1// Copyright (c) 2011 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "SkConvolver.h"
6#include "SkSize.h"
7#include "SkTypes.h"
8
9namespace {
10
11    // Converts the argument to an 8-bit unsigned value by clamping to the range
12    // 0-255.
13    inline unsigned char ClampTo8(int a) {
14        if (static_cast<unsigned>(a) < 256) {
15            return a;  // Avoid the extra check in the common case.
16        }
17        if (a < 0) {
18            return 0;
19        }
20        return 255;
21    }
22
23    // Stores a list of rows in a circular buffer. The usage is you write into it
24    // by calling AdvanceRow. It will keep track of which row in the buffer it
25    // should use next, and the total number of rows added.
26    class CircularRowBuffer {
27    public:
28        // The number of pixels in each row is given in |sourceRowPixelWidth|.
29        // The maximum number of rows needed in the buffer is |maxYFilterSize|
30        // (we only need to store enough rows for the biggest filter).
31        //
32        // We use the |firstInputRow| to compute the coordinates of all of the
33        // following rows returned by Advance().
34        CircularRowBuffer(int destRowPixelWidth, int maxYFilterSize,
35                          int firstInputRow)
36            : fRowByteWidth(destRowPixelWidth * 4),
37              fNumRows(maxYFilterSize),
38              fNextRow(0),
39              fNextRowCoordinate(firstInputRow) {
40            fBuffer.reset(fRowByteWidth * maxYFilterSize);
41            fRowAddresses.reset(fNumRows);
42        }
43
44        // Moves to the next row in the buffer, returning a pointer to the beginning
45        // of it.
46        unsigned char* advanceRow() {
47            unsigned char* row = &fBuffer[fNextRow * fRowByteWidth];
48            fNextRowCoordinate++;
49
50            // Set the pointer to the next row to use, wrapping around if necessary.
51            fNextRow++;
52            if (fNextRow == fNumRows) {
53                fNextRow = 0;
54            }
55            return row;
56        }
57
58        // Returns a pointer to an "unrolled" array of rows. These rows will start
59        // at the y coordinate placed into |*firstRowIndex| and will continue in
60        // order for the maximum number of rows in this circular buffer.
61        //
62        // The |firstRowIndex_| may be negative. This means the circular buffer
63        // starts before the top of the image (it hasn't been filled yet).
64        unsigned char* const* GetRowAddresses(int* firstRowIndex) {
65            // Example for a 4-element circular buffer holding coords 6-9.
66            //   Row 0   Coord 8
67            //   Row 1   Coord 9
68            //   Row 2   Coord 6  <- fNextRow = 2, fNextRowCoordinate = 10.
69            //   Row 3   Coord 7
70            //
71            // The "next" row is also the first (lowest) coordinate. This computation
72            // may yield a negative value, but that's OK, the math will work out
73            // since the user of this buffer will compute the offset relative
74            // to the firstRowIndex and the negative rows will never be used.
75            *firstRowIndex = fNextRowCoordinate - fNumRows;
76
77            int curRow = fNextRow;
78            for (int i = 0; i < fNumRows; i++) {
79                fRowAddresses[i] = &fBuffer[curRow * fRowByteWidth];
80
81                // Advance to the next row, wrapping if necessary.
82                curRow++;
83                if (curRow == fNumRows) {
84                    curRow = 0;
85                }
86            }
87            return &fRowAddresses[0];
88        }
89
90    private:
91        // The buffer storing the rows. They are packed, each one fRowByteWidth.
92        SkTArray<unsigned char> fBuffer;
93
94        // Number of bytes per row in the |buffer|.
95        int fRowByteWidth;
96
97        // The number of rows available in the buffer.
98        int fNumRows;
99
100        // The next row index we should write into. This wraps around as the
101        // circular buffer is used.
102        int fNextRow;
103
104        // The y coordinate of the |fNextRow|. This is incremented each time a
105        // new row is appended and does not wrap.
106        int fNextRowCoordinate;
107
108        // Buffer used by GetRowAddresses().
109        SkTArray<unsigned char*> fRowAddresses;
110    };
111
112// Convolves horizontally along a single row. The row data is given in
113// |srcData| and continues for the numValues() of the filter.
114template<bool hasAlpha>
115    void ConvolveHorizontally(const unsigned char* srcData,
116                              const SkConvolutionFilter1D& filter,
117                              unsigned char* outRow) {
118        // Loop over each pixel on this row in the output image.
119        int numValues = filter.numValues();
120        for (int outX = 0; outX < numValues; outX++) {
121            // Get the filter that determines the current output pixel.
122            int filterOffset, filterLength;
123            const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
124                filter.FilterForValue(outX, &filterOffset, &filterLength);
125
126            // Compute the first pixel in this row that the filter affects. It will
127            // touch |filterLength| pixels (4 bytes each) after this.
128            const unsigned char* rowToFilter = &srcData[filterOffset * 4];
129
130            // Apply the filter to the row to get the destination pixel in |accum|.
131            int accum[4] = {0};
132            for (int filterX = 0; filterX < filterLength; filterX++) {
133                SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterX];
134                accum[0] += curFilter * rowToFilter[filterX * 4 + 0];
135                accum[1] += curFilter * rowToFilter[filterX * 4 + 1];
136                accum[2] += curFilter * rowToFilter[filterX * 4 + 2];
137                if (hasAlpha) {
138                    accum[3] += curFilter * rowToFilter[filterX * 4 + 3];
139                }
140            }
141
142            // Bring this value back in range. All of the filter scaling factors
143            // are in fixed point with kShiftBits bits of fractional part.
144            accum[0] >>= SkConvolutionFilter1D::kShiftBits;
145            accum[1] >>= SkConvolutionFilter1D::kShiftBits;
146            accum[2] >>= SkConvolutionFilter1D::kShiftBits;
147            if (hasAlpha) {
148                accum[3] >>= SkConvolutionFilter1D::kShiftBits;
149            }
150
151            // Store the new pixel.
152            outRow[outX * 4 + 0] = ClampTo8(accum[0]);
153            outRow[outX * 4 + 1] = ClampTo8(accum[1]);
154            outRow[outX * 4 + 2] = ClampTo8(accum[2]);
155            if (hasAlpha) {
156                outRow[outX * 4 + 3] = ClampTo8(accum[3]);
157            }
158        }
159    }
160
161// Does vertical convolution to produce one output row. The filter values and
162// length are given in the first two parameters. These are applied to each
163// of the rows pointed to in the |sourceDataRows| array, with each row
164// being |pixelWidth| wide.
165//
166// The output must have room for |pixelWidth * 4| bytes.
167template<bool hasAlpha>
168    void ConvolveVertically(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
169                            int filterLength,
170                            unsigned char* const* sourceDataRows,
171                            int pixelWidth,
172                            unsigned char* outRow) {
173        // We go through each column in the output and do a vertical convolution,
174        // generating one output pixel each time.
175        for (int outX = 0; outX < pixelWidth; outX++) {
176            // Compute the number of bytes over in each row that the current column
177            // we're convolving starts at. The pixel will cover the next 4 bytes.
178            int byteOffset = outX * 4;
179
180            // Apply the filter to one column of pixels.
181            int accum[4] = {0};
182            for (int filterY = 0; filterY < filterLength; filterY++) {
183                SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterY];
184                accum[0] += curFilter * sourceDataRows[filterY][byteOffset + 0];
185                accum[1] += curFilter * sourceDataRows[filterY][byteOffset + 1];
186                accum[2] += curFilter * sourceDataRows[filterY][byteOffset + 2];
187                if (hasAlpha) {
188                    accum[3] += curFilter * sourceDataRows[filterY][byteOffset + 3];
189                }
190            }
191
192            // Bring this value back in range. All of the filter scaling factors
193            // are in fixed point with kShiftBits bits of precision.
194            accum[0] >>= SkConvolutionFilter1D::kShiftBits;
195            accum[1] >>= SkConvolutionFilter1D::kShiftBits;
196            accum[2] >>= SkConvolutionFilter1D::kShiftBits;
197            if (hasAlpha) {
198                accum[3] >>= SkConvolutionFilter1D::kShiftBits;
199            }
200
201            // Store the new pixel.
202            outRow[byteOffset + 0] = ClampTo8(accum[0]);
203            outRow[byteOffset + 1] = ClampTo8(accum[1]);
204            outRow[byteOffset + 2] = ClampTo8(accum[2]);
205            if (hasAlpha) {
206                unsigned char alpha = ClampTo8(accum[3]);
207
208                // Make sure the alpha channel doesn't come out smaller than any of the
209                // color channels. We use premultipled alpha channels, so this should
210                // never happen, but rounding errors will cause this from time to time.
211                // These "impossible" colors will cause overflows (and hence random pixel
212                // values) when the resulting bitmap is drawn to the screen.
213                //
214                // We only need to do this when generating the final output row (here).
215                int maxColorChannel = SkTMax(outRow[byteOffset + 0],
216                                               SkTMax(outRow[byteOffset + 1],
217                                                      outRow[byteOffset + 2]));
218                if (alpha < maxColorChannel) {
219                    outRow[byteOffset + 3] = maxColorChannel;
220                } else {
221                    outRow[byteOffset + 3] = alpha;
222                }
223            } else {
224                // No alpha channel, the image is opaque.
225                outRow[byteOffset + 3] = 0xff;
226            }
227        }
228    }
229
230    void ConvolveVertically(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
231                            int filterLength,
232                            unsigned char* const* sourceDataRows,
233                            int pixelWidth,
234                            unsigned char* outRow,
235                            bool sourceHasAlpha) {
236        if (sourceHasAlpha) {
237            ConvolveVertically<true>(filterValues, filterLength,
238                                     sourceDataRows, pixelWidth,
239                                     outRow);
240        } else {
241            ConvolveVertically<false>(filterValues, filterLength,
242                                      sourceDataRows, pixelWidth,
243                                      outRow);
244        }
245    }
246
247}  // namespace
248
249// SkConvolutionFilter1D ---------------------------------------------------------
250
251SkConvolutionFilter1D::SkConvolutionFilter1D()
252: fMaxFilter(0) {
253}
254
255SkConvolutionFilter1D::~SkConvolutionFilter1D() {
256}
257
258void SkConvolutionFilter1D::AddFilter(int filterOffset,
259                                      const float* filterValues,
260                                      int filterLength) {
261    SkASSERT(filterLength > 0);
262
263    SkTArray<ConvolutionFixed> fixedValues;
264    fixedValues.reset(filterLength);
265
266    for (int i = 0; i < filterLength; ++i) {
267        fixedValues.push_back(FloatToFixed(filterValues[i]));
268    }
269
270    AddFilter(filterOffset, &fixedValues[0], filterLength);
271}
272
273void SkConvolutionFilter1D::AddFilter(int filterOffset,
274                                      const ConvolutionFixed* filterValues,
275                                      int filterLength) {
276    // It is common for leading/trailing filter values to be zeros. In such
277    // cases it is beneficial to only store the central factors.
278    // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on
279    // a 1080p image this optimization gives a ~10% speed improvement.
280    int filterSize = filterLength;
281    int firstNonZero = 0;
282    while (firstNonZero < filterLength && filterValues[firstNonZero] == 0) {
283        firstNonZero++;
284    }
285
286    if (firstNonZero < filterLength) {
287        // Here we have at least one non-zero factor.
288        int lastNonZero = filterLength - 1;
289        while (lastNonZero >= 0 && filterValues[lastNonZero] == 0) {
290            lastNonZero--;
291        }
292
293        filterOffset += firstNonZero;
294        filterLength = lastNonZero + 1 - firstNonZero;
295        SkASSERT(filterLength > 0);
296
297        for (int i = firstNonZero; i <= lastNonZero; i++) {
298            fFilterValues.push_back(filterValues[i]);
299        }
300    } else {
301        // Here all the factors were zeroes.
302        filterLength = 0;
303    }
304
305    FilterInstance instance;
306
307    // We pushed filterLength elements onto fFilterValues
308    instance.fDataLocation = (static_cast<int>(fFilterValues.count()) -
309                                               filterLength);
310    instance.fOffset = filterOffset;
311    instance.fTrimmedLength = filterLength;
312    instance.fLength = filterSize;
313    fFilters.push_back(instance);
314
315    fMaxFilter = SkTMax(fMaxFilter, filterLength);
316}
317
318const SkConvolutionFilter1D::ConvolutionFixed* SkConvolutionFilter1D::GetSingleFilter(
319                                        int* specifiedFilterlength,
320                                        int* filterOffset,
321                                        int* filterLength) const {
322    const FilterInstance& filter = fFilters[0];
323    *filterOffset = filter.fOffset;
324    *filterLength = filter.fTrimmedLength;
325    *specifiedFilterlength = filter.fLength;
326    if (filter.fTrimmedLength == 0) {
327        return NULL;
328    }
329
330    return &fFilterValues[filter.fDataLocation];
331}
332
333void BGRAConvolve2D(const unsigned char* sourceData,
334                    int sourceByteRowStride,
335                    bool sourceHasAlpha,
336                    const SkConvolutionFilter1D& filterX,
337                    const SkConvolutionFilter1D& filterY,
338                    int outputByteRowStride,
339                    unsigned char* output,
340                    const SkConvolutionProcs& convolveProcs,
341                    bool useSimdIfPossible) {
342
343    int maxYFilterSize = filterY.maxFilter();
344
345    // The next row in the input that we will generate a horizontally
346    // convolved row for. If the filter doesn't start at the beginning of the
347    // image (this is the case when we are only resizing a subset), then we
348    // don't want to generate any output rows before that. Compute the starting
349    // row for convolution as the first pixel for the first vertical filter.
350    int filterOffset, filterLength;
351    const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
352        filterY.FilterForValue(0, &filterOffset, &filterLength);
353    int nextXRow = filterOffset;
354
355    // We loop over each row in the input doing a horizontal convolution. This
356    // will result in a horizontally convolved image. We write the results into
357    // a circular buffer of convolved rows and do vertical convolution as rows
358    // are available. This prevents us from having to store the entire
359    // intermediate image and helps cache coherency.
360    // We will need four extra rows to allow horizontal convolution could be done
361    // simultaneously. We also pad each row in row buffer to be aligned-up to
362    // 16 bytes.
363    // TODO(jiesun): We do not use aligned load from row buffer in vertical
364    // convolution pass yet. Somehow Windows does not like it.
365    int rowBufferWidth = (filterX.numValues() + 15) & ~0xF;
366    int rowBufferHeight = maxYFilterSize +
367                          (convolveProcs.fConvolve4RowsHorizontally ? 4 : 0);
368    CircularRowBuffer rowBuffer(rowBufferWidth,
369                                rowBufferHeight,
370                                filterOffset);
371
372    // Loop over every possible output row, processing just enough horizontal
373    // convolutions to run each subsequent vertical convolution.
374    SkASSERT(outputByteRowStride >= filterX.numValues() * 4);
375    int numOutputRows = filterY.numValues();
376
377    // We need to check which is the last line to convolve before we advance 4
378    // lines in one iteration.
379    int lastFilterOffset, lastFilterLength;
380
381    // SSE2 can access up to 3 extra pixels past the end of the
382    // buffer. At the bottom of the image, we have to be careful
383    // not to access data past the end of the buffer. Normally
384    // we fall back to the C++ implementation for the last row.
385    // If the last row is less than 3 pixels wide, we may have to fall
386    // back to the C++ version for more rows. Compute how many
387    // rows we need to avoid the SSE implementation for here.
388    filterX.FilterForValue(filterX.numValues() - 1, &lastFilterOffset,
389                           &lastFilterLength);
390    int avoidSimdRows = 1 + convolveProcs.fExtraHorizontalReads /
391        (lastFilterOffset + lastFilterLength);
392
393    filterY.FilterForValue(numOutputRows - 1, &lastFilterOffset,
394                           &lastFilterLength);
395
396    for (int outY = 0; outY < numOutputRows; outY++) {
397        filterValues = filterY.FilterForValue(outY,
398                                              &filterOffset, &filterLength);
399
400        // Generate output rows until we have enough to run the current filter.
401        while (nextXRow < filterOffset + filterLength) {
402            if (convolveProcs.fConvolve4RowsHorizontally &&
403                nextXRow + 3 < lastFilterOffset + lastFilterLength -
404                avoidSimdRows) {
405                const unsigned char* src[4];
406                unsigned char* outRow[4];
407                for (int i = 0; i < 4; ++i) {
408                    src[i] = &sourceData[(uint64_t)(nextXRow + i) * sourceByteRowStride];
409                    outRow[i] = rowBuffer.advanceRow();
410                }
411                convolveProcs.fConvolve4RowsHorizontally(src, filterX, outRow);
412                nextXRow += 4;
413            } else {
414                // Check if we need to avoid SSE2 for this row.
415                if (convolveProcs.fConvolveHorizontally &&
416                    nextXRow < lastFilterOffset + lastFilterLength -
417                    avoidSimdRows) {
418                    convolveProcs.fConvolveHorizontally(
419                        &sourceData[(uint64_t)nextXRow * sourceByteRowStride],
420                        filterX, rowBuffer.advanceRow(), sourceHasAlpha);
421                } else {
422                    if (sourceHasAlpha) {
423                        ConvolveHorizontally<true>(
424                            &sourceData[(uint64_t)nextXRow * sourceByteRowStride],
425                            filterX, rowBuffer.advanceRow());
426                    } else {
427                        ConvolveHorizontally<false>(
428                            &sourceData[(uint64_t)nextXRow * sourceByteRowStride],
429                            filterX, rowBuffer.advanceRow());
430                    }
431                }
432                nextXRow++;
433            }
434        }
435
436        // Compute where in the output image this row of final data will go.
437        unsigned char* curOutputRow = &output[(uint64_t)outY * outputByteRowStride];
438
439        // Get the list of rows that the circular buffer has, in order.
440        int firstRowInCircularBuffer;
441        unsigned char* const* rowsToConvolve =
442            rowBuffer.GetRowAddresses(&firstRowInCircularBuffer);
443
444        // Now compute the start of the subset of those rows that the filter
445        // needs.
446        unsigned char* const* firstRowForFilter =
447            &rowsToConvolve[filterOffset - firstRowInCircularBuffer];
448
449        if (convolveProcs.fConvolveVertically) {
450            convolveProcs.fConvolveVertically(filterValues, filterLength,
451                                               firstRowForFilter,
452                                               filterX.numValues(), curOutputRow,
453                                               sourceHasAlpha);
454        } else {
455            ConvolveVertically(filterValues, filterLength,
456                               firstRowForFilter,
457                               filterX.numValues(), curOutputRow,
458                               sourceHasAlpha);
459        }
460    }
461}
462