SkValidatingReadBuffer.cpp revision d594dbec0407343b7ac13af9c4580ec5933ab060
1/*
2 * Copyright 2013 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "SkBitmap.h"
9#include "SkErrorInternals.h"
10#include "SkValidatingReadBuffer.h"
11#include "SkStream.h"
12#include "SkTypeface.h"
13
14SkValidatingReadBuffer::SkValidatingReadBuffer(const void* data, size_t size) {
15    this->setMemory(data, size);
16    fError = false;
17
18    this->setFlags(SkFlattenableReadBuffer::kValidation_Flag);
19}
20
21SkValidatingReadBuffer::~SkValidatingReadBuffer() {
22}
23
24void SkValidatingReadBuffer::setMemory(const void* data, size_t size) {
25    fError = fError || !IsPtrAlign4(data) || (SkAlign4(size) != size);
26    if (!fError) {
27        fReader.setMemory(data, size);
28    }
29}
30
31const void* SkValidatingReadBuffer::skip(size_t size) {
32    size_t inc = SkAlign4(size);
33    const void* addr = fReader.peek();
34    fError = fError || !IsPtrAlign4(addr) || !fReader.isAvailable(inc);
35    if (!fError) {
36        fReader.skip(size);
37    }
38    return addr;
39}
40
41// All the methods in this file funnel down into either readInt(), readScalar() or skip(),
42// followed by a memcpy. So we've got all our validation in readInt(), readScalar() and skip();
43// if they fail they'll return a zero value or skip nothing, respectively, and set fError to
44// true, which the caller should check to see if an error occurred during the read operation.
45
46bool SkValidatingReadBuffer::readBool() {
47    uint32_t value = this->readInt();
48    // Boolean value should be either 0 or 1
49    if (value & ~1) {
50        fError = true;
51    }
52    return value != 0;
53}
54
55SkColor SkValidatingReadBuffer::readColor() {
56    return this->readInt();
57}
58
59SkFixed SkValidatingReadBuffer::readFixed() {
60    return this->readInt();
61}
62
63int32_t SkValidatingReadBuffer::readInt() {
64    const size_t inc = sizeof(int32_t);
65    fError = fError || !IsPtrAlign4(fReader.peek()) || !fReader.isAvailable(inc);
66    return fError ? 0 : fReader.readInt();
67}
68
69SkScalar SkValidatingReadBuffer::readScalar() {
70    const size_t inc = sizeof(SkScalar);
71    fError = fError || !IsPtrAlign4(fReader.peek()) || !fReader.isAvailable(inc);
72    return fError ? 0 : fReader.readScalar();
73}
74
75uint32_t SkValidatingReadBuffer::readUInt() {
76    return this->readInt();
77}
78
79int32_t SkValidatingReadBuffer::read32() {
80    return this->readInt();
81}
82
83void SkValidatingReadBuffer::readString(SkString* string) {
84    const size_t len = this->readInt();
85    const void* ptr = fReader.peek();
86    const char* cptr = (const char*)ptr;
87
88    // skip over the string + '\0' and then pad to a multiple of 4
89    const size_t alignedSize = SkAlign4(len + 1);
90    this->skip(alignedSize);
91    fError = fError || (cptr[len] != '\0');
92    if (!fError) {
93        string->set(cptr, len);
94    }
95}
96
97void* SkValidatingReadBuffer::readEncodedString(size_t* length, SkPaint::TextEncoding encoding) {
98    const int32_t encodingType = fReader.readInt();
99    fError = fError || (encodingType != encoding);
100    *length = this->readInt();
101    const void* ptr = this->skip(SkAlign4(*length));
102    void* data = NULL;
103    if (!fError) {
104        data = sk_malloc_throw(*length);
105        memcpy(data, ptr, *length);
106    }
107    return data;
108}
109
110void SkValidatingReadBuffer::readPoint(SkPoint* point) {
111    point->fX = fReader.readScalar();
112    point->fY = fReader.readScalar();
113}
114
115void SkValidatingReadBuffer::readMatrix(SkMatrix* matrix) {
116    const size_t size = matrix->readFromMemory(fReader.peek());
117    fError = fError || (SkAlign4(size) != size);
118    if (!fError) {
119        (void)this->skip(size);
120    }
121}
122
123void SkValidatingReadBuffer::readIRect(SkIRect* rect) {
124    const void* ptr = this->skip(sizeof(SkIRect));
125    if (!fError) {
126        memcpy(rect, ptr, sizeof(SkIRect));
127    }
128}
129
130void SkValidatingReadBuffer::readRect(SkRect* rect) {
131    const void* ptr = this->skip(sizeof(SkRect));
132    if (!fError) {
133        memcpy(rect, ptr, sizeof(SkRect));
134    }
135}
136
137void SkValidatingReadBuffer::readRegion(SkRegion* region) {
138    const size_t size = region->readFromMemory(fReader.peek());
139    fError = fError || (SkAlign4(size) != size);
140    if (!fError) {
141        (void)this->skip(size);
142    }
143}
144
145void SkValidatingReadBuffer::readPath(SkPath* path) {
146    const size_t size = path->readFromMemory(fReader.peek());
147    fError = fError || (SkAlign4(size) != size);
148    if (!fError) {
149        (void)this->skip(size);
150    }
151}
152
153uint32_t SkValidatingReadBuffer::readByteArray(void* value) {
154    const uint32_t length = this->readUInt();
155    const void* ptr = this->skip(SkAlign4(length));
156    if (!fError) {
157        memcpy(value, ptr, length);
158        return length;
159    }
160    return 0;
161}
162
163uint32_t SkValidatingReadBuffer::readColorArray(SkColor* colors) {
164    const uint32_t count = this->readUInt();
165    const uint32_t byteLength = count * sizeof(SkColor);
166    const void* ptr = this->skip(SkAlign4(byteLength));
167    if (!fError) {
168        memcpy(colors, ptr, byteLength);
169        return count;
170    }
171    return 0;
172}
173
174uint32_t SkValidatingReadBuffer::readIntArray(int32_t* values) {
175    const uint32_t count = this->readUInt();
176    const uint32_t byteLength = count * sizeof(int32_t);
177    const void* ptr = this->skip(SkAlign4(byteLength));
178    if (!fError) {
179        memcpy(values, ptr, byteLength);
180        return count;
181    }
182    return 0;
183}
184
185uint32_t SkValidatingReadBuffer::readPointArray(SkPoint* points) {
186    const uint32_t count = this->readUInt();
187    const uint32_t byteLength = count * sizeof(SkPoint);
188    const void* ptr = this->skip(SkAlign4(byteLength));
189    if (!fError) {
190        memcpy(points, ptr, byteLength);
191        return count;
192    }
193    return 0;
194}
195
196uint32_t SkValidatingReadBuffer::readScalarArray(SkScalar* values) {
197    const uint32_t count = this->readUInt();
198    const uint32_t byteLength = count * sizeof(SkScalar);
199    const void* ptr = this->skip(SkAlign4(byteLength));
200    if (!fError) {
201        memcpy(values, ptr, byteLength);
202        return count;
203    }
204    return 0;
205}
206
207uint32_t SkValidatingReadBuffer::getArrayCount() {
208    return *(uint32_t*)fReader.peek();
209}
210
211void SkValidatingReadBuffer::readBitmap(SkBitmap* bitmap) {
212    const int width = this->readInt();
213    const int height = this->readInt();
214    const size_t length = this->readUInt();
215    // A size of zero means the SkBitmap was simply flattened.
216    fError = fError || (length != 0);
217    if (fError) {
218        return;
219    }
220    bitmap->unflatten(*this);
221    fError = fError || (bitmap->width() != width) || (bitmap->height() != height);
222}
223
224SkFlattenable* SkValidatingReadBuffer::readFlattenable(SkFlattenable::Type type) {
225    SkString name;
226    this->readString(&name);
227    if (fError) {
228        return NULL;
229    }
230
231    // Is this the type we wanted ?
232    const char* cname = name.c_str();
233    SkFlattenable::Type baseType;
234    if (!SkFlattenable::NameToType(cname, &baseType) || (baseType != type)) {
235        return NULL;
236    }
237
238    SkFlattenable::Factory factory = SkFlattenable::NameToFactory(cname);
239    if (NULL == factory) {
240        return NULL; // writer failed to give us the flattenable
241    }
242
243    // if we get here, factory may still be null, but if that is the case, the
244    // failure was ours, not the writer.
245    SkFlattenable* obj = NULL;
246    uint32_t sizeRecorded = this->readUInt();
247    if (factory) {
248        uint32_t offset = fReader.offset();
249        obj = (*factory)(*this);
250        // check that we read the amount we expected
251        uint32_t sizeRead = fReader.offset() - offset;
252        fError = fError || (sizeRecorded != sizeRead);
253        if (fError) {
254            // we could try to fix up the offset...
255            delete obj;
256            obj = NULL;
257        }
258    } else {
259        // we must skip the remaining data
260        this->skip(sizeRecorded);
261        SkASSERT(false);
262    }
263    return obj;
264}
265