
2268            if (testSegment->done()) {
2269                continue;
2270            }
2271            bestSegment = testSegment;
2272            break;
2273        }
2274        if (!bestSegment) {
2275            return NULL;
2276        }
2277        SkScalar bestTop = bestSegment->activeTop();
2278        for (int test = best + 1; test < segmentCount; ++test) {
2279            Segment* testSegment = &fSegments[test];
2280            if (testSegment->done()) {
2281                continue;
2282            }
2283            if (testSegment->bounds().fTop > bestTop) {
2284                continue;
2285            }
2286            SkScalar testTop = testSegment->activeTop();
2287            if (bestTop > testTop) {
2288                bestTop = testTop;
2289                bestSegment = testSegment;
2290            }
2291        }
2292        bestY = bestTop;
2293        return bestSegment;
2294    }
2295
2296    int updateSegment(int index, const SkPoint* pts) {
2297        Segment& segment = fSegments[index];
2298        segment.updatePts(pts);
2299        return segment.verb() + 1;
2300    }
2301
2302    int windSum() {
2303        if (fWindingSum >= 0) {
2304            return fWindingSum;
2305        }
2306        // check peers
2307        int count = fCrosses.count();
2308        for (int index = 0; index < count; ++index) {
2309            const Contour* crosser = fCrosses[index];
2310            if (0 <= crosser->fWindingSum) {
2311                fWindingSum = crosser->fWindingSum;
2312                break;
2313            }
2314        }
2315        return fWindingSum;
2316    }
2317
2318#if DEBUG_TEST
2319    SkTArray<Segment>& debugSegments() {
2320        return fSegments;
2321    }
2322#endif
2323
2324#if DEBUG_DUMP
2325    void dump() {
2326        int i;
2327        const char className[] = "Contour";
2328        const int tab = 4;
2329        SkDebugf("%s %p (contour=%d)\n", className, this, fID);
2330        for (i = 0; i < fSegments.count(); ++i) {
2331            SkDebugf("%*s.fSegments[%d]:\n", tab + sizeof(className),
2332                    className, i);
2333            fSegments[i].dump();
2334        }
2335        SkDebugf("%*s.fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)\n",
2336                tab + sizeof(className), className,
2337                fBounds.fLeft, fBounds.fTop,
2338                fBounds.fRight, fBounds.fBottom);
2339        SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className),
2340                className, fContainsIntercepts);
2341        SkDebugf("%*s.fContainsCurves=%d\n", tab + sizeof(className),
2342                className, fContainsCurves);
2343    }
2344#endif
2345
2346#if DEBUG_ACTIVE_SPANS
2347    void debugShowActiveSpans() {
2348        for (int index = 0; index < fSegments.count(); ++index) {
2349            fSegments[index].debugShowActiveSpans(fID, index);
2350        }
2351    }
2352#endif
2353
2354protected:
2355    void setBounds() {
2356        int count = fSegments.count();
2357        if (count == 0) {
2358            SkDebugf("%s empty contour\n", __FUNCTION__);
2359            SkASSERT(0);
2360            // FIXME: delete empty contour?
2361            return;
2362        }
2363        fBounds = fSegments.front().bounds();
2364        for (int index = 1; index < count; ++index) {
2365            fBounds.add(fSegments[index].bounds());
2366        }
2367    }
2368
2369private:
2370    SkTArray<Segment> fSegments;
2371    SkTDArray<Coincidence> fCoincidences;
2372    SkTDArray<const Contour*> fCrosses;
2373    Bounds fBounds;
2374    bool fContainsIntercepts;
2375    bool fContainsCurves;
2376    int fWindingSum; // initial winding number outside
2377#if DEBUG_DUMP
2378    int fID;
2379#endif
2380};
2381
2382class EdgeBuilder {
2383public:
2384
2385EdgeBuilder(const SkPath& path, SkTArray<Contour>& contours)
2386    : fPath(path)
2387    , fCurrentContour(NULL)
2388    , fContours(contours)
2389{
2390#if DEBUG_DUMP
2391    gContourID = 0;
2392    gSegmentID = 0;
2393#endif
2394    walk();
2395}
2396
2397protected:
2398
2399void complete() {
2400    if (fCurrentContour && fCurrentContour->segments().count()) {
2401        fCurrentContour->complete();
2402        fCurrentContour = NULL;
2403    }
2404}
2405
2406void walk() {
2407    // FIXME:remove once we can access path pts directly
2408    SkPath::RawIter iter(fPath); // FIXME: access path directly when allowed
2409    SkPoint pts[4];
2410    SkPath::Verb verb;
2411    do {
2412        verb = iter.next(pts);
2413        *fPathVerbs.append() = verb;
2414        if (verb == SkPath::kMove_Verb) {
2415            *fPathPts.append() = pts[0];
2416        } else if (verb >= SkPath::kLine_Verb && verb <= SkPath::kCubic_Verb) {
2417            fPathPts.append(verb, &pts[1]);
2418        }
2419    } while (verb != SkPath::kDone_Verb);
2420    // FIXME: end of section to remove once path pts are accessed directly
2421
2422    SkPath::Verb reducedVerb;
2423    uint8_t* verbPtr = fPathVerbs.begin();
2424    const SkPoint* pointsPtr = fPathPts.begin();
2425    const SkPoint* finalCurveStart = NULL;
2426    const SkPoint* finalCurveEnd = NULL;
2427    while ((verb = (SkPath::Verb) *verbPtr++) != SkPath::kDone_Verb) {
2428        switch (verb) {
2429            case SkPath::kMove_Verb:
2430                complete();
2431                if (!fCurrentContour) {
2432                    fCurrentContour = fContours.push_back_n(1);
2433                    finalCurveEnd = pointsPtr++;
2434                    *fExtra.append() = -1; // start new contour
2435                }
2436                continue;
2437            case SkPath::kLine_Verb:
2438                // skip degenerate points
2439                if (pointsPtr[-1].fX != pointsPtr[0].fX
2440                        || pointsPtr[-1].fY != pointsPtr[0].fY) {
2441                    fCurrentContour->addLine(&pointsPtr[-1]);
2442                }
2443                break;
2444            case SkPath::kQuad_Verb:
2445
2446                reducedVerb = QuadReduceOrder(&pointsPtr[-1], fReducePts);
2447                if (reducedVerb == 0) {
2448                    break; // skip degenerate points
2449                }
2450                if (reducedVerb == 1) {
2451                    *fExtra.append() =
2452                            fCurrentContour->addLine(fReducePts.end() - 2);
2453                    break;
2454                }
2455                fCurrentContour->addQuad(&pointsPtr[-1]);
2456                break;
2457            case SkPath::kCubic_Verb:
2458                reducedVerb = CubicReduceOrder(&pointsPtr[-1], fReducePts);
2459                if (reducedVerb == 0) {
2460                    break; // skip degenerate points
2461                }
2462                if (reducedVerb == 1) {
2463                    *fExtra.append() =
2464                            fCurrentContour->addLine(fReducePts.end() - 2);
2465                    break;
2466                }
2467                if (reducedVerb == 2) {
2468                    *fExtra.append() =
2469                            fCurrentContour->addQuad(fReducePts.end() - 3);
2470                    break;
2471                }
2472                fCurrentContour->addCubic(&pointsPtr[-1]);
2473                break;
2474            case SkPath::kClose_Verb:
2475                SkASSERT(fCurrentContour);
2476                if (finalCurveStart && finalCurveEnd
2477                        && *finalCurveStart != *finalCurveEnd) {
2478                    *fReducePts.append() = *finalCurveStart;
2479                    *fReducePts.append() = *finalCurveEnd;
2480                    *fExtra.append() =
2481                            fCurrentContour->addLine(fReducePts.end() - 2);
2482                }
2483                complete();
2484                continue;
2485            default:
2486                SkDEBUGFAIL("bad verb");
2487                return;
2488        }
2489        finalCurveStart = &pointsPtr[verb - 1];
2490        pointsPtr += verb;
2491        SkASSERT(fCurrentContour);
2492    }
2493    complete();
2494    if (fCurrentContour && !fCurrentContour->segments().count()) {
2495        fContours.pop_back();
2496    }
2497    // correct pointers in contours since fReducePts may have moved as it grew
2498    int cIndex = 0;
2499    int extraCount = fExtra.count();
2500    SkASSERT(extraCount == 0 || fExtra[0] == -1);
2501    int eIndex = 0;
2502    int rIndex = 0;
2503    while (++eIndex < extraCount) {
2504        int offset = fExtra[eIndex];
2505        if (offset < 0) {
2506            ++cIndex;
2507            continue;
2508        }
2509        fCurrentContour = &fContours[cIndex];
2510        rIndex += fCurrentContour->updateSegment(offset - 1,
2511                &fReducePts[rIndex]);
2512    }
2513    fExtra.reset(); // we're done with this
2514}
2515
2516private:
2517    const SkPath& fPath;
2518    SkTDArray<SkPoint> fPathPts; // FIXME: point directly to path pts instead
2519    SkTDArray<uint8_t> fPathVerbs; // FIXME: remove
2520    Contour* fCurrentContour;
2521    SkTArray<Contour>& fContours;
2522    SkTDArray<SkPoint> fReducePts; // segments created on the fly
2523    SkTDArray<int> fExtra; // -1 marks new contour, > 0 offsets into contour
2524};
2525
2526class Work {
2527public:
2528    enum SegmentType {
2529        kHorizontalLine_Segment = -1,
2530        kVerticalLine_Segment = 0,
2531        kLine_Segment = SkPath::kLine_Verb,
2532        kQuad_Segment = SkPath::kQuad_Verb,
2533        kCubic_Segment = SkPath::kCubic_Verb,
2534    };
2535
2536    void addCoincident(Work& other, const Intersections& ts, bool swap) {
2537        fContour->addCoincident(fIndex, other.fContour, other.fIndex, ts, swap);
2538    }
2539
2540    // FIXME: does it make sense to write otherIndex now if we're going to
2541    // fix it up later?
2542    void addOtherT(int index, double otherT, int otherIndex) {
2543        fContour->addOtherT(fIndex, index, otherT, otherIndex);
2544    }
2545
2546    // Avoid collapsing t values that are close to the same since
2547    // we walk ts to describe consecutive intersections. Since a pair of ts can
2548    // be nearly equal, any problems caused by this should be taken care
2549    // of later.
2550    // On the edge or out of range values are negative; add 2 to get end
2551    int addT(double newT, const Work& other) {
2552        return fContour->addT(fIndex, newT, other.fContour, other.fIndex);
2553    }
2554
2555    bool advance() {
2556        return ++fIndex < fLast;
2557    }
2558
2559    SkScalar bottom() const {
2560        return bounds().fBottom;
2561    }
2562
2563    const Bounds& bounds() const {
2564        return fContour->segments()[fIndex].bounds();
2565    }
2566
2567    const SkPoint* cubic() const {
2568        return fCubic;
2569    }
2570
2571    void init(Contour* contour) {
2572        fContour = contour;
2573        fIndex = 0;
2574        fLast = contour->segments().count();
2575    }
2576
2577    bool isAdjacent(const Work& next) {
2578        return fContour == next.fContour && fIndex + 1 == next.fIndex;
2579    }
2580
2581    bool isFirstLast(const Work& next) {
2582        return fContour == next.fContour && fIndex == 0
2583                && next.fIndex == fLast - 1;
2584    }
2585
2586    SkScalar left() const {
2587        return bounds().fLeft;
2588    }
2589
2590    void promoteToCubic() {
2591        fCubic[0] = pts()[0];
2592        fCubic[2] = pts()[1];
2593        fCubic[3] = pts()[2];
2594        fCubic[1].fX = (fCubic[0].fX + fCubic[2].fX * 2) / 3;
2595        fCubic[1].fY = (fCubic[0].fY + fCubic[2].fY * 2) / 3;
2596        fCubic[2].fX = (fCubic[3].fX + fCubic[2].fX * 2) / 3;
2597        fCubic[2].fY = (fCubic[3].fY + fCubic[2].fY * 2) / 3;
2598    }
2599
2600    const SkPoint* pts() const {
2601        return fContour->segments()[fIndex].pts();
2602    }
2603
2604    SkScalar right() const {
2605        return bounds().fRight;
2606    }
2607
2608    ptrdiff_t segmentIndex() const {
2609        return fIndex;
2610    }
2611
2612    SegmentType segmentType() const {
2613        const Segment& segment = fContour->segments()[fIndex];
2614        SegmentType type = (SegmentType) segment.verb();
2615        if (type != kLine_Segment) {
2616            return type;
2617        }
2618        if (segment.isHorizontal()) {
2619            return kHorizontalLine_Segment;
2620        }
2621        if (segment.isVertical()) {
2622            return kVerticalLine_Segment;
2623        }
2624        return kLine_Segment;
2625    }
2626
2627    bool startAfter(const Work& after) {
2628        fIndex = after.fIndex;
2629        return advance();
2630    }
2631
2632    SkScalar top() const {
2633        return bounds().fTop;
2634    }
2635
2636    SkPath::Verb verb() const {
2637        return fContour->segments()[fIndex].verb();
2638    }
2639
2640    SkScalar x() const {
2641        return bounds().fLeft;
2642    }
2643
2644    bool xFlipped() const {
2645        return x() != pts()[0].fX;
2646    }
2647
2648    SkScalar y() const {
2649        return bounds().fTop;
2650    }
2651
2652    bool yFlipped() const {
2653        return y() != pts()[0].fY;
2654    }
2655
2656protected:
2657    Contour* fContour;
2658    SkPoint fCubic[4];
2659    int fIndex;
2660    int fLast;
2661};
2662
2663#if DEBUG_ADD_INTERSECTING_TS
2664static void debugShowLineIntersection(int pts, const Work& wt,
2665        const Work& wn, const double wtTs[2], const double wnTs[2]) {
2666    if (!pts) {
2667        SkDebugf("%s no intersect (%1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g %1.9g,%1.9g)\n",
2668                __FUNCTION__, wt.pts()[0].fX, wt.pts()[0].fY,
2669                wt.pts()[1].fX, wt.pts()[1].fY, wn.pts()[0].fX, wn.pts()[0].fY,
2670                wn.pts()[1].fX, wn.pts()[1].fY);
2671        return;
2672    }
2673    SkPoint wtOutPt, wnOutPt;
2674    LineXYAtT(wt.pts(), wtTs[0], &wtOutPt);
2675    LineXYAtT(wn.pts(), wnTs[0], &wnOutPt);
2676    SkDebugf("%s wtTs[0]=%g (%g,%g, %g,%g) (%g,%g)",
2677            __FUNCTION__,
2678            wtTs[0], wt.pts()[0].fX, wt.pts()[0].fY,
2679            wt.pts()[1].fX, wt.pts()[1].fY, wtOutPt.fX, wtOutPt.fY);
2680    if (pts == 2) {
2681        SkDebugf(" wtTs[1]=%g", wtTs[1]);
2682    }
2683    SkDebugf(" wnTs[0]=%g (%g,%g, %g,%g) (%g,%g)",
2684            wnTs[0], wn.pts()[0].fX, wn.pts()[0].fY,
2685            wn.pts()[1].fX, wn.pts()[1].fY, wnOutPt.fX, wnOutPt.fY);
2686    if (pts == 2) {
2687        SkDebugf(" wnTs[1]=%g", wnTs[1]);
2688    }
2689    SkDebugf("\n");
2690}
2691#else
2692static void debugShowLineIntersection(int , const Work& ,
2693        const Work& , const double [2], const double [2]) {
2694}
2695#endif
2696
2697static bool addIntersectTs(Contour* test, Contour* next) {
2698
2699    if (test != next) {
2700        if (test->bounds().fBottom < next->bounds().fTop) {
2701            return false;
2702        }
2703        if (!Bounds::Intersects(test->bounds(), next->bounds())) {
2704            return true;
2705        }
2706    }
2707    Work wt;
2708    wt.init(test);
2709    bool foundCommonContour = test == next;
2710    do {
2711        Work wn;
2712        wn.init(next);
2713        if (test == next && !wn.startAfter(wt)) {
2714            continue;
2715        }
2716        do {
2717            if (!Bounds::Intersects(wt.bounds(), wn.bounds())) {
2718                continue;
2719            }
2720            int pts;
2721            Intersections ts;
2722            bool swap = false;
2723            switch (wt.segmentType()) {
2724                case Work::kHorizontalLine_Segment:
2725                    swap = true;
2726                    switch (wn.segmentType()) {
2727                        case Work::kHorizontalLine_Segment:
2728                        case Work::kVerticalLine_Segment:
2729                        case Work::kLine_Segment: {
2730                            pts = HLineIntersect(wn.pts(), wt.left(),
2731                                    wt.right(), wt.y(), wt.xFlipped(), ts);
2732                            debugShowLineIntersection(pts, wt, wn,
2733                                    ts.fT[1], ts.fT[0]);
2734                            break;
2735                        }
2736                        case Work::kQuad_Segment: {
2737                            pts = HQuadIntersect(wn.pts(), wt.left(),
2738                                    wt.right(), wt.y(), wt.xFlipped(), ts);
2739                            break;
2740                        }
2741                        case Work::kCubic_Segment: {
2742                            pts = HCubicIntersect(wn.pts(), wt.left(),
2743                                    wt.right(), wt.y(), wt.xFlipped(), ts);
2744                            break;
2745                        }
2746                        default:
2747                            SkASSERT(0);
2748                    }
2749                    break;
2750                case Work::kVerticalLine_Segment:
2751                    swap = true;
2752                    switch (wn.segmentType()) {
2753                        case Work::kHorizontalLine_Segment:
2754                        case Work::kVerticalLine_Segment:
2755                        case Work::kLine_Segment: {
2756                            pts = VLineIntersect(wn.pts(), wt.top(),
2757                                    wt.bottom(), wt.x(), wt.yFlipped(), ts);
2758                            debugShowLineIntersection(pts, wt, wn,
2759                                    ts.fT[1], ts.fT[0]);
2760                            break;
2761                        }
2762                        case Work::kQuad_Segment: {
2763                            pts = VQuadIntersect(wn.pts(), wt.top(),
2764                                    wt.bottom(), wt.x(), wt.yFlipped(), ts);
2765                            break;
2766                        }
2767                        case Work::kCubic_Segment: {
2768                            pts = VCubicIntersect(wn.pts(), wt.top(),
2769                                    wt.bottom(), wt.x(), wt.yFlipped(), ts);
2770                            break;
2771                        }
2772                        default:
2773                            SkASSERT(0);
2774                    }
2775                    break;
2776                case Work::kLine_Segment:
2777                    switch (wn.segmentType()) {
2778                        case Work::kHorizontalLine_Segment:
2779                            pts = HLineIntersect(wt.pts(), wn.left(),
2780                                    wn.right(), wn.y(), wn.xFlipped(), ts);
2781                            debugShowLineIntersection(pts, wt, wn,
2782                                    ts.fT[1], ts.fT[0]);
2783                            break;
2784                        case Work::kVerticalLine_Segment:
2785                            pts = VLineIntersect(wt.pts(), wn.top(),
2786                                    wn.bottom(), wn.x(), wn.yFlipped(), ts);
2787                            debugShowLineIntersection(pts, wt, wn,
2788                                    ts.fT[1], ts.fT[0]);
2789                            break;
2790                        case Work::kLine_Segment: {
2791                            pts = LineIntersect(wt.pts(), wn.pts(), ts);
2792                            debugShowLineIntersection(pts, wt, wn,
2793                                    ts.fT[1], ts.fT[0]);
2794                            break;
2795                        }
2796                        case Work::kQuad_Segment: {
2797                            swap = true;
2798                            pts = QuadLineIntersect(wn.pts(), wt.pts(), ts);
2799                            break;
2800                        }
2801                        case Work::kCubic_Segment: {
2802                            swap = true;
2803                            pts = CubicLineIntersect(wn.pts(), wt.pts(), ts);
2804                            break;
2805                        }
2806                        default:
2807                            SkASSERT(0);
2808                    }
2809                    break;
2810                case Work::kQuad_Segment:
2811                    switch (wn.segmentType()) {
2812                        case Work::kHorizontalLine_Segment:
2813                            pts = HQuadIntersect(wt.pts(), wn.left(),
2814                                    wn.right(), wn.y(), wn.xFlipped(), ts);
2815                            break;
2816                        case Work::kVerticalLine_Segment:
2817                            pts = VQuadIntersect(wt.pts(), wn.top(),
2818                                    wn.bottom(), wn.x(), wn.yFlipped(), ts);
2819                            break;
2820                        case Work::kLine_Segment: {
2821                            pts = QuadLineIntersect(wt.pts(), wn.pts(), ts);
2822                            break;
2823                        }
2824                        case Work::kQuad_Segment: {
2825                            pts = QuadIntersect(wt.pts(), wn.pts(), ts);
2826                            break;
2827                        }
2828                        case Work::kCubic_Segment: {
2829                            wt.promoteToCubic();
2830                            pts = CubicIntersect(wt.cubic(), wn.pts(), ts);
2831                            break;
2832                        }
2833                        default:
2834                            SkASSERT(0);
2835                    }
2836                    break;
2837                case Work::kCubic_Segment:
2838                    switch (wn.segmentType()) {
2839                        case Work::kHorizontalLine_Segment:
2840                            pts = HCubicIntersect(wt.pts(), wn.left(),
2841                                    wn.right(), wn.y(), wn.xFlipped(), ts);
2842                            break;
2843                        case Work::kVerticalLine_Segment:
2844                            pts = VCubicIntersect(wt.pts(), wn.top(),
2845                                    wn.bottom(), wn.x(), wn.yFlipped(), ts);
2846                            break;
2847                        case Work::kLine_Segment: {
2848                            pts = CubicLineIntersect(wt.pts(), wn.pts(), ts);
2849                            break;
2850                        }
2851                        case Work::kQuad_Segment: {
2852                            wn.promoteToCubic();
2853                            pts = CubicIntersect(wt.pts(), wn.cubic(), ts);
2854                            break;
2855                        }
2856                        case Work::kCubic_Segment: {
2857                            pts = CubicIntersect(wt.pts(), wn.pts(), ts);
2858                            break;
2859                        }
2860                        default:
2861                            SkASSERT(0);
2862                    }
2863                    break;
2864                default:
2865                    SkASSERT(0);
2866            }
2867            if (!foundCommonContour && pts > 0) {
2868                test->addCross(next);
2869                next->addCross(test);
2870                foundCommonContour = true;
2871            }
2872            // in addition to recording T values, record matching segment
2873            if (pts == 2 && wn.segmentType() <= Work::kLine_Segment
2874                    && wt.segmentType() <= Work::kLine_Segment) {
2875                wt.addCoincident(wn, ts, swap);
2876                continue;
2877            }
2878            for (int pt = 0; pt < pts; ++pt) {
2879                SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1);
2880                SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1);
2881                int testTAt = wt.addT(ts.fT[swap][pt], wn);
2882                int nextTAt = wn.addT(ts.fT[!swap][pt], wt);
2883                wt.addOtherT(testTAt, ts.fT[!swap][pt], nextTAt);
2884                wn.addOtherT(nextTAt, ts.fT[swap][pt], testTAt);
2885            }
2886        } while (wn.advance());
2887    } while (wt.advance());
2888    return true;
2889}
2890
2891// resolve any coincident pairs found while intersecting, and
2892// see if coincidence is formed by clipping non-concident segments
2893static void coincidenceCheck(SkTDArray<Contour*>& contourList, int winding) {
2894    int contourCount = contourList.count();
2895    for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
2896        Contour* contour = contourList[cIndex];
2897        contour->findTooCloseToCall(winding);
2898    }
2899    for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
2900        Contour* contour = contourList[cIndex];
2901        contour->resolveCoincidence(winding);
2902    }
2903}
2904
2905// project a ray from the top of the contour up and see if it hits anything
2906// note: when we compute line intersections, we keep track of whether
2907// two contours touch, so we need only look at contours not touching this one.
2908// OPTIMIZATION: sort contourList vertically to avoid linear walk
2909static int innerContourCheck(SkTDArray<Contour*>& contourList,
2910        Contour* baseContour, const SkPoint& basePt) {
2911    int contourCount = contourList.count();
2912    SkScalar bestY = SK_ScalarMin;
2913    const Segment* test = NULL;
2914    int tIndex;
2915    double tHit;
2916    for (int cTest = 0; cTest < contourCount; ++cTest) {
2917        Contour* contour = contourList[cTest];
2918        if (basePt.fY < contour->bounds().fTop) {
2919            continue;
2920        }
2921        if (bestY > contour->bounds().fBottom) {
2922            continue;
2923        }
2924        if (baseContour->crosses(contour)) {
2925           continue;
2926        }
2927        const Segment* next = contour->crossedSegment(basePt, bestY, tIndex, tHit);
2928        if (next) {
2929            test = next;
2930        }
2931    }
2932    if (!test) {
2933        baseContour->setWinding(0);
2934        return 0;
2935    }
2936    int winding, windValue;
2937    // If the ray hit the end of a span, we need to construct the wheel of
2938    // angles to find the span closest to the ray -- even if there are just
2939    // two spokes on the wheel.
2940    if (fabs(tHit - test->t(tIndex)) < FLT_EPSILON) {
2941        SkTDArray<Angle> angles;
2942        int end = test->nextSpan(tIndex, 1);
2943        if (end < 0) {
2944            end = test->nextSpan(tIndex, -1);
2945        }
2946        test->addTwoAngles(end, tIndex, angles);
2947        test->buildAngles(tIndex, angles);
2948        SkTDArray<Angle*> sorted;
2949        // OPTIMIZATION: call a sort that, if base point is the leftmost,
2950        // returns the first counterclockwise hour before 6 o'clock,
2951        // or if the base point is rightmost, returns the first clockwise
2952        // hour after 6 o'clock
2953        sortAngles(angles, sorted);
2954#if DEBUG_SORT
2955        sorted[0]->segment()->debugShowSort(sorted, 0, 0, 0);
2956#endif
2957        // walk the sorted angle fan to find the lowest angle
2958        // above the base point. Currently, the first angle in the sorted array
2959        // is 12 noon or an earlier hour (the next counterclockwise)
2960        int count = sorted.count();
2961        int left = -1;
2962        int right = -1;
2963        for (int index = 0; index < count; ++index) {
2964            double indexDx = sorted[index]->dx();
2965            if (indexDx < 0) {
2966                left = index;
2967            } else if (indexDx > 0) {
2968                right = index;
2969                break;
2970            }
2971        }
2972        SkASSERT(left >= 0 || right >= 0);
2973        if (left < 0) {
2974            left = right;
2975        }
2976        const Angle* angle = sorted[left];
2977        test = angle->segment();
2978        winding = test->windSum(angle);
2979        SkASSERT(winding != SK_MinS32);
2980        windValue = test->windValue(angle);
2981    #if 0
2982        if (angle->firstBump(0, winding)) {
2983            winding -= test->windBump(angle);
2984        }
2985    #endif
2986#if DEBUG_WINDING
2987        SkDebugf("%s angle winding=%d windValue=%d\n", __FUNCTION__, winding,
2988                windValue);
2989#endif
2990    } else {
2991        winding = test->windSum(tIndex);
2992        SkASSERT(winding != SK_MinS32);
2993        windValue = test->windValue(tIndex);
2994#if DEBUG_WINDING
2995        SkDebugf("%s single winding=%d windValue=%d\n", __FUNCTION__, winding,
2996                windValue);
2997#endif
2998    }
2999    // see if a + change in T results in a +/- change in X (compute x'(T))
3000    SkScalar dx = (*SegmentDXAtT[test->verb()])(test->pts(), tHit);
3001#if DEBUG_WINDING
3002    SkDebugf("%s dx=%1.9g\n", __FUNCTION__, dx);
3003#endif
3004    SkASSERT(dx != 0);
3005    if (winding * dx > 0) { // if same signs, result is negative
3006        winding += dx > 0 ? -windValue : windValue;
3007#if DEBUG_WINDING
3008        SkDebugf("%s final winding=%d\n", __FUNCTION__, winding);
3009#endif
3010    }
3011    baseContour->setWinding(winding);
3012    return winding;
3013}
3014
3015// OPTIMIZATION: not crazy about linear search here to find top active y.
3016// seems like we should break down and do the sort, or maybe sort each
3017// contours' segments?
3018// Once the segment array is built, there's no reason I can think of not to
3019// sort it in Y. hmmm
3020// FIXME: return the contour found to pass to inner contour check
3021static Segment* findTopContour(SkTDArray<Contour*>& contourList,
3022        Contour*& topContour) {
3023    int contourCount = contourList.count();
3024    int cIndex = 0;
3025    Segment* topStart;
3026    SkScalar bestY = SK_ScalarMax;
3027    Contour* contour;
3028    do {
3029        contour = contourList[cIndex];
3030        topStart = contour->topSegment(bestY);
3031    } while (!topStart && ++cIndex < contourCount);
3032    if (!topStart) {
3033        return NULL;
3034    }
3035    topContour = contour;
3036    while (++cIndex < contourCount) {
3037        contour = contourList[cIndex];
3038        if (bestY < contour->bounds().fTop) {
3039            continue;
3040        }
3041        SkScalar testY = SK_ScalarMax;
3042        Segment* test = contour->topSegment(testY);
3043        if (!test || bestY <= testY) {
3044            continue;
3045        }
3046        topContour = contour;
3047        topStart = test;
3048        bestY = testY;
3049    }
3050    return topStart;
3051}
3052
3053static Segment* findChase(SkTDArray<Span*>& chase, int& tIndex, int& endIndex,
3054        int contourWinding) {
3055    while (chase.count()) {
3056        Span* span = chase[chase.count() - 1];
3057        const Span& backPtr = span->fOther->span(span->fOtherIndex);
3058        Segment* segment = backPtr.fOther;
3059        tIndex = backPtr.fOtherIndex;
3060        SkTDArray<Angle> angles;
3061        int done = 0;
3062        if (segment->activeAngle(tIndex, done, angles)) {
3063            Angle* last = angles.end() - 1;
3064            tIndex = last->start();
3065            endIndex = last->end();
3066            return last->segment();
3067        }
3068        if (done == angles.count()) {
3069            chase.pop(&span);
3070            continue;
3071        }
3072        SkTDArray<Angle*> sorted;
3073        sortAngles(angles, sorted);
3074        // find first angle, initialize winding to computed fWindSum
3075        int firstIndex = -1;
3076        const Angle* angle;
3077        int spanWinding;
3078        do {
3079            angle = sorted[++firstIndex];
3080            spanWinding = angle->segment()->windSum(angle);
3081        } while (spanWinding == SK_MinS32);
3082    #if DEBUG_SORT
3083        angle->segment()->debugShowSort(sorted, firstIndex, contourWinding,
3084                spanWinding);
3085    #endif
3086        if (angle->firstBump(contourWinding, spanWinding)) {
3087            spanWinding -= angle->segment()->windBump(angle);
3088        }
3089        // we care about first sign and whether wind sum indicates this
3090        // edge is inside or outside. Maybe need to pass span winding
3091        // or first winding or something into this function?
3092        // advance to first undone angle, then return it and winding
3093        // (to set whether edges are active or not)
3094        int nextIndex = firstIndex + 1;
3095        int angleCount = sorted.count();
3096        int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
3097        do {
3098            SkASSERT(nextIndex != firstIndex);
3099            if (nextIndex == angleCount) {
3100                nextIndex = 0;
3101            }
3102            const Angle* angle = sorted[nextIndex];
3103            segment = angle->segment();
3104            int maxWinding = spanWinding;
3105            spanWinding -= segment->windBump(angle);
3106            if (maxWinding * spanWinding < 0) {
3107                SkDebugf("%s flipped sign %d %d\n", __FUNCTION__, maxWinding, spanWinding);
3108            }
3109            tIndex = angle->start();
3110            endIndex = angle->end();
3111            int lesser = SkMin32(tIndex, endIndex);
3112            const Span& nextSpan = segment->span(lesser);
3113            if (!nextSpan.fDone) {
3114            // FIXME: this be wrong. assign startWinding if edge is in
3115            // same direction. If the direction is opposite, winding to
3116            // assign is flipped sign or +/- 1?
3117                if (abs(maxWinding) < abs(spanWinding)) {
3118                    maxWinding = spanWinding;
3119                }
3120                segment->markWinding(lesser, maxWinding);
3121                break;
3122            }
3123        } while (++nextIndex != lastIndex);
3124        return segment;
3125    }
3126    return NULL;
3127}
3128
3129#if DEBUG_ACTIVE_SPANS
3130static void debugShowActiveSpans(SkTDArray<Contour*>& contourList) {
3131    for (int index = 0; index < contourList.count(); ++ index) {
3132        contourList[index]->debugShowActiveSpans();
3133    }
3134}
3135#endif
3136
3137// Each segment may have an inside or an outside. Segments contained within
3138// winding may have insides on either side, and form a contour that should be
3139// ignored. Segments that are coincident with opposing direction segments may
3140// have outsides on either side, and should also disappear.
3141// 'Normal' segments will have one inside and one outside. Subsequent connections
3142// when winding should follow the intersection direction. If more than one edge
3143// is an option, choose first edge that continues the inside.
3144    // since we start with leftmost top edge, we'll traverse through a
3145    // smaller angle counterclockwise to get to the next edge.
3146static void bridge(SkTDArray<Contour*>& contourList, SkPath& simple) {
3147    bool firstContour = true;
3148    do {
3149        Contour* topContour;
3150        Segment* topStart = findTopContour(contourList, topContour);
3151        if (!topStart) {
3152            break;
3153        }
3154        // Start at the top. Above the top is outside, below is inside.
3155        // follow edges to intersection by changing the index by direction.
3156        int index, endIndex;
3157        Segment* current = topStart->findTop(index, endIndex);
3158        int contourWinding;
3159        if (firstContour) {
3160            contourWinding = 0;
3161            firstContour = false;
3162        } else {
3163            const SkPoint& topPoint = current->xyAtT(endIndex);
3164            contourWinding = innerContourCheck(contourList, topContour, topPoint);
3165#if DEBUG_WINDING
3166            SkDebugf("%s contourWinding=%d\n", __FUNCTION__, contourWinding);
3167#endif
3168        }
3169        SkPoint lastPt;
3170        bool firstTime = true;
3171        int winding = contourWinding;
3172        int spanWinding = current->spanSign(index, endIndex);
3173     //   int firstWinding = contourWinding + spanWinding;
3174        // FIXME: needs work. While it works in limited situations, it does
3175        // not always compute winding correctly. Active should be removed and instead
3176        // the initial winding should be correctly passed in so that if the
3177        // inner contour is wound the same way, it never finds an accumulated
3178        // winding of zero. Inside 'find next', we need to look for transitions
3179        // other than zero when resolving sorted angles.
3180        SkTDArray<Span*> chaseArray;
3181        do {
3182            bool active = winding * spanWinding <= 0
3183                    && abs(winding) <= abs(spanWinding);
3184        #if DEBUG_WINDING
3185            if (abs(winding) > abs(spanWinding) && winding * spanWinding < 0) {
3186                SkDebugf("%s *** unexpected active?\n", __FUNCTION__);
3187            }
3188            SkDebugf("%s active=%s winding=%d spanWinding=%d\n",
3189                    __FUNCTION__, active ? "true" : "false",
3190                    winding, spanWinding);
3191        #endif
3192            const SkPoint* firstPt = NULL;
3193            do {
3194                SkASSERT(!current->done());
3195                int nextStart, nextEnd;
3196                Segment* next = current->findNext(chaseArray, winding,
3197                        contourWinding, firstTime, active, index, endIndex,
3198                        nextStart, nextEnd, spanWinding);
3199                if (!next) {
3200                    break;
3201                }
3202                if (!firstPt) {
3203                    firstPt = &current->addMoveTo(index, simple, active);
3204                }
3205                lastPt = current->addCurveTo(index, endIndex, simple, active);
3206                current = next;
3207                index = nextStart;
3208                endIndex = nextEnd;
3209                firstTime = false;
3210            } while (*firstPt != lastPt && (active || !current->done()));
3211            if (firstPt && active) {
3212        #if DEBUG_PATH_CONSTRUCTION
3213                SkDebugf("%s close\n", __FUNCTION__);
3214        #endif
3215                simple.close();
3216            }
3217            current = findChase(chaseArray, index, endIndex, contourWinding);
3218        #if DEBUG_ACTIVE_SPANS
3219            debugShowActiveSpans(contourList);
3220        #endif
3221            if (!current) {
3222                break;
3223            }
3224            int lesser = SkMin32(index, endIndex);
3225            spanWinding = current->windSum(lesser);
3226            int spanValue = current->windValue(lesser);
3227            SkASSERT(spanWinding != SK_MinS32);
3228            int spanSign = current->spanSign(index, endIndex);
3229        #if DEBUG_WINDING
3230            SkDebugf("%s spanWinding=%d spanSign=%d winding=%d spanValue=%d\n",
3231                    __FUNCTION__, spanWinding, spanSign, winding, spanValue);
3232        #endif
3233            if (spanWinding * spanSign < 0) {
3234        #if DEBUG_WINDING
3235                SkDebugf("%s spanWinding * spanSign < 0\n", __FUNCTION__);
3236        #endif
3237   //             SkTSwap<int>(index, endIndex);
3238            }
3239            if (abs(spanWinding) > spanValue) {
3240                winding = spanWinding;
3241                spanWinding = spanValue * SkSign32(spanWinding);
3242                winding -= spanWinding;
3243        #if DEBUG_WINDING
3244                SkDebugf("%s spanWinding=%d winding=%d\n", __FUNCTION__,
3245                        spanWinding, winding);
3246        #endif
3247            } else {
3248        #if DEBUG_WINDING
3249                SkDebugf("%s ->0 contourWinding=%d winding=%d\n", __FUNCTION__,
3250                        contourWinding, winding);
3251        #endif
3252                winding = 0;
3253            }
3254        } while (true);
3255    } while (true);
3256}
3257
3258static void fixOtherTIndex(SkTDArray<Contour*>& contourList) {
3259    int contourCount = contourList.count();
3260    for (int cTest = 0; cTest < contourCount; ++cTest) {
3261        Contour* contour = contourList[cTest];
3262        contour->fixOtherTIndex();
3263    }
3264}
3265
3266static void makeContourList(SkTArray<Contour>& contours,
3267        SkTDArray<Contour*>& list) {
3268    int count = contours.count();
3269    if (count == 0) {
3270        return;
3271    }
3272    for (int index = 0; index < count; ++index) {
3273        *list.append() = &contours[index];
3274    }
3275    QSort<Contour>(list.begin(), list.end() - 1);
3276}
3277
3278void simplifyx(const SkPath& path, SkPath& simple) {
3279    // returns 1 for evenodd, -1 for winding, regardless of inverse-ness
3280    int winding = (path.getFillType() & 1) ? 1 : -1;
3281    simple.reset();
3282    simple.setFillType(SkPath::kEvenOdd_FillType);
3283
3284    // turn path into list of segments
3285    SkTArray<Contour> contours;
3286    // FIXME: add self-intersecting cubics' T values to segment
3287    EdgeBuilder builder(path, contours);
3288    SkTDArray<Contour*> contourList;
3289    makeContourList(contours, contourList);
3290    Contour** currentPtr = contourList.begin();
3291    if (!currentPtr) {
3292        return;
3293    }
3294    Contour** listEnd = contourList.end();
3295    // find all intersections between segments
3296    do {
3297        Contour** nextPtr = currentPtr;
3298        Contour* current = *currentPtr++;
3299        Contour* next;
3300        do {
3301            next = *nextPtr++;
3302        } while (addIntersectTs(current, next) && nextPtr != listEnd);
3303    } while (currentPtr != listEnd);
3304    // eat through coincident edges
3305    coincidenceCheck(contourList, winding);
3306    fixOtherTIndex(contourList);
3307    // construct closed contours
3308    bridge(contourList, simple);
3309}
3310
3311