SkTypes.h revision fbfcd5602128ec010c82cb733c9cdc0a3254f9f3
1
2/*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10#ifndef SkTypes_DEFINED
11#define SkTypes_DEFINED
12
13#include "SkPreConfig.h"
14#include "SkUserConfig.h"
15#include "SkPostConfig.h"
16
17#ifndef SK_IGNORE_STDINT_DOT_H
18    #include <stdint.h>
19#endif
20
21#include <stdio.h>
22
23/** \file SkTypes.h
24*/
25
26/** See SkGraphics::GetVersion() to retrieve these at runtime
27 */
28#define SKIA_VERSION_MAJOR  1
29#define SKIA_VERSION_MINOR  0
30#define SKIA_VERSION_PATCH  0
31
32/*
33    memory wrappers to be implemented by the porting layer (platform)
34*/
35
36/** Called internally if we run out of memory. The platform implementation must
37    not return, but should either throw an exception or otherwise exit.
38*/
39SK_API extern void sk_out_of_memory(void);
40/** Called internally if we hit an unrecoverable error.
41    The platform implementation must not return, but should either throw
42    an exception or otherwise exit.
43*/
44SK_API extern void sk_throw(void);
45
46enum {
47    SK_MALLOC_TEMP  = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame
48    SK_MALLOC_THROW = 0x02  //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated.
49};
50/** Return a block of memory (at least 4-byte aligned) of at least the
51    specified size. If the requested memory cannot be returned, either
52    return null (if SK_MALLOC_TEMP bit is clear) or call sk_throw()
53    (if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free().
54*/
55SK_API extern void* sk_malloc_flags(size_t size, unsigned flags);
56/** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag
57*/
58SK_API extern void* sk_malloc_throw(size_t size);
59/** Same as standard realloc(), but this one never returns null on failure. It will throw
60    an exception if it fails.
61*/
62SK_API extern void* sk_realloc_throw(void* buffer, size_t size);
63/** Free memory returned by sk_malloc(). It is safe to pass null.
64*/
65SK_API extern void sk_free(void*);
66
67// bzero is safer than memset, but we can't rely on it, so... sk_bzero()
68static inline void sk_bzero(void* buffer, size_t size) {
69    memset(buffer, 0, size);
70}
71
72///////////////////////////////////////////////////////////////////////////////
73
74#ifdef SK_OVERRIDE_GLOBAL_NEW
75#include <new>
76
77inline void* operator new(size_t size) {
78    return sk_malloc_throw(size);
79}
80
81inline void operator delete(void* p) {
82    sk_free(p);
83}
84#endif
85
86///////////////////////////////////////////////////////////////////////////////
87
88#define SK_INIT_TO_AVOID_WARNING    = 0
89
90#ifndef SkDebugf
91    void SkDebugf(const char format[], ...);
92#endif
93
94#ifdef SK_DEBUG
95    #define SkASSERT(cond)              SK_DEBUGBREAK(cond)
96    #define SkDEBUGFAIL(message)        SkASSERT(false && message)
97    #define SkDEBUGCODE(code)           code
98    #define SkDECLAREPARAM(type, var)   , type var
99    #define SkPARAM(var)                , var
100//  #define SkDEBUGF(args       )       SkDebugf##args
101    #define SkDEBUGF(args       )       SkDebugf args
102    #define SkAssertResult(cond)        SkASSERT(cond)
103#else
104    #define SkASSERT(cond)
105    #define SkDEBUGFAIL(message)
106    #define SkDEBUGCODE(code)
107    #define SkDEBUGF(args)
108    #define SkDECLAREPARAM(type, var)
109    #define SkPARAM(var)
110
111    // unlike SkASSERT, this guy executes its condition in the non-debug build
112    #define SkAssertResult(cond)        cond
113#endif
114
115namespace {
116
117template <bool>
118struct SkCompileAssert {
119};
120
121}  // namespace
122
123#define SK_COMPILE_ASSERT(expr, msg) \
124    typedef SkCompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
125
126///////////////////////////////////////////////////////////////////////
127
128/**
129 *  Fast type for signed 8 bits. Use for parameter passing and local variables,
130 *  not for storage.
131 */
132typedef int S8CPU;
133
134/**
135 *  Fast type for unsigned 8 bits. Use for parameter passing and local
136 *  variables, not for storage
137 */
138typedef unsigned U8CPU;
139
140/**
141 *  Fast type for signed 16 bits. Use for parameter passing and local variables,
142 *  not for storage
143 */
144typedef int S16CPU;
145
146/**
147 *  Fast type for unsigned 16 bits. Use for parameter passing and local
148 *  variables, not for storage
149 */
150typedef unsigned U16CPU;
151
152/**
153 *  Meant to be faster than bool (doesn't promise to be 0 or 1,
154 *  just 0 or non-zero
155 */
156typedef int SkBool;
157
158/**
159 *  Meant to be a small version of bool, for storage purposes. Will be 0 or 1
160 */
161typedef uint8_t SkBool8;
162
163#ifdef SK_DEBUG
164    SK_API int8_t      SkToS8(long);
165    SK_API uint8_t     SkToU8(size_t);
166    SK_API int16_t     SkToS16(long);
167    SK_API uint16_t    SkToU16(size_t);
168    SK_API int32_t     SkToS32(long);
169    SK_API uint32_t    SkToU32(size_t);
170#else
171    #define SkToS8(x)   ((int8_t)(x))
172    #define SkToU8(x)   ((uint8_t)(x))
173    #define SkToS16(x)  ((int16_t)(x))
174    #define SkToU16(x)  ((uint16_t)(x))
175    #define SkToS32(x)  ((int32_t)(x))
176    #define SkToU32(x)  ((uint32_t)(x))
177#endif
178
179/** Returns 0 or 1 based on the condition
180*/
181#define SkToBool(cond)  ((cond) != 0)
182
183#define SK_MaxS16   32767
184#define SK_MinS16   -32767
185#define SK_MaxU16   0xFFFF
186#define SK_MinU16   0
187#define SK_MaxS32   0x7FFFFFFF
188#define SK_MinS32   0x80000001
189#define SK_MaxU32   0xFFFFFFFF
190#define SK_MinU32   0
191#define SK_NaN32    0x80000000
192
193/** Returns true if the value can be represented with signed 16bits
194 */
195static inline bool SkIsS16(long x) {
196    return (int16_t)x == x;
197}
198
199/** Returns true if the value can be represented with unsigned 16bits
200 */
201static inline bool SkIsU16(long x) {
202    return (uint16_t)x == x;
203}
204
205//////////////////////////////////////////////////////////////////////////////
206#ifndef SK_OFFSETOF
207    #define SK_OFFSETOF(type, field)    (size_t)((char*)&(((type*)1)->field) - (char*)1)
208#endif
209
210/** Returns the number of entries in an array (not a pointer)
211*/
212#define SK_ARRAY_COUNT(array)       (sizeof(array) / sizeof(array[0]))
213
214#define SkAlign2(x)     (((x) + 1) >> 1 << 1)
215#define SkIsAlign2(x)   (0 == ((x) & 1))
216
217#define SkAlign4(x)     (((x) + 3) >> 2 << 2)
218#define SkIsAlign4(x)   (0 == ((x) & 3))
219
220#define SkAlign8(x)     (((x) + 7) >> 3 << 3)
221#define SkIsAlign8(x)   (0 == ((x) & 7))
222
223typedef uint32_t SkFourByteTag;
224#define SkSetFourByteTag(a, b, c, d)    (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
225
226/** 32 bit integer to hold a unicode value
227*/
228typedef int32_t SkUnichar;
229/** 32 bit value to hold a millisecond count
230*/
231typedef uint32_t SkMSec;
232/** 1 second measured in milliseconds
233*/
234#define SK_MSec1 1000
235/** maximum representable milliseconds
236*/
237#define SK_MSecMax 0x7FFFFFFF
238/** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
239*/
240#define SkMSec_LT(a, b)     ((int32_t)(a) - (int32_t)(b) < 0)
241/** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
242*/
243#define SkMSec_LE(a, b)     ((int32_t)(a) - (int32_t)(b) <= 0)
244
245/****************************************************************************
246    The rest of these only build with C++
247*/
248#ifdef __cplusplus
249
250/** Faster than SkToBool for integral conditions. Returns 0 or 1
251*/
252static inline int Sk32ToBool(uint32_t n) {
253    return (n | (0-n)) >> 31;
254}
255
256template <typename T> inline void SkTSwap(T& a, T& b) {
257    T c(a);
258    a = b;
259    b = c;
260}
261
262static inline int32_t SkAbs32(int32_t value) {
263#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
264    if (value < 0)
265        value = -value;
266    return value;
267#else
268    int32_t mask = value >> 31;
269    return (value ^ mask) - mask;
270#endif
271}
272
273static inline int32_t SkMax32(int32_t a, int32_t b) {
274    if (a < b)
275        a = b;
276    return a;
277}
278
279static inline int32_t SkMin32(int32_t a, int32_t b) {
280    if (a > b)
281        a = b;
282    return a;
283}
284
285static inline int32_t SkSign32(int32_t a) {
286    return (a >> 31) | ((unsigned) -a >> 31);
287}
288
289static inline int32_t SkFastMin32(int32_t value, int32_t max) {
290#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
291    if (value > max)
292        value = max;
293    return value;
294#else
295    int diff = max - value;
296    // clear diff if it is negative (clear if value > max)
297    diff &= (diff >> 31);
298    return value + diff;
299#endif
300}
301
302/** Returns signed 32 bit value pinned between min and max, inclusively
303*/
304static inline int32_t SkPin32(int32_t value, int32_t min, int32_t max) {
305#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
306    if (value < min)
307        value = min;
308    if (value > max)
309        value = max;
310#else
311    if (value < min)
312        value = min;
313    else if (value > max)
314        value = max;
315#endif
316    return value;
317}
318
319static inline uint32_t SkSetClearShift(uint32_t bits, bool cond,
320                                       unsigned shift) {
321    SkASSERT((int)cond == 0 || (int)cond == 1);
322    return (bits & ~(1 << shift)) | ((int)cond << shift);
323}
324
325static inline uint32_t SkSetClearMask(uint32_t bits, bool cond,
326                                      uint32_t mask) {
327    return cond ? bits | mask : bits & ~mask;
328}
329
330///////////////////////////////////////////////////////////////////////////////
331
332/** Use to combine multiple bits in a bitmask in a type safe way.
333 */
334template <typename T>
335T SkTBitOr(T a, T b) {
336    return (T)(a | b);
337}
338
339/**
340 *  Use to cast a pointer to a different type, and maintaining strict-aliasing
341 */
342template <typename Dst> Dst SkTCast(const void* ptr) {
343    union {
344        const void* src;
345        Dst dst;
346    } data;
347    data.src = ptr;
348    return data.dst;
349}
350
351//////////////////////////////////////////////////////////////////////////////
352
353/** \class SkNoncopyable
354
355SkNoncopyable is the base class for objects that may do not want to
356be copied. It hides its copy-constructor and its assignment-operator.
357*/
358class SK_API SkNoncopyable {
359public:
360    SkNoncopyable() {}
361
362private:
363    SkNoncopyable(const SkNoncopyable&);
364    SkNoncopyable& operator=(const SkNoncopyable&);
365};
366
367class SkAutoFree : SkNoncopyable {
368public:
369    SkAutoFree() : fPtr(NULL) {}
370    explicit SkAutoFree(void* ptr) : fPtr(ptr) {}
371    ~SkAutoFree() { sk_free(fPtr); }
372
373    /** Return the currently allocate buffer, or null
374    */
375    void* get() const { return fPtr; }
376
377    /** Assign a new ptr allocated with sk_malloc (or null), and return the
378        previous ptr. Note it is the caller's responsibility to sk_free the
379        returned ptr.
380    */
381    void* set(void* ptr) {
382        void* prev = fPtr;
383        fPtr = ptr;
384        return prev;
385    }
386
387    /** Transfer ownership of the current ptr to the caller, setting the
388        internal reference to null. Note the caller is reponsible for calling
389        sk_free on the returned address.
390    */
391    void* detach() { return this->set(NULL); }
392
393    /** Free the current buffer, and set the internal reference to NULL. Same
394        as calling sk_free(detach())
395    */
396    void free() {
397        sk_free(fPtr);
398        fPtr = NULL;
399    }
400
401private:
402    void* fPtr;
403    // illegal
404    SkAutoFree(const SkAutoFree&);
405    SkAutoFree& operator=(const SkAutoFree&);
406};
407
408/**
409 *  Manage an allocated block of heap memory. This object is the sole manager of
410 *  the lifetime of the block, so the caller must not call sk_free() or delete
411 *  on the block, unless detach() was called.
412 */
413class SkAutoMalloc : public SkNoncopyable {
414public:
415    explicit SkAutoMalloc(size_t size = 0) {
416        fPtr = size ? sk_malloc_throw(size) : NULL;
417        fSize = size;
418    }
419
420    ~SkAutoMalloc() {
421        sk_free(fPtr);
422    }
423
424    /**
425     *  Passed to reset to specify what happens if the requested size is smaller
426     *  than the current size (and the current block was dynamically allocated).
427     */
428    enum OnShrink {
429        /**
430         *  If the requested size is smaller than the current size, and the
431         *  current block is dynamically allocated, free the old block and
432         *  malloc a new block of the smaller size.
433         */
434        kAlloc_OnShrink,
435
436        /**
437         *  If the requested size is smaller than the current size, and the
438         *  current block is dynamically allocated, just return the old
439         *  block.
440         */
441        kReuse_OnShrink
442    };
443
444    /**
445     *  Reallocates the block to a new size. The ptr may or may not change.
446     */
447    void* reset(size_t size, OnShrink shrink = kAlloc_OnShrink) {
448        if (size == fSize || (kReuse_OnShrink == shrink && size < fSize)) {
449            return fPtr;
450        }
451
452        sk_free(fPtr);
453        fPtr = size ? sk_malloc_throw(size) : NULL;
454        fSize = size;
455
456        return fPtr;
457    }
458
459    /**
460     *  Releases the block back to the heap
461     */
462    void free() {
463        this->reset(0);
464    }
465
466    /**
467     *  Return the allocated block.
468     */
469    void* get() { return fPtr; }
470    const void* get() const { return fPtr; }
471
472   /** Transfer ownership of the current ptr to the caller, setting the
473       internal reference to null. Note the caller is reponsible for calling
474       sk_free on the returned address.
475    */
476    void* detach() {
477        void* ptr = fPtr;
478        fPtr = NULL;
479        fSize = 0;
480        return ptr;
481    }
482
483private:
484    void*   fPtr;
485    size_t  fSize;  // can be larger than the requested size (see kReuse)
486};
487
488/**
489 *  Manage an allocated block of memory. If the requested size is <= kSize, then
490 *  the allocation will come from the stack rather than the heap. This object
491 *  is the sole manager of the lifetime of the block, so the caller must not
492 *  call sk_free() or delete on the block.
493 */
494template <size_t kSize> class SkAutoSMalloc : SkNoncopyable {
495public:
496    /**
497     *  Creates initially empty storage. get() returns a ptr, but it is to
498     *  a zero-byte allocation. Must call reset(size) to return an allocated
499     *  block.
500     */
501    SkAutoSMalloc() {
502        fPtr = fStorage;
503        fSize = 0;
504    }
505
506    /**
507     *  Allocate a block of the specified size. If size <= kSize, then the
508     *  allocation will come from the stack, otherwise it will be dynamically
509     *  allocated.
510     */
511    explicit SkAutoSMalloc(size_t size) {
512        fPtr = fStorage;
513        fSize = 0;
514        this->reset(size);
515    }
516
517    /**
518     *  Free the allocated block (if any). If the block was small enought to
519     *  have been allocated on the stack (size <= kSize) then this does nothing.
520     */
521    ~SkAutoSMalloc() {
522        if (fPtr != (void*)fStorage) {
523            sk_free(fPtr);
524        }
525    }
526
527    /**
528     *  Return the allocated block. May return non-null even if the block is
529     *  of zero size. Since this may be on the stack or dynamically allocated,
530     *  the caller must not call sk_free() on it, but must rely on SkAutoSMalloc
531     *  to manage it.
532     */
533    void* get() const { return fPtr; }
534
535    /**
536     *  Return a new block of the requested size, freeing (as necessary) any
537     *  previously allocated block. As with the constructor, if size <= kSize
538     *  then the return block may be allocated locally, rather than from the
539     *  heap.
540     */
541    void* reset(size_t size,
542                SkAutoMalloc::OnShrink shrink = SkAutoMalloc::kAlloc_OnShrink) {
543        if (size == fSize || (SkAutoMalloc::kReuse_OnShrink == shrink &&
544                              size < fSize)) {
545            return fPtr;
546        }
547
548        if (fPtr != (void*)fStorage) {
549            sk_free(fPtr);
550        }
551
552        if (size <= kSize) {
553            fPtr = fStorage;
554        } else {
555            fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP);
556        }
557        return fPtr;
558    }
559
560private:
561    void*       fPtr;
562    size_t      fSize;  // can be larger than the requested size (see kReuse)
563    uint32_t    fStorage[(kSize + 3) >> 2];
564};
565
566#endif /* C++ */
567
568#endif
569