SkRect.h revision 4469938e92d779dff05e745559e67907bbf21e78
1
2/*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10#ifndef SkRect_DEFINED
11#define SkRect_DEFINED
12
13#include "SkPoint.h"
14#include "SkSize.h"
15
16/** \struct SkIRect
17
18    SkIRect holds four 32 bit integer coordinates for a rectangle
19*/
20struct SK_API SkIRect {
21    int32_t fLeft, fTop, fRight, fBottom;
22
23    static SkIRect SK_WARN_UNUSED_RESULT MakeEmpty() {
24        SkIRect r;
25        r.setEmpty();
26        return r;
27    }
28
29    static SkIRect SK_WARN_UNUSED_RESULT MakeLargest() {
30        SkIRect r;
31        r.setLargest();
32        return r;
33    }
34
35    static SkIRect SK_WARN_UNUSED_RESULT MakeWH(int32_t w, int32_t h) {
36        SkIRect r;
37        r.set(0, 0, w, h);
38        return r;
39    }
40
41    static SkIRect SK_WARN_UNUSED_RESULT MakeSize(const SkISize& size) {
42        SkIRect r;
43        r.set(0, 0, size.width(), size.height());
44        return r;
45    }
46
47    static SkIRect SK_WARN_UNUSED_RESULT MakeLTRB(int32_t l, int32_t t, int32_t r, int32_t b) {
48        SkIRect rect;
49        rect.set(l, t, r, b);
50        return rect;
51    }
52
53    static SkIRect SK_WARN_UNUSED_RESULT MakeXYWH(int32_t x, int32_t y, int32_t w, int32_t h) {
54        SkIRect r;
55        r.set(x, y, x + w, y + h);
56        return r;
57    }
58
59    int left() const { return fLeft; }
60    int top() const { return fTop; }
61    int right() const { return fRight; }
62    int bottom() const { return fBottom; }
63
64    /** return the left edge of the rect */
65    int x() const { return fLeft; }
66    /** return the top edge of the rect */
67    int y() const { return fTop; }
68    /**
69     *  Returns the rectangle's width. This does not check for a valid rect
70     *  (i.e. left <= right) so the result may be negative.
71     */
72    int width() const { return fRight - fLeft; }
73
74    /**
75     *  Returns the rectangle's height. This does not check for a valid rect
76     *  (i.e. top <= bottom) so the result may be negative.
77     */
78    int height() const { return fBottom - fTop; }
79
80    /**
81     *  Since the center of an integer rect may fall on a factional value, this
82     *  method is defined to return (right + left) >> 1.
83     *
84     *  This is a specific "truncation" of the average, which is different than
85     *  (right + left) / 2 when the sum is negative.
86     */
87    int centerX() const { return (fRight + fLeft) >> 1; }
88
89    /**
90     *  Since the center of an integer rect may fall on a factional value, this
91     *  method is defined to return (bottom + top) >> 1
92     *
93     *  This is a specific "truncation" of the average, which is different than
94     *  (bottom + top) / 2 when the sum is negative.
95     */
96    int centerY() const { return (fBottom + fTop) >> 1; }
97
98    /**
99     *  Return true if the rectangle's width or height are <= 0
100     */
101    bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; }
102
103    bool isLargest() const { return SK_MinS32 == fLeft &&
104                                    SK_MinS32 == fTop &&
105                                    SK_MaxS32 == fRight &&
106                                    SK_MaxS32 == fBottom; }
107
108    friend bool operator==(const SkIRect& a, const SkIRect& b) {
109        return !memcmp(&a, &b, sizeof(a));
110    }
111
112    friend bool operator!=(const SkIRect& a, const SkIRect& b) {
113        return !(a == b);
114    }
115
116    bool is16Bit() const {
117        return  SkIsS16(fLeft) && SkIsS16(fTop) &&
118                SkIsS16(fRight) && SkIsS16(fBottom);
119    }
120
121    /** Set the rectangle to (0,0,0,0)
122    */
123    void setEmpty() { memset(this, 0, sizeof(*this)); }
124
125    void set(int32_t left, int32_t top, int32_t right, int32_t bottom) {
126        fLeft   = left;
127        fTop    = top;
128        fRight  = right;
129        fBottom = bottom;
130    }
131    // alias for set(l, t, r, b)
132    void setLTRB(int32_t left, int32_t top, int32_t right, int32_t bottom) {
133        this->set(left, top, right, bottom);
134    }
135
136    void setXYWH(int32_t x, int32_t y, int32_t width, int32_t height) {
137        fLeft = x;
138        fTop = y;
139        fRight = x + width;
140        fBottom = y + height;
141    }
142
143    /**
144     *  Make the largest representable rectangle
145     */
146    void setLargest() {
147        fLeft = fTop = SK_MinS32;
148        fRight = fBottom = SK_MaxS32;
149    }
150
151    /**
152     *  Make the largest representable rectangle, but inverted (e.g. fLeft will
153     *  be max 32bit and right will be min 32bit).
154     */
155    void setLargestInverted() {
156        fLeft = fTop = SK_MaxS32;
157        fRight = fBottom = SK_MinS32;
158    }
159
160    /** Offset set the rectangle by adding dx to its left and right,
161        and adding dy to its top and bottom.
162    */
163    void offset(int32_t dx, int32_t dy) {
164        fLeft   += dx;
165        fTop    += dy;
166        fRight  += dx;
167        fBottom += dy;
168    }
169
170    void offset(const SkIPoint& delta) {
171        this->offset(delta.fX, delta.fY);
172    }
173
174    /**
175     *  Offset this rect such its new x() and y() will equal newX and newY.
176     */
177    void offsetTo(int32_t newX, int32_t newY) {
178        fRight += newX - fLeft;
179        fBottom += newY - fTop;
180        fLeft = newX;
181        fTop = newY;
182    }
183
184    /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are moved inwards,
185        making the rectangle narrower. If dx is negative, then the sides are moved outwards,
186        making the rectangle wider. The same holds true for dy and the top and bottom.
187    */
188    void inset(int32_t dx, int32_t dy) {
189        fLeft   += dx;
190        fTop    += dy;
191        fRight  -= dx;
192        fBottom -= dy;
193    }
194
195   /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are
196       moved outwards, making the rectangle wider. If dx is negative, then the
197       sides are moved inwards, making the rectangle narrower. The same holds
198       true for dy and the top and bottom.
199    */
200    void outset(int32_t dx, int32_t dy)  { this->inset(-dx, -dy); }
201
202    bool quickReject(int l, int t, int r, int b) const {
203        return l >= fRight || fLeft >= r || t >= fBottom || fTop >= b;
204    }
205
206    /** Returns true if (x,y) is inside the rectangle and the rectangle is not
207        empty. The left and top are considered to be inside, while the right
208        and bottom are not. Thus for the rectangle (0, 0, 5, 10), the
209        points (0,0) and (0,9) are inside, while (-1,0) and (5,9) are not.
210    */
211    bool contains(int32_t x, int32_t y) const {
212        return  (unsigned)(x - fLeft) < (unsigned)(fRight - fLeft) &&
213                (unsigned)(y - fTop) < (unsigned)(fBottom - fTop);
214    }
215
216    /** Returns true if the 4 specified sides of a rectangle are inside or equal to this rectangle.
217        If either rectangle is empty, contains() returns false.
218    */
219    bool contains(int32_t left, int32_t top, int32_t right, int32_t bottom) const {
220        return  left < right && top < bottom && !this->isEmpty() && // check for empties
221                fLeft <= left && fTop <= top &&
222                fRight >= right && fBottom >= bottom;
223    }
224
225    /** Returns true if the specified rectangle r is inside or equal to this rectangle.
226    */
227    bool contains(const SkIRect& r) const {
228        return  !r.isEmpty() && !this->isEmpty() &&     // check for empties
229                fLeft <= r.fLeft && fTop <= r.fTop &&
230                fRight >= r.fRight && fBottom >= r.fBottom;
231    }
232
233    /** Return true if this rectangle contains the specified rectangle.
234        For speed, this method does not check if either this or the specified
235        rectangles are empty, and if either is, its return value is undefined.
236        In the debugging build however, we assert that both this and the
237        specified rectangles are non-empty.
238    */
239    bool containsNoEmptyCheck(int32_t left, int32_t top,
240                              int32_t right, int32_t bottom) const {
241        SkASSERT(fLeft < fRight && fTop < fBottom);
242        SkASSERT(left < right && top < bottom);
243
244        return fLeft <= left && fTop <= top &&
245               fRight >= right && fBottom >= bottom;
246    }
247
248    bool containsNoEmptyCheck(const SkIRect& r) const {
249        return containsNoEmptyCheck(r.fLeft, r.fTop, r.fRight, r.fBottom);
250    }
251
252    /** If r intersects this rectangle, return true and set this rectangle to that
253        intersection, otherwise return false and do not change this rectangle.
254        If either rectangle is empty, do nothing and return false.
255    */
256    bool intersect(const SkIRect& r) {
257        SkASSERT(&r);
258        return this->intersect(r.fLeft, r.fTop, r.fRight, r.fBottom);
259    }
260
261    /** If rectangles a and b intersect, return true and set this rectangle to
262        that intersection, otherwise return false and do not change this
263        rectangle. If either rectangle is empty, do nothing and return false.
264    */
265    bool intersect(const SkIRect& a, const SkIRect& b) {
266        SkASSERT(&a && &b);
267
268        if (!a.isEmpty() && !b.isEmpty() &&
269                a.fLeft < b.fRight && b.fLeft < a.fRight &&
270                a.fTop < b.fBottom && b.fTop < a.fBottom) {
271            fLeft   = SkMax32(a.fLeft,   b.fLeft);
272            fTop    = SkMax32(a.fTop,    b.fTop);
273            fRight  = SkMin32(a.fRight,  b.fRight);
274            fBottom = SkMin32(a.fBottom, b.fBottom);
275            return true;
276        }
277        return false;
278    }
279
280    /** If rectangles a and b intersect, return true and set this rectangle to
281        that intersection, otherwise return false and do not change this
282        rectangle. For speed, no check to see if a or b are empty is performed.
283        If either is, then the return result is undefined. In the debug build,
284        we assert that both rectangles are non-empty.
285    */
286    bool intersectNoEmptyCheck(const SkIRect& a, const SkIRect& b) {
287        SkASSERT(&a && &b);
288        SkASSERT(!a.isEmpty() && !b.isEmpty());
289
290        if (a.fLeft < b.fRight && b.fLeft < a.fRight &&
291                a.fTop < b.fBottom && b.fTop < a.fBottom) {
292            fLeft   = SkMax32(a.fLeft,   b.fLeft);
293            fTop    = SkMax32(a.fTop,    b.fTop);
294            fRight  = SkMin32(a.fRight,  b.fRight);
295            fBottom = SkMin32(a.fBottom, b.fBottom);
296            return true;
297        }
298        return false;
299    }
300
301    /** If the rectangle specified by left,top,right,bottom intersects this rectangle,
302        return true and set this rectangle to that intersection,
303        otherwise return false and do not change this rectangle.
304        If either rectangle is empty, do nothing and return false.
305    */
306    bool intersect(int32_t left, int32_t top, int32_t right, int32_t bottom) {
307        if (left < right && top < bottom && !this->isEmpty() &&
308                fLeft < right && left < fRight && fTop < bottom && top < fBottom) {
309            if (fLeft < left) fLeft = left;
310            if (fTop < top) fTop = top;
311            if (fRight > right) fRight = right;
312            if (fBottom > bottom) fBottom = bottom;
313            return true;
314        }
315        return false;
316    }
317
318    /** Returns true if a and b are not empty, and they intersect
319     */
320    static bool Intersects(const SkIRect& a, const SkIRect& b) {
321        return  !a.isEmpty() && !b.isEmpty() &&              // check for empties
322        a.fLeft < b.fRight && b.fLeft < a.fRight &&
323        a.fTop < b.fBottom && b.fTop < a.fBottom;
324    }
325
326    /**
327     *  Returns true if a and b intersect. debug-asserts that neither are empty.
328     */
329    static bool IntersectsNoEmptyCheck(const SkIRect& a, const SkIRect& b) {
330        SkASSERT(!a.isEmpty());
331        SkASSERT(!b.isEmpty());
332        return  a.fLeft < b.fRight && b.fLeft < a.fRight &&
333                a.fTop < b.fBottom && b.fTop < a.fBottom;
334    }
335
336    /** Update this rectangle to enclose itself and the specified rectangle.
337        If this rectangle is empty, just set it to the specified rectangle. If the specified
338        rectangle is empty, do nothing.
339    */
340    void join(int32_t left, int32_t top, int32_t right, int32_t bottom);
341
342    /** Update this rectangle to enclose itself and the specified rectangle.
343        If this rectangle is empty, just set it to the specified rectangle. If the specified
344        rectangle is empty, do nothing.
345    */
346    void join(const SkIRect& r) {
347        this->join(r.fLeft, r.fTop, r.fRight, r.fBottom);
348    }
349
350    /** Swap top/bottom or left/right if there are flipped.
351        This can be called if the edges are computed separately,
352        and may have crossed over each other.
353        When this returns, left <= right && top <= bottom
354    */
355    void sort();
356
357    static const SkIRect& SK_WARN_UNUSED_RESULT EmptyIRect() {
358        static const SkIRect gEmpty = { 0, 0, 0, 0 };
359        return gEmpty;
360    }
361};
362
363/** \struct SkRect
364*/
365struct SK_API SkRect {
366    SkScalar    fLeft, fTop, fRight, fBottom;
367
368    static SkRect SK_WARN_UNUSED_RESULT MakeEmpty() {
369        SkRect r;
370        r.setEmpty();
371        return r;
372    }
373
374    static SkRect SK_WARN_UNUSED_RESULT MakeLargest() {
375        SkRect r;
376        r.setLargest();
377        return r;
378    }
379
380    static SkRect SK_WARN_UNUSED_RESULT MakeWH(SkScalar w, SkScalar h) {
381        SkRect r;
382        r.set(0, 0, w, h);
383        return r;
384    }
385
386    static SkRect SK_WARN_UNUSED_RESULT MakeSize(const SkSize& size) {
387        SkRect r;
388        r.set(0, 0, size.width(), size.height());
389        return r;
390    }
391
392    static SkRect SK_WARN_UNUSED_RESULT MakeLTRB(SkScalar l, SkScalar t, SkScalar r, SkScalar b) {
393        SkRect rect;
394        rect.set(l, t, r, b);
395        return rect;
396    }
397
398    static SkRect SK_WARN_UNUSED_RESULT MakeXYWH(SkScalar x, SkScalar y, SkScalar w, SkScalar h) {
399        SkRect r;
400        r.set(x, y, x + w, y + h);
401        return r;
402    }
403
404    SK_ATTR_DEPRECATED("use Make()")
405    static SkRect SK_WARN_UNUSED_RESULT MakeFromIRect(const SkIRect& irect) {
406        SkRect r;
407        r.set(SkIntToScalar(irect.fLeft),
408              SkIntToScalar(irect.fTop),
409              SkIntToScalar(irect.fRight),
410              SkIntToScalar(irect.fBottom));
411        return r;
412    }
413
414    static SkRect SK_WARN_UNUSED_RESULT Make(const SkIRect& irect) {
415        SkRect r;
416        r.set(SkIntToScalar(irect.fLeft),
417              SkIntToScalar(irect.fTop),
418              SkIntToScalar(irect.fRight),
419              SkIntToScalar(irect.fBottom));
420        return r;
421    }
422
423    /**
424     *  Return true if the rectangle's width or height are <= 0
425     */
426    bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; }
427
428    bool isLargest() const { return SK_ScalarMin == fLeft &&
429                                    SK_ScalarMin == fTop &&
430                                    SK_ScalarMax == fRight &&
431                                    SK_ScalarMax == fBottom; }
432
433    /**
434     *  Returns true iff all values in the rect are finite. If any are
435     *  infinite or NaN (or SK_FixedNaN when SkScalar is fixed) then this
436     *  returns false.
437     */
438    bool isFinite() const {
439#ifdef SK_SCALAR_IS_FLOAT
440        float accum = 0;
441        accum *= fLeft;
442        accum *= fTop;
443        accum *= fRight;
444        accum *= fBottom;
445
446        // accum is either NaN or it is finite (zero).
447        SkASSERT(0 == accum || !(accum == accum));
448
449        // value==value will be true iff value is not NaN
450        // TODO: is it faster to say !accum or accum==accum?
451        return accum == accum;
452#else
453        // use bit-or for speed, since we don't care about short-circuting the
454        // tests, and we expect the common case will be that we need to check all.
455        int isNaN = (SK_FixedNaN == fLeft)  | (SK_FixedNaN == fTop) |
456                    (SK_FixedNaN == fRight) | (SK_FixedNaN == fBottom);
457        return !isNaN;
458#endif
459    }
460
461    SkScalar    x() const { return fLeft; }
462    SkScalar    y() const { return fTop; }
463    SkScalar    left() const { return fLeft; }
464    SkScalar    top() const { return fTop; }
465    SkScalar    right() const { return fRight; }
466    SkScalar    bottom() const { return fBottom; }
467    SkScalar    width() const { return fRight - fLeft; }
468    SkScalar    height() const { return fBottom - fTop; }
469    SkScalar    centerX() const { return SkScalarHalf(fLeft + fRight); }
470    SkScalar    centerY() const { return SkScalarHalf(fTop + fBottom); }
471
472    friend bool operator==(const SkRect& a, const SkRect& b) {
473        return SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4);
474    }
475
476    friend bool operator!=(const SkRect& a, const SkRect& b) {
477        return !SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4);
478    }
479
480    /** return the 4 points that enclose the rectangle (top-left, top-right, bottom-right,
481        bottom-left). TODO: Consider adding param to control whether quad is CW or CCW.
482     */
483    void toQuad(SkPoint quad[4]) const;
484
485    /** Set this rectangle to the empty rectangle (0,0,0,0)
486    */
487    void setEmpty() { memset(this, 0, sizeof(*this)); }
488
489    void set(const SkIRect& src) {
490        fLeft   = SkIntToScalar(src.fLeft);
491        fTop    = SkIntToScalar(src.fTop);
492        fRight  = SkIntToScalar(src.fRight);
493        fBottom = SkIntToScalar(src.fBottom);
494    }
495
496    void set(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
497        fLeft   = left;
498        fTop    = top;
499        fRight  = right;
500        fBottom = bottom;
501    }
502    // alias for set(l, t, r, b)
503    void setLTRB(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
504        this->set(left, top, right, bottom);
505    }
506
507    /** Initialize the rect with the 4 specified integers. The routine handles
508        converting them to scalars (by calling SkIntToScalar)
509     */
510    void iset(int left, int top, int right, int bottom) {
511        fLeft   = SkIntToScalar(left);
512        fTop    = SkIntToScalar(top);
513        fRight  = SkIntToScalar(right);
514        fBottom = SkIntToScalar(bottom);
515    }
516
517    /**
518     *  Set this rectangle to be left/top at 0,0, and have the specified width
519     *  and height (automatically converted to SkScalar).
520     */
521    void isetWH(int width, int height) {
522        fLeft = fTop = 0;
523        fRight = SkIntToScalar(width);
524        fBottom = SkIntToScalar(height);
525    }
526
527    /** Set this rectangle to be the bounds of the array of points.
528        If the array is empty (count == 0), then set this rectangle
529        to the empty rectangle (0,0,0,0)
530    */
531    void set(const SkPoint pts[], int count) {
532        // set() had been checking for non-finite values, so keep that behavior
533        // for now. Now that we have setBoundsCheck(), we may decide to make
534        // set() be simpler/faster, and not check for those.
535        (void)this->setBoundsCheck(pts, count);
536    }
537
538    // alias for set(pts, count)
539    void setBounds(const SkPoint pts[], int count) {
540        (void)this->setBoundsCheck(pts, count);
541    }
542
543    /**
544     *  Compute the bounds of the array of points, and set this rect to that
545     *  bounds and return true... unless a non-finite value is encountered,
546     *  in which case this rect is set to empty and false is returned.
547     */
548    bool setBoundsCheck(const SkPoint pts[], int count);
549
550    void set(const SkPoint& p0, const SkPoint& p1) {
551        fLeft =   SkMinScalar(p0.fX, p1.fX);
552        fRight =  SkMaxScalar(p0.fX, p1.fX);
553        fTop =    SkMinScalar(p0.fY, p1.fY);
554        fBottom = SkMaxScalar(p0.fY, p1.fY);
555    }
556
557    void setXYWH(SkScalar x, SkScalar y, SkScalar width, SkScalar height) {
558        fLeft = x;
559        fTop = y;
560        fRight = x + width;
561        fBottom = y + height;
562    }
563
564    void setWH(SkScalar width, SkScalar height) {
565        fLeft = 0;
566        fTop = 0;
567        fRight = width;
568        fBottom = height;
569    }
570
571    /**
572     *  Make the largest representable rectangle
573     */
574    void setLargest() {
575        fLeft = fTop = SK_ScalarMin;
576        fRight = fBottom = SK_ScalarMax;
577    }
578
579    /**
580     *  Make the largest representable rectangle, but inverted (e.g. fLeft will
581     *  be max and right will be min).
582     */
583    void setLargestInverted() {
584        fLeft = fTop = SK_ScalarMax;
585        fRight = fBottom = SK_ScalarMin;
586    }
587
588    /** Offset set the rectangle by adding dx to its left and right,
589        and adding dy to its top and bottom.
590    */
591    void offset(SkScalar dx, SkScalar dy) {
592        fLeft   += dx;
593        fTop    += dy;
594        fRight  += dx;
595        fBottom += dy;
596    }
597
598    void offset(const SkPoint& delta) {
599        this->offset(delta.fX, delta.fY);
600    }
601
602    /**
603     *  Offset this rect such its new x() and y() will equal newX and newY.
604     */
605    void offsetTo(SkScalar newX, SkScalar newY) {
606        fRight += newX - fLeft;
607        fBottom += newY - fTop;
608        fLeft = newX;
609        fTop = newY;
610    }
611
612    /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are
613        moved inwards, making the rectangle narrower. If dx is negative, then
614        the sides are moved outwards, making the rectangle wider. The same holds
615         true for dy and the top and bottom.
616    */
617    void inset(SkScalar dx, SkScalar dy)  {
618        fLeft   += dx;
619        fTop    += dy;
620        fRight  -= dx;
621        fBottom -= dy;
622    }
623
624   /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are
625       moved outwards, making the rectangle wider. If dx is negative, then the
626       sides are moved inwards, making the rectangle narrower. The same holds
627       true for dy and the top and bottom.
628    */
629    void outset(SkScalar dx, SkScalar dy)  { this->inset(-dx, -dy); }
630
631    /** If this rectangle intersects r, return true and set this rectangle to that
632        intersection, otherwise return false and do not change this rectangle.
633        If either rectangle is empty, do nothing and return false.
634    */
635    bool intersect(const SkRect& r);
636
637    /** If this rectangle intersects the rectangle specified by left, top, right, bottom,
638        return true and set this rectangle to that intersection, otherwise return false
639        and do not change this rectangle.
640        If either rectangle is empty, do nothing and return false.
641    */
642    bool intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom);
643
644    /**
645     *  Return true if this rectangle is not empty, and the specified sides of
646     *  a rectangle are not empty, and they intersect.
647     */
648    bool intersects(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) const {
649        return // first check that both are not empty
650               left < right && top < bottom &&
651               fLeft < fRight && fTop < fBottom &&
652               // now check for intersection
653               fLeft < right && left < fRight &&
654               fTop < bottom && top < fBottom;
655    }
656
657    /** If rectangles a and b intersect, return true and set this rectangle to
658     *  that intersection, otherwise return false and do not change this
659     *  rectangle. If either rectangle is empty, do nothing and return false.
660     */
661    bool intersect(const SkRect& a, const SkRect& b);
662
663    /**
664     *  Return true if rectangles a and b are not empty and intersect.
665     */
666    static bool Intersects(const SkRect& a, const SkRect& b) {
667        return  !a.isEmpty() && !b.isEmpty() &&
668                a.fLeft < b.fRight && b.fLeft < a.fRight &&
669                a.fTop < b.fBottom && b.fTop < a.fBottom;
670    }
671
672    /**
673     *  Update this rectangle to enclose itself and the specified rectangle.
674     *  If this rectangle is empty, just set it to the specified rectangle.
675     *  If the specified rectangle is empty, do nothing.
676     */
677    void join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom);
678
679    /** Update this rectangle to enclose itself and the specified rectangle.
680        If this rectangle is empty, just set it to the specified rectangle. If the specified
681        rectangle is empty, do nothing.
682    */
683    void join(const SkRect& r) {
684        this->join(r.fLeft, r.fTop, r.fRight, r.fBottom);
685    }
686    // alias for join()
687    void growToInclude(const SkRect& r) { this->join(r); }
688
689    /**
690     *  Grow the rect to include the specified (x,y). After this call, the
691     *  following will be true: fLeft <= x <= fRight && fTop <= y <= fBottom.
692     *
693     *  This is close, but not quite the same contract as contains(), since
694     *  contains() treats the left and top different from the right and bottom.
695     *  contains(x,y) -> fLeft <= x < fRight && fTop <= y < fBottom. Also note
696     *  that contains(x,y) always returns false if the rect is empty.
697     */
698    void growToInclude(SkScalar x, SkScalar y) {
699        fLeft  = SkMinScalar(x, fLeft);
700        fRight = SkMaxScalar(x, fRight);
701        fTop    = SkMinScalar(y, fTop);
702        fBottom = SkMaxScalar(y, fBottom);
703    }
704
705    /** Bulk version of growToInclude */
706    void growToInclude(const SkPoint pts[], int count) {
707        this->growToInclude(pts, sizeof(SkPoint), count);
708    }
709
710    /** Bulk version of growToInclude with stride. */
711    void growToInclude(const SkPoint pts[], size_t stride, int count) {
712        SkASSERT(count >= 0);
713        SkASSERT(stride >= sizeof(SkPoint));
714        const SkPoint* end = (const SkPoint*)((intptr_t)pts + count * stride);
715        for (; pts < end; pts = (const SkPoint*)((intptr_t)pts + stride)) {
716            this->growToInclude(pts->fX, pts->fY);
717        }
718    }
719
720    /**
721     *  Return true if this rectangle contains r, and if both rectangles are
722     *  not empty.
723     */
724    bool contains(const SkRect& r) const {
725        // todo: can we eliminate the this->isEmpty check?
726        return  !r.isEmpty() && !this->isEmpty() &&
727                fLeft <= r.fLeft && fTop <= r.fTop &&
728                fRight >= r.fRight && fBottom >= r.fBottom;
729    }
730
731    /**
732     *  Set the dst rectangle by rounding this rectangle's coordinates to their
733     *  nearest integer values using SkScalarRound.
734     */
735    void round(SkIRect* dst) const {
736        SkASSERT(dst);
737        dst->set(SkScalarRoundToInt(fLeft), SkScalarRoundToInt(fTop),
738                 SkScalarRoundToInt(fRight), SkScalarRoundToInt(fBottom));
739    }
740
741    /**
742     *  Set the dst rectangle by rounding "out" this rectangle, choosing the
743     *  SkScalarFloor of top and left, and the SkScalarCeil of right and bottom.
744     */
745    void roundOut(SkIRect* dst) const {
746        SkASSERT(dst);
747        dst->set(SkScalarFloorToInt(fLeft), SkScalarFloorToInt(fTop),
748                 SkScalarCeilToInt(fRight), SkScalarCeilToInt(fBottom));
749    }
750
751    /**
752     *  Expand this rectangle by rounding its coordinates "out", choosing the
753     *  floor of top and left, and the ceil of right and bottom. If this rect
754     *  is already on integer coordinates, then it will be unchanged.
755     */
756    void roundOut() {
757        this->set(SkScalarFloorToScalar(fLeft),
758                  SkScalarFloorToScalar(fTop),
759                  SkScalarCeilToScalar(fRight),
760                  SkScalarCeilToScalar(fBottom));
761    }
762
763    /**
764     *  Set the dst rectangle by rounding "in" this rectangle, choosing the
765     *  ceil of top and left, and the floor of right and bottom. This does *not*
766     *  call sort(), so it is possible that the resulting rect is inverted...
767     *  e.g. left >= right or top >= bottom. Call isEmpty() to detect that.
768     */
769    void roundIn(SkIRect* dst) const {
770        SkASSERT(dst);
771        dst->set(SkScalarCeilToInt(fLeft), SkScalarCeilToInt(fTop),
772                 SkScalarFloorToInt(fRight), SkScalarFloorToInt(fBottom));
773    }
774
775
776    /**
777     *  Swap top/bottom or left/right if there are flipped (i.e. if width()
778     *  or height() would have returned a negative value.) This should be called
779     *  if the edges are computed separately, and may have crossed over each
780     *  other. When this returns, left <= right && top <= bottom
781     */
782    void sort();
783
784    /**
785     *  cast-safe way to treat the rect as an array of (4) SkScalars.
786     */
787    const SkScalar* asScalars() const { return &fLeft; }
788};
789
790#endif
791