SkGradientShader.cpp revision 7518ff2d7e2a3f63b8d60f8ccacd7ca5e6b525b7
1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "SkGradientShaderPriv.h"
9#include "SkLinearGradient.h"
10#include "SkRadialGradient.h"
11#include "SkTwoPointRadialGradient.h"
12#include "SkTwoPointConicalGradient.h"
13#include "SkSweepGradient.h"
14
15SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc) {
16    SkASSERT(desc.fCount > 1);
17
18    fMapper = desc.fMapper;
19    SkSafeRef(fMapper);
20    fGradFlags = SkToU8(desc.fFlags);
21
22    SkASSERT((unsigned)desc.fTileMode < SkShader::kTileModeCount);
23    SkASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gTileProcs));
24    fTileMode = desc.fTileMode;
25    fTileProc = gTileProcs[desc.fTileMode];
26
27    /*  Note: we let the caller skip the first and/or last position.
28        i.e. pos[0] = 0.3, pos[1] = 0.7
29        In these cases, we insert dummy entries to ensure that the final data
30        will be bracketed by [0, 1].
31        i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1
32
33        Thus colorCount (the caller's value, and fColorCount (our value) may
34        differ by up to 2. In the above example:
35            colorCount = 2
36            fColorCount = 4
37     */
38    fColorCount = desc.fCount;
39    // check if we need to add in dummy start and/or end position/colors
40    bool dummyFirst = false;
41    bool dummyLast = false;
42    if (desc.fPos) {
43        dummyFirst = desc.fPos[0] != 0;
44        dummyLast = desc.fPos[desc.fCount - 1] != SK_Scalar1;
45        fColorCount += dummyFirst + dummyLast;
46    }
47
48    if (fColorCount > kColorStorageCount) {
49        size_t size = sizeof(SkColor) + sizeof(Rec);
50        fOrigColors = reinterpret_cast<SkColor*>(
51                                        sk_malloc_throw(size * fColorCount));
52    }
53    else {
54        fOrigColors = fStorage;
55    }
56
57    // Now copy over the colors, adding the dummies as needed
58    {
59        SkColor* origColors = fOrigColors;
60        if (dummyFirst) {
61            *origColors++ = desc.fColors[0];
62        }
63        memcpy(origColors, desc.fColors, desc.fCount * sizeof(SkColor));
64        if (dummyLast) {
65            origColors += desc.fCount;
66            *origColors = desc.fColors[desc.fCount - 1];
67        }
68    }
69
70    fRecs = (Rec*)(fOrigColors + fColorCount);
71    if (fColorCount > 2) {
72        Rec* recs = fRecs;
73        recs->fPos = 0;
74        //  recs->fScale = 0; // unused;
75        recs += 1;
76        if (desc.fPos) {
77            /*  We need to convert the user's array of relative positions into
78                fixed-point positions and scale factors. We need these results
79                to be strictly monotonic (no two values equal or out of order).
80                Hence this complex loop that just jams a zero for the scale
81                value if it sees a segment out of order, and it assures that
82                we start at 0 and end at 1.0
83            */
84            SkFixed prev = 0;
85            int startIndex = dummyFirst ? 0 : 1;
86            int count = desc.fCount + dummyLast;
87            for (int i = startIndex; i < count; i++) {
88                // force the last value to be 1.0
89                SkFixed curr;
90                if (i == desc.fCount) {  // we're really at the dummyLast
91                    curr = SK_Fixed1;
92                } else {
93                    curr = SkScalarToFixed(desc.fPos[i]);
94                }
95                // pin curr withing range
96                if (curr < 0) {
97                    curr = 0;
98                } else if (curr > SK_Fixed1) {
99                    curr = SK_Fixed1;
100                }
101                recs->fPos = curr;
102                if (curr > prev) {
103                    recs->fScale = (1 << 24) / (curr - prev);
104                } else {
105                    recs->fScale = 0; // ignore this segment
106                }
107                // get ready for the next value
108                prev = curr;
109                recs += 1;
110            }
111        } else {    // assume even distribution
112            SkFixed dp = SK_Fixed1 / (desc.fCount - 1);
113            SkFixed p = dp;
114            SkFixed scale = (desc.fCount - 1) << 8;  // (1 << 24) / dp
115            for (int i = 1; i < desc.fCount; i++) {
116                recs->fPos   = p;
117                recs->fScale = scale;
118                recs += 1;
119                p += dp;
120            }
121        }
122    }
123    this->initCommon();
124}
125
126static uint32_t pack_mode_flags(SkShader::TileMode mode, uint32_t flags) {
127    SkASSERT(0 == (flags >> 28));
128    SkASSERT(0 == ((uint32_t)mode >> 4));
129    return (flags << 4) | mode;
130}
131
132static SkShader::TileMode unpack_mode(uint32_t packed) {
133    return (SkShader::TileMode)(packed & 0xF);
134}
135
136static uint32_t unpack_flags(uint32_t packed) {
137    return packed >> 4;
138}
139
140SkGradientShaderBase::SkGradientShaderBase(SkReadBuffer& buffer) : INHERITED(buffer) {
141    fMapper = buffer.readUnitMapper();
142
143    int colorCount = fColorCount = buffer.getArrayCount();
144    if (colorCount > kColorStorageCount) {
145        size_t allocSize = (sizeof(SkColor) + sizeof(SkPMColor) + sizeof(Rec)) * colorCount;
146        if (buffer.validateAvailable(allocSize)) {
147            fOrigColors = reinterpret_cast<SkColor*>(sk_malloc_throw(allocSize));
148        } else {
149            fOrigColors =  NULL;
150            colorCount = fColorCount = 0;
151        }
152    } else {
153        fOrigColors = fStorage;
154    }
155    buffer.readColorArray(fOrigColors, colorCount);
156
157    {
158        uint32_t packed = buffer.readUInt();
159        fGradFlags = SkToU8(unpack_flags(packed));
160        fTileMode = unpack_mode(packed);
161    }
162    fTileProc = gTileProcs[fTileMode];
163    fRecs = (Rec*)(fOrigColors + colorCount);
164    if (colorCount > 2) {
165        Rec* recs = fRecs;
166        recs[0].fPos = 0;
167        for (int i = 1; i < colorCount; i++) {
168            recs[i].fPos = buffer.readInt();
169            recs[i].fScale = buffer.readUInt();
170        }
171    }
172    buffer.readMatrix(&fPtsToUnit);
173    this->initCommon();
174}
175
176SkGradientShaderBase::~SkGradientShaderBase() {
177    if (fOrigColors != fStorage) {
178        sk_free(fOrigColors);
179    }
180    SkSafeUnref(fMapper);
181}
182
183void SkGradientShaderBase::initCommon() {
184    unsigned colorAlpha = 0xFF;
185    for (int i = 0; i < fColorCount; i++) {
186        colorAlpha &= SkColorGetA(fOrigColors[i]);
187    }
188    fColorsAreOpaque = colorAlpha == 0xFF;
189}
190
191void SkGradientShaderBase::flatten(SkWriteBuffer& buffer) const {
192    this->INHERITED::flatten(buffer);
193    buffer.writeFlattenable(fMapper);
194    buffer.writeColorArray(fOrigColors, fColorCount);
195    buffer.writeUInt(pack_mode_flags(fTileMode, fGradFlags));
196    if (fColorCount > 2) {
197        Rec* recs = fRecs;
198        for (int i = 1; i < fColorCount; i++) {
199            buffer.writeInt(recs[i].fPos);
200            buffer.writeUInt(recs[i].fScale);
201        }
202    }
203    buffer.writeMatrix(fPtsToUnit);
204}
205
206bool SkGradientShaderBase::isOpaque() const {
207    return fColorsAreOpaque;
208}
209
210SkGradientShaderBase::GradientShaderBaseContext::GradientShaderBaseContext(
211        const SkGradientShaderBase& shader, const SkBitmap& device,
212        const SkPaint& paint, const SkMatrix& matrix)
213    : INHERITED(shader, device, paint, matrix)
214    , fCache(shader.refCache(getPaintAlpha()))
215{
216    const SkMatrix& inverse = this->getTotalInverse();
217
218    fDstToIndex.setConcat(shader.fPtsToUnit, inverse);
219
220    fDstToIndexProc = fDstToIndex.getMapXYProc();
221    fDstToIndexClass = (uint8_t)SkShader::Context::ComputeMatrixClass(fDstToIndex);
222
223    // now convert our colors in to PMColors
224    unsigned paintAlpha = this->getPaintAlpha();
225
226    fFlags = this->INHERITED::getFlags();
227    if (shader.fColorsAreOpaque && paintAlpha == 0xFF) {
228        fFlags |= kOpaqueAlpha_Flag;
229    }
230    // we can do span16 as long as our individual colors are opaque,
231    // regardless of the paint's alpha
232    if (shader.fColorsAreOpaque) {
233        fFlags |= kHasSpan16_Flag;
234    }
235}
236
237SkGradientShaderBase::GradientShaderCache::GradientShaderCache(
238        U8CPU alpha, const SkGradientShaderBase& shader)
239    : fCacheAlpha(alpha)
240    , fShader(shader)
241    , fCache16Inited(false)
242    , fCache32Inited(false)
243{
244    // Only initialize the cache in getCache16/32.
245    fCache16 = NULL;
246    fCache32 = NULL;
247    fCache16Storage = NULL;
248    fCache32PixelRef = NULL;
249}
250
251SkGradientShaderBase::GradientShaderCache::~GradientShaderCache() {
252    sk_free(fCache16Storage);
253    SkSafeUnref(fCache32PixelRef);
254}
255
256#define Fixed_To_Dot8(x)        (((x) + 0x80) >> 8)
257
258/** We take the original colors, not our premultiplied PMColors, since we can
259    build a 16bit table as long as the original colors are opaque, even if the
260    paint specifies a non-opaque alpha.
261*/
262void SkGradientShaderBase::GradientShaderCache::Build16bitCache(
263        uint16_t cache[], SkColor c0, SkColor c1, int count) {
264    SkASSERT(count > 1);
265    SkASSERT(SkColorGetA(c0) == 0xFF);
266    SkASSERT(SkColorGetA(c1) == 0xFF);
267
268    SkFixed r = SkColorGetR(c0);
269    SkFixed g = SkColorGetG(c0);
270    SkFixed b = SkColorGetB(c0);
271
272    SkFixed dr = SkIntToFixed(SkColorGetR(c1) - r) / (count - 1);
273    SkFixed dg = SkIntToFixed(SkColorGetG(c1) - g) / (count - 1);
274    SkFixed db = SkIntToFixed(SkColorGetB(c1) - b) / (count - 1);
275
276    r = SkIntToFixed(r) + 0x8000;
277    g = SkIntToFixed(g) + 0x8000;
278    b = SkIntToFixed(b) + 0x8000;
279
280    do {
281        unsigned rr = r >> 16;
282        unsigned gg = g >> 16;
283        unsigned bb = b >> 16;
284        cache[0] = SkPackRGB16(SkR32ToR16(rr), SkG32ToG16(gg), SkB32ToB16(bb));
285        cache[kCache16Count] = SkDitherPack888ToRGB16(rr, gg, bb);
286        cache += 1;
287        r += dr;
288        g += dg;
289        b += db;
290    } while (--count != 0);
291}
292
293/*
294 *  r,g,b used to be SkFixed, but on gcc (4.2.1 mac and 4.6.3 goobuntu) in
295 *  release builds, we saw a compiler error where the 0xFF parameter in
296 *  SkPackARGB32() was being totally ignored whenever it was called with
297 *  a non-zero add (e.g. 0x8000).
298 *
299 *  We found two work-arounds:
300 *      1. change r,g,b to unsigned (or just one of them)
301 *      2. change SkPackARGB32 to + its (a << SK_A32_SHIFT) value instead
302 *         of using |
303 *
304 *  We chose #1 just because it was more localized.
305 *  See http://code.google.com/p/skia/issues/detail?id=1113
306 *
307 *  The type SkUFixed encapsulate this need for unsigned, but logically Fixed.
308 */
309typedef uint32_t SkUFixed;
310
311void SkGradientShaderBase::GradientShaderCache::Build32bitCache(
312        SkPMColor cache[], SkColor c0, SkColor c1,
313        int count, U8CPU paintAlpha, uint32_t gradFlags) {
314    SkASSERT(count > 1);
315
316    // need to apply paintAlpha to our two endpoints
317    uint32_t a0 = SkMulDiv255Round(SkColorGetA(c0), paintAlpha);
318    uint32_t a1 = SkMulDiv255Round(SkColorGetA(c1), paintAlpha);
319
320
321    const bool interpInPremul = SkToBool(gradFlags &
322                           SkGradientShader::kInterpolateColorsInPremul_Flag);
323
324    uint32_t r0 = SkColorGetR(c0);
325    uint32_t g0 = SkColorGetG(c0);
326    uint32_t b0 = SkColorGetB(c0);
327
328    uint32_t r1 = SkColorGetR(c1);
329    uint32_t g1 = SkColorGetG(c1);
330    uint32_t b1 = SkColorGetB(c1);
331
332    if (interpInPremul) {
333        r0 = SkMulDiv255Round(r0, a0);
334        g0 = SkMulDiv255Round(g0, a0);
335        b0 = SkMulDiv255Round(b0, a0);
336
337        r1 = SkMulDiv255Round(r1, a1);
338        g1 = SkMulDiv255Round(g1, a1);
339        b1 = SkMulDiv255Round(b1, a1);
340    }
341
342    SkFixed da = SkIntToFixed(a1 - a0) / (count - 1);
343    SkFixed dr = SkIntToFixed(r1 - r0) / (count - 1);
344    SkFixed dg = SkIntToFixed(g1 - g0) / (count - 1);
345    SkFixed db = SkIntToFixed(b1 - b0) / (count - 1);
346
347    /*  We pre-add 1/8 to avoid having to add this to our [0] value each time
348        in the loop. Without this, the bias for each would be
349            0x2000  0xA000  0xE000  0x6000
350        With this trick, we can add 0 for the first (no-op) and just adjust the
351        others.
352     */
353    SkUFixed a = SkIntToFixed(a0) + 0x2000;
354    SkUFixed r = SkIntToFixed(r0) + 0x2000;
355    SkUFixed g = SkIntToFixed(g0) + 0x2000;
356    SkUFixed b = SkIntToFixed(b0) + 0x2000;
357
358    /*
359     *  Our dither-cell (spatially) is
360     *      0 2
361     *      3 1
362     *  Where
363     *      [0] -> [-1/8 ... 1/8 ) values near 0
364     *      [1] -> [ 1/8 ... 3/8 ) values near 1/4
365     *      [2] -> [ 3/8 ... 5/8 ) values near 1/2
366     *      [3] -> [ 5/8 ... 7/8 ) values near 3/4
367     */
368
369    if (0xFF == a0 && 0 == da) {
370        do {
371            cache[kCache32Count*0] = SkPackARGB32(0xFF, (r + 0     ) >> 16,
372                                                        (g + 0     ) >> 16,
373                                                        (b + 0     ) >> 16);
374            cache[kCache32Count*1] = SkPackARGB32(0xFF, (r + 0x8000) >> 16,
375                                                        (g + 0x8000) >> 16,
376                                                        (b + 0x8000) >> 16);
377            cache[kCache32Count*2] = SkPackARGB32(0xFF, (r + 0xC000) >> 16,
378                                                        (g + 0xC000) >> 16,
379                                                        (b + 0xC000) >> 16);
380            cache[kCache32Count*3] = SkPackARGB32(0xFF, (r + 0x4000) >> 16,
381                                                        (g + 0x4000) >> 16,
382                                                        (b + 0x4000) >> 16);
383            cache += 1;
384            r += dr;
385            g += dg;
386            b += db;
387        } while (--count != 0);
388    } else if (interpInPremul) {
389        do {
390            cache[kCache32Count*0] = SkPackARGB32((a + 0     ) >> 16,
391                                                  (r + 0     ) >> 16,
392                                                  (g + 0     ) >> 16,
393                                                  (b + 0     ) >> 16);
394            cache[kCache32Count*1] = SkPackARGB32((a + 0x8000) >> 16,
395                                                  (r + 0x8000) >> 16,
396                                                  (g + 0x8000) >> 16,
397                                                  (b + 0x8000) >> 16);
398            cache[kCache32Count*2] = SkPackARGB32((a + 0xC000) >> 16,
399                                                  (r + 0xC000) >> 16,
400                                                  (g + 0xC000) >> 16,
401                                                  (b + 0xC000) >> 16);
402            cache[kCache32Count*3] = SkPackARGB32((a + 0x4000) >> 16,
403                                                  (r + 0x4000) >> 16,
404                                                  (g + 0x4000) >> 16,
405                                                  (b + 0x4000) >> 16);
406            cache += 1;
407            a += da;
408            r += dr;
409            g += dg;
410            b += db;
411        } while (--count != 0);
412    } else {    // interpolate in unpreml space
413        do {
414            cache[kCache32Count*0] = SkPremultiplyARGBInline((a + 0     ) >> 16,
415                                                             (r + 0     ) >> 16,
416                                                             (g + 0     ) >> 16,
417                                                             (b + 0     ) >> 16);
418            cache[kCache32Count*1] = SkPremultiplyARGBInline((a + 0x8000) >> 16,
419                                                             (r + 0x8000) >> 16,
420                                                             (g + 0x8000) >> 16,
421                                                             (b + 0x8000) >> 16);
422            cache[kCache32Count*2] = SkPremultiplyARGBInline((a + 0xC000) >> 16,
423                                                             (r + 0xC000) >> 16,
424                                                             (g + 0xC000) >> 16,
425                                                             (b + 0xC000) >> 16);
426            cache[kCache32Count*3] = SkPremultiplyARGBInline((a + 0x4000) >> 16,
427                                                             (r + 0x4000) >> 16,
428                                                             (g + 0x4000) >> 16,
429                                                             (b + 0x4000) >> 16);
430            cache += 1;
431            a += da;
432            r += dr;
433            g += dg;
434            b += db;
435        } while (--count != 0);
436    }
437}
438
439static inline int SkFixedToFFFF(SkFixed x) {
440    SkASSERT((unsigned)x <= SK_Fixed1);
441    return x - (x >> 16);
442}
443
444static inline U16CPU bitsTo16(unsigned x, const unsigned bits) {
445    SkASSERT(x < (1U << bits));
446    if (6 == bits) {
447        return (x << 10) | (x << 4) | (x >> 2);
448    }
449    if (8 == bits) {
450        return (x << 8) | x;
451    }
452    sk_throw();
453    return 0;
454}
455
456const uint16_t* SkGradientShaderBase::GradientShaderCache::getCache16() {
457    SkOnce(&fCache16Inited, &fCache16Mutex, SkGradientShaderBase::GradientShaderCache::initCache16,
458           this);
459    SkASSERT(fCache16);
460    return fCache16;
461}
462
463void SkGradientShaderBase::GradientShaderCache::initCache16(GradientShaderCache* cache) {
464    // double the count for dither entries
465    const int entryCount = kCache16Count * 2;
466    const size_t allocSize = sizeof(uint16_t) * entryCount;
467
468    SkASSERT(NULL == cache->fCache16Storage);
469    cache->fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize);
470    cache->fCache16 = cache->fCache16Storage;
471    if (cache->fShader.fColorCount == 2) {
472        Build16bitCache(cache->fCache16, cache->fShader.fOrigColors[0],
473                        cache->fShader.fOrigColors[1], kCache16Count);
474    } else {
475        Rec* rec = cache->fShader.fRecs;
476        int prevIndex = 0;
477        for (int i = 1; i < cache->fShader.fColorCount; i++) {
478            int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache16Shift;
479            SkASSERT(nextIndex < kCache16Count);
480
481            if (nextIndex > prevIndex)
482                Build16bitCache(cache->fCache16 + prevIndex, cache->fShader.fOrigColors[i-1],
483                                cache->fShader.fOrigColors[i], nextIndex - prevIndex + 1);
484            prevIndex = nextIndex;
485        }
486    }
487
488    if (cache->fShader.fMapper) {
489        cache->fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize);
490        uint16_t* linear = cache->fCache16;         // just computed linear data
491        uint16_t* mapped = cache->fCache16Storage;  // storage for mapped data
492        SkUnitMapper* map = cache->fShader.fMapper;
493        for (int i = 0; i < kCache16Count; i++) {
494            int index = map->mapUnit16(bitsTo16(i, kCache16Bits)) >> kCache16Shift;
495            mapped[i] = linear[index];
496            mapped[i + kCache16Count] = linear[index + kCache16Count];
497        }
498        sk_free(cache->fCache16);
499        cache->fCache16 = cache->fCache16Storage;
500    }
501}
502
503const SkPMColor* SkGradientShaderBase::GradientShaderCache::getCache32() {
504    SkOnce(&fCache32Inited, &fCache32Mutex, SkGradientShaderBase::GradientShaderCache::initCache32,
505           this);
506    SkASSERT(fCache32);
507    return fCache32;
508}
509
510void SkGradientShaderBase::GradientShaderCache::initCache32(GradientShaderCache* cache) {
511    SkImageInfo info;
512    info.fWidth = kCache32Count;
513    info.fHeight = 4;   // for our 4 dither rows
514    info.fAlphaType = kPremul_SkAlphaType;
515    info.fColorType = kN32_SkColorType;
516
517    SkASSERT(NULL == cache->fCache32PixelRef);
518    cache->fCache32PixelRef = SkMallocPixelRef::NewAllocate(info, 0, NULL);
519    cache->fCache32 = (SkPMColor*)cache->fCache32PixelRef->getAddr();
520    if (cache->fShader.fColorCount == 2) {
521        Build32bitCache(cache->fCache32, cache->fShader.fOrigColors[0],
522                        cache->fShader.fOrigColors[1], kCache32Count, cache->fCacheAlpha,
523                        cache->fShader.fGradFlags);
524    } else {
525        Rec* rec = cache->fShader.fRecs;
526        int prevIndex = 0;
527        for (int i = 1; i < cache->fShader.fColorCount; i++) {
528            int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache32Shift;
529            SkASSERT(nextIndex < kCache32Count);
530
531            if (nextIndex > prevIndex)
532                Build32bitCache(cache->fCache32 + prevIndex, cache->fShader.fOrigColors[i-1],
533                                cache->fShader.fOrigColors[i], nextIndex - prevIndex + 1,
534                                cache->fCacheAlpha, cache->fShader.fGradFlags);
535            prevIndex = nextIndex;
536        }
537    }
538
539    if (cache->fShader.fMapper) {
540        SkMallocPixelRef* newPR = SkMallocPixelRef::NewAllocate(info, 0, NULL);
541        SkPMColor* linear = cache->fCache32;           // just computed linear data
542        SkPMColor* mapped = (SkPMColor*)newPR->getAddr();    // storage for mapped data
543        SkUnitMapper* map = cache->fShader.fMapper;
544        for (int i = 0; i < kCache32Count; i++) {
545            int index = map->mapUnit16((i << 8) | i) >> 8;
546            mapped[i + kCache32Count*0] = linear[index + kCache32Count*0];
547            mapped[i + kCache32Count*1] = linear[index + kCache32Count*1];
548            mapped[i + kCache32Count*2] = linear[index + kCache32Count*2];
549            mapped[i + kCache32Count*3] = linear[index + kCache32Count*3];
550        }
551        cache->fCache32PixelRef->unref();
552        cache->fCache32PixelRef = newPR;
553        cache->fCache32 = (SkPMColor*)newPR->getAddr();
554    }
555}
556
557/*
558 *  The gradient holds a cache for the most recent value of alpha. Successive
559 *  callers with the same alpha value will share the same cache.
560 */
561SkGradientShaderBase::GradientShaderCache* SkGradientShaderBase::refCache(U8CPU alpha) const {
562    SkAutoMutexAcquire ama(fCacheMutex);
563    if (!fCache || fCache->getAlpha() != alpha) {
564        fCache.reset(SkNEW_ARGS(GradientShaderCache, (alpha, *this)));
565    }
566    // Increment the ref counter inside the mutex to ensure the returned pointer is still valid.
567    // Otherwise, the pointer may have been overwritten on a different thread before the object's
568    // ref count was incremented.
569    fCache.get()->ref();
570    return fCache;
571}
572
573/*
574 *  Because our caller might rebuild the same (logically the same) gradient
575 *  over and over, we'd like to return exactly the same "bitmap" if possible,
576 *  allowing the client to utilize a cache of our bitmap (e.g. with a GPU).
577 *  To do that, we maintain a private cache of built-bitmaps, based on our
578 *  colors and positions. Note: we don't try to flatten the fMapper, so if one
579 *  is present, we skip the cache for now.
580 */
581void SkGradientShaderBase::getGradientTableBitmap(SkBitmap* bitmap) const {
582    // our caller assumes no external alpha, so we ensure that our cache is
583    // built with 0xFF
584    SkAutoTUnref<GradientShaderCache> cache(this->refCache(0xFF));
585
586    // don't have a way to put the mapper into our cache-key yet
587    if (fMapper) {
588        // force our cache32pixelref to be built
589        (void)cache->getCache32();
590        bitmap->setConfig(SkImageInfo::MakeN32Premul(kCache32Count, 1));
591        bitmap->setPixelRef(cache->getCache32PixelRef());
592        return;
593    }
594
595    // build our key: [numColors + colors[] + {positions[]} + flags ]
596    int count = 1 + fColorCount + 1;
597    if (fColorCount > 2) {
598        count += fColorCount - 1;    // fRecs[].fPos
599    }
600
601    SkAutoSTMalloc<16, int32_t> storage(count);
602    int32_t* buffer = storage.get();
603
604    *buffer++ = fColorCount;
605    memcpy(buffer, fOrigColors, fColorCount * sizeof(SkColor));
606    buffer += fColorCount;
607    if (fColorCount > 2) {
608        for (int i = 1; i < fColorCount; i++) {
609            *buffer++ = fRecs[i].fPos;
610        }
611    }
612    *buffer++ = fGradFlags;
613    SkASSERT(buffer - storage.get() == count);
614
615    ///////////////////////////////////
616
617    SK_DECLARE_STATIC_MUTEX(gMutex);
618    static SkBitmapCache* gCache;
619    // each cache cost 1K of RAM, since each bitmap will be 1x256 at 32bpp
620    static const int MAX_NUM_CACHED_GRADIENT_BITMAPS = 32;
621    SkAutoMutexAcquire ama(gMutex);
622
623    if (NULL == gCache) {
624        gCache = SkNEW_ARGS(SkBitmapCache, (MAX_NUM_CACHED_GRADIENT_BITMAPS));
625    }
626    size_t size = count * sizeof(int32_t);
627
628    if (!gCache->find(storage.get(), size, bitmap)) {
629        // force our cahce32pixelref to be built
630        (void)cache->getCache32();
631        bitmap->setConfig(SkImageInfo::MakeN32Premul(kCache32Count, 1));
632        bitmap->setPixelRef(cache->getCache32PixelRef());
633
634        gCache->add(storage.get(), size, *bitmap);
635    }
636}
637
638void SkGradientShaderBase::commonAsAGradient(GradientInfo* info) const {
639    if (info) {
640        if (info->fColorCount >= fColorCount) {
641            if (info->fColors) {
642                memcpy(info->fColors, fOrigColors, fColorCount * sizeof(SkColor));
643            }
644            if (info->fColorOffsets) {
645                if (fColorCount == 2) {
646                    info->fColorOffsets[0] = 0;
647                    info->fColorOffsets[1] = SK_Scalar1;
648                } else if (fColorCount > 2) {
649                    for (int i = 0; i < fColorCount; ++i) {
650                        info->fColorOffsets[i] = SkFixedToScalar(fRecs[i].fPos);
651                    }
652                }
653            }
654        }
655        info->fColorCount = fColorCount;
656        info->fTileMode = fTileMode;
657        info->fGradientFlags = fGradFlags;
658    }
659}
660
661#ifndef SK_IGNORE_TO_STRING
662void SkGradientShaderBase::toString(SkString* str) const {
663
664    str->appendf("%d colors: ", fColorCount);
665
666    for (int i = 0; i < fColorCount; ++i) {
667        str->appendHex(fOrigColors[i]);
668        if (i < fColorCount-1) {
669            str->append(", ");
670        }
671    }
672
673    if (fColorCount > 2) {
674        str->append(" points: (");
675        for (int i = 0; i < fColorCount; ++i) {
676            str->appendScalar(SkFixedToScalar(fRecs[i].fPos));
677            if (i < fColorCount-1) {
678                str->append(", ");
679            }
680        }
681        str->append(")");
682    }
683
684    static const char* gTileModeName[SkShader::kTileModeCount] = {
685        "clamp", "repeat", "mirror"
686    };
687
688    str->append(" ");
689    str->append(gTileModeName[fTileMode]);
690
691    // TODO: add "fMapper->toString(str);" when SkUnitMapper::toString is added
692
693    this->INHERITED::toString(str);
694}
695#endif
696
697///////////////////////////////////////////////////////////////////////////////
698///////////////////////////////////////////////////////////////////////////////
699
700#include "SkEmptyShader.h"
701
702// assumes colors is SkColor* and pos is SkScalar*
703#define EXPAND_1_COLOR(count)               \
704    SkColor tmp[2];                         \
705    do {                                    \
706        if (1 == count) {                   \
707            tmp[0] = tmp[1] = colors[0];    \
708            colors = tmp;                   \
709            pos = NULL;                     \
710            count = 2;                      \
711        }                                   \
712    } while (0)
713
714static void desc_init(SkGradientShaderBase::Descriptor* desc,
715                      const SkColor colors[],
716                      const SkScalar pos[], int colorCount,
717                      SkShader::TileMode mode,
718                      SkUnitMapper* mapper, uint32_t flags) {
719    desc->fColors   = colors;
720    desc->fPos      = pos;
721    desc->fCount    = colorCount;
722    desc->fTileMode = mode;
723    desc->fMapper   = mapper;
724    desc->fFlags    = flags;
725}
726
727SkShader* SkGradientShader::CreateLinear(const SkPoint pts[2],
728                                         const SkColor colors[],
729                                         const SkScalar pos[], int colorCount,
730                                         SkShader::TileMode mode,
731                                         SkUnitMapper* mapper,
732                                         uint32_t flags) {
733    if (NULL == pts || NULL == colors || colorCount < 1) {
734        return NULL;
735    }
736    EXPAND_1_COLOR(colorCount);
737
738    SkGradientShaderBase::Descriptor desc;
739    desc_init(&desc, colors, pos, colorCount, mode, mapper, flags);
740    return SkNEW_ARGS(SkLinearGradient, (pts, desc));
741}
742
743SkShader* SkGradientShader::CreateRadial(const SkPoint& center, SkScalar radius,
744                                         const SkColor colors[],
745                                         const SkScalar pos[], int colorCount,
746                                         SkShader::TileMode mode,
747                                         SkUnitMapper* mapper,
748                                         uint32_t flags) {
749    if (radius <= 0 || NULL == colors || colorCount < 1) {
750        return NULL;
751    }
752    EXPAND_1_COLOR(colorCount);
753
754    SkGradientShaderBase::Descriptor desc;
755    desc_init(&desc, colors, pos, colorCount, mode, mapper, flags);
756    return SkNEW_ARGS(SkRadialGradient, (center, radius, desc));
757}
758
759SkShader* SkGradientShader::CreateTwoPointRadial(const SkPoint& start,
760                                                 SkScalar startRadius,
761                                                 const SkPoint& end,
762                                                 SkScalar endRadius,
763                                                 const SkColor colors[],
764                                                 const SkScalar pos[],
765                                                 int colorCount,
766                                                 SkShader::TileMode mode,
767                                                 SkUnitMapper* mapper,
768                                                 uint32_t flags) {
769    if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) {
770        return NULL;
771    }
772    EXPAND_1_COLOR(colorCount);
773
774    SkGradientShaderBase::Descriptor desc;
775    desc_init(&desc, colors, pos, colorCount, mode, mapper, flags);
776    return SkNEW_ARGS(SkTwoPointRadialGradient,
777                      (start, startRadius, end, endRadius, desc));
778}
779
780SkShader* SkGradientShader::CreateTwoPointConical(const SkPoint& start,
781                                                  SkScalar startRadius,
782                                                  const SkPoint& end,
783                                                  SkScalar endRadius,
784                                                  const SkColor colors[],
785                                                  const SkScalar pos[],
786                                                  int colorCount,
787                                                  SkShader::TileMode mode,
788                                                  SkUnitMapper* mapper,
789                                                  uint32_t flags) {
790    if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) {
791        return NULL;
792    }
793    if (start == end && startRadius == endRadius) {
794        return SkNEW(SkEmptyShader);
795    }
796    EXPAND_1_COLOR(colorCount);
797
798    SkGradientShaderBase::Descriptor desc;
799    desc_init(&desc, colors, pos, colorCount, mode, mapper, flags);
800    return SkNEW_ARGS(SkTwoPointConicalGradient,
801                      (start, startRadius, end, endRadius, desc));
802}
803
804SkShader* SkGradientShader::CreateSweep(SkScalar cx, SkScalar cy,
805                                        const SkColor colors[],
806                                        const SkScalar pos[],
807                                        int colorCount, SkUnitMapper* mapper,
808                                        uint32_t flags) {
809    if (NULL == colors || colorCount < 1) {
810        return NULL;
811    }
812    EXPAND_1_COLOR(colorCount);
813
814    SkGradientShaderBase::Descriptor desc;
815    desc_init(&desc, colors, pos, colorCount, SkShader::kClamp_TileMode, mapper, flags);
816    return SkNEW_ARGS(SkSweepGradient, (cx, cy, desc));
817}
818
819SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkGradientShader)
820    SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLinearGradient)
821    SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkRadialGradient)
822    SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSweepGradient)
823    SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointRadialGradient)
824    SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointConicalGradient)
825SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
826
827///////////////////////////////////////////////////////////////////////////////
828
829#if SK_SUPPORT_GPU
830
831#include "effects/GrTextureStripAtlas.h"
832#include "GrTBackendEffectFactory.h"
833#include "SkGr.h"
834
835GrGLGradientEffect::GrGLGradientEffect(const GrBackendEffectFactory& factory)
836    : INHERITED(factory)
837    , fCachedYCoord(SK_ScalarMax) {
838}
839
840GrGLGradientEffect::~GrGLGradientEffect() { }
841
842void GrGLGradientEffect::emitUniforms(GrGLShaderBuilder* builder, EffectKey key) {
843
844    if (GrGradientEffect::kTwo_ColorType == ColorTypeFromKey(key)) { // 2 Color case
845        fColorStartUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
846                                             kVec4f_GrSLType, "GradientStartColor");
847        fColorEndUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
848                                           kVec4f_GrSLType, "GradientEndColor");
849
850    } else if (GrGradientEffect::kThree_ColorType == ColorTypeFromKey(key)){ // 3 Color Case
851        fColorStartUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
852                                             kVec4f_GrSLType, "GradientStartColor");
853        fColorMidUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
854                                           kVec4f_GrSLType, "GradientMidColor");
855        fColorEndUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
856                                             kVec4f_GrSLType, "GradientEndColor");
857
858    } else { // if not a fast case
859        fFSYUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
860                                      kFloat_GrSLType, "GradientYCoordFS");
861    }
862}
863
864static inline void set_color_uni(const GrGLUniformManager& uman,
865                                 const GrGLUniformManager::UniformHandle uni,
866                                 const SkColor* color) {
867       uman.set4f(uni,
868                  SkColorGetR(*color) / 255.f,
869                  SkColorGetG(*color) / 255.f,
870                  SkColorGetB(*color) / 255.f,
871                  SkColorGetA(*color) / 255.f);
872}
873
874static inline void set_mul_color_uni(const GrGLUniformManager& uman,
875                                     const GrGLUniformManager::UniformHandle uni,
876                                     const SkColor* color){
877       float a = SkColorGetA(*color) / 255.f;
878       float aDiv255 = a / 255.f;
879       uman.set4f(uni,
880                  SkColorGetR(*color) * aDiv255,
881                  SkColorGetG(*color) * aDiv255,
882                  SkColorGetB(*color) * aDiv255,
883                  a);
884}
885
886void GrGLGradientEffect::setData(const GrGLUniformManager& uman,
887                                 const GrDrawEffect& drawEffect) {
888
889    const GrGradientEffect& e = drawEffect.castEffect<GrGradientEffect>();
890
891
892    if (GrGradientEffect::kTwo_ColorType == e.getColorType()){
893
894        if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
895            set_mul_color_uni(uman, fColorStartUni, e.getColors(0));
896            set_mul_color_uni(uman, fColorEndUni,   e.getColors(1));
897        } else {
898            set_color_uni(uman, fColorStartUni, e.getColors(0));
899            set_color_uni(uman, fColorEndUni,   e.getColors(1));
900        }
901
902    } else if (GrGradientEffect::kThree_ColorType == e.getColorType()){
903
904        if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
905            set_mul_color_uni(uman, fColorStartUni, e.getColors(0));
906            set_mul_color_uni(uman, fColorMidUni,   e.getColors(1));
907            set_mul_color_uni(uman, fColorEndUni,   e.getColors(2));
908        } else {
909            set_color_uni(uman, fColorStartUni, e.getColors(0));
910            set_color_uni(uman, fColorMidUni,   e.getColors(1));
911            set_color_uni(uman, fColorEndUni,   e.getColors(2));
912        }
913    } else {
914
915        SkScalar yCoord = e.getYCoord();
916        if (yCoord != fCachedYCoord) {
917            uman.set1f(fFSYUni, yCoord);
918            fCachedYCoord = yCoord;
919        }
920    }
921}
922
923
924GrGLEffect::EffectKey GrGLGradientEffect::GenBaseGradientKey(const GrDrawEffect& drawEffect) {
925    const GrGradientEffect& e = drawEffect.castEffect<GrGradientEffect>();
926
927    EffectKey key = 0;
928
929    if (GrGradientEffect::kTwo_ColorType == e.getColorType()) {
930        key |= kTwoColorKey;
931    } else if (GrGradientEffect::kThree_ColorType == e.getColorType()){
932        key |= kThreeColorKey;
933    }
934
935    if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
936        key |= kPremulBeforeInterpKey;
937    }
938
939    return key;
940}
941
942void GrGLGradientEffect::emitColor(GrGLShaderBuilder* builder,
943                                   const char* gradientTValue,
944                                   EffectKey key,
945                                   const char* outputColor,
946                                   const char* inputColor,
947                                   const TextureSamplerArray& samplers) {
948    if (GrGradientEffect::kTwo_ColorType == ColorTypeFromKey(key)){
949        builder->fsCodeAppendf("\tvec4 colorTemp = mix(%s, %s, clamp(%s, 0.0, 1.0));\n",
950                               builder->getUniformVariable(fColorStartUni).c_str(),
951                               builder->getUniformVariable(fColorEndUni).c_str(),
952                               gradientTValue);
953        // Note that we could skip this step if both colors are known to be opaque. Two
954        // considerations:
955        // The gradient SkShader reporting opaque is more restrictive than necessary in the two pt
956        // case. Make sure the key reflects this optimization (and note that it can use the same
957        // shader as thekBeforeIterp case). This same optimization applies to the 3 color case below.
958        if (GrGradientEffect::kAfterInterp_PremulType == PremulTypeFromKey(key)) {
959            builder->fsCodeAppend("\tcolorTemp.rgb *= colorTemp.a;\n");
960        }
961
962        builder->fsCodeAppendf("\t%s = %s;\n", outputColor,
963                               (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
964    } else if (GrGradientEffect::kThree_ColorType == ColorTypeFromKey(key)){
965        builder->fsCodeAppendf("\tfloat oneMinus2t = 1.0 - (2.0 * (%s));\n",
966                               gradientTValue);
967        builder->fsCodeAppendf("\tvec4 colorTemp = clamp(oneMinus2t, 0.0, 1.0) * %s;\n",
968                               builder->getUniformVariable(fColorStartUni).c_str());
969        if (kTegra3_GrGLRenderer == builder->ctxInfo().renderer()) {
970            // The Tegra3 compiler will sometimes never return if we have
971            // min(abs(oneMinus2t), 1.0), or do the abs first in a separate expression.
972            builder->fsCodeAppend("\tfloat minAbs = abs(oneMinus2t);\n");
973            builder->fsCodeAppend("\tminAbs = minAbs > 1.0 ? 1.0 : minAbs;\n");
974            builder->fsCodeAppendf("\tcolorTemp += (1.0 - minAbs) * %s;\n",
975                                   builder->getUniformVariable(fColorMidUni).c_str());
976        } else {
977            builder->fsCodeAppendf("\tcolorTemp += (1.0 - min(abs(oneMinus2t), 1.0)) * %s;\n",
978                                   builder->getUniformVariable(fColorMidUni).c_str());
979        }
980        builder->fsCodeAppendf("\tcolorTemp += clamp(-oneMinus2t, 0.0, 1.0) * %s;\n",
981                               builder->getUniformVariable(fColorEndUni).c_str());
982        if (GrGradientEffect::kAfterInterp_PremulType == PremulTypeFromKey(key)) {
983            builder->fsCodeAppend("\tcolorTemp.rgb *= colorTemp.a;\n");
984        }
985
986        builder->fsCodeAppendf("\t%s = %s;\n", outputColor,
987                               (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
988    } else {
989        builder->fsCodeAppendf("\tvec2 coord = vec2(%s, %s);\n",
990                               gradientTValue,
991                               builder->getUniformVariable(fFSYUni).c_str());
992        builder->fsCodeAppendf("\t%s = ", outputColor);
993        builder->fsAppendTextureLookupAndModulate(inputColor,
994                                                  samplers[0],
995                                                  "coord");
996        builder->fsCodeAppend(";\n");
997    }
998}
999
1000/////////////////////////////////////////////////////////////////////
1001
1002GrGradientEffect::GrGradientEffect(GrContext* ctx,
1003                                   const SkGradientShaderBase& shader,
1004                                   const SkMatrix& matrix,
1005                                   SkShader::TileMode tileMode) {
1006
1007    fIsOpaque = shader.isOpaque();
1008
1009    SkShader::GradientInfo info;
1010    SkScalar pos[3] = {0};
1011
1012    info.fColorCount = 3;
1013    info.fColors = &fColors[0];
1014    info.fColorOffsets = &pos[0];
1015    shader.asAGradient(&info);
1016
1017    // The two and three color specializations do not currently support tiling.
1018    bool foundSpecialCase = false;
1019    if (SkShader::kClamp_TileMode == info.fTileMode) {
1020        if (2 == info.fColorCount) {
1021            fRow = -1; // flag for no atlas
1022            fColorType = kTwo_ColorType;
1023            foundSpecialCase = true;
1024        } else if (3 == info.fColorCount &&
1025                   (SkScalarAbs(pos[1] - SK_ScalarHalf) < SK_Scalar1 / 1000)) { // 3 color symmetric
1026            fRow = -1; // flag for no atlas
1027            fColorType = kThree_ColorType;
1028            foundSpecialCase = true;
1029        }
1030    }
1031    if (foundSpecialCase) {
1032        if (SkGradientShader::kInterpolateColorsInPremul_Flag & info.fGradientFlags) {
1033            fPremulType = kBeforeInterp_PremulType;
1034        } else {
1035            fPremulType = kAfterInterp_PremulType;
1036        }
1037        fCoordTransform.reset(kCoordSet, matrix);
1038    } else {
1039        // doesn't matter how this is set, just be consistent because it is part of the effect key.
1040        fPremulType = kBeforeInterp_PremulType;
1041        SkBitmap bitmap;
1042        shader.getGradientTableBitmap(&bitmap);
1043        fColorType = kTexture_ColorType;
1044
1045        GrTextureStripAtlas::Desc desc;
1046        desc.fWidth  = bitmap.width();
1047        desc.fHeight = 32;
1048        desc.fRowHeight = bitmap.height();
1049        desc.fContext = ctx;
1050        desc.fConfig = SkImageInfo2GrPixelConfig(bitmap.colorType(), bitmap.alphaType());
1051        fAtlas = GrTextureStripAtlas::GetAtlas(desc);
1052        SkASSERT(NULL != fAtlas);
1053
1054        // We always filter the gradient table. Each table is one row of a texture, always y-clamp.
1055        GrTextureParams params;
1056        params.setFilterMode(GrTextureParams::kBilerp_FilterMode);
1057        params.setTileModeX(tileMode);
1058
1059        fRow = fAtlas->lockRow(bitmap);
1060        if (-1 != fRow) {
1061            fYCoord = fAtlas->getYOffset(fRow) + SK_ScalarHalf *
1062            fAtlas->getVerticalScaleFactor();
1063            fCoordTransform.reset(kCoordSet, matrix, fAtlas->getTexture());
1064            fTextureAccess.reset(fAtlas->getTexture(), params);
1065        } else {
1066            GrTexture* texture = GrLockAndRefCachedBitmapTexture(ctx, bitmap, &params);
1067            fCoordTransform.reset(kCoordSet, matrix, texture);
1068            fTextureAccess.reset(texture, params);
1069            fYCoord = SK_ScalarHalf;
1070
1071            // Unlock immediately, this is not great, but we don't have a way of
1072            // knowing when else to unlock it currently, so it may get purged from
1073            // the cache, but it'll still be ref'd until it's no longer being used.
1074            GrUnlockAndUnrefCachedBitmapTexture(texture);
1075        }
1076        this->addTextureAccess(&fTextureAccess);
1077    }
1078    this->addCoordTransform(&fCoordTransform);
1079}
1080
1081GrGradientEffect::~GrGradientEffect() {
1082    if (this->useAtlas()) {
1083        fAtlas->unlockRow(fRow);
1084    }
1085}
1086
1087bool GrGradientEffect::onIsEqual(const GrEffect& effect) const {
1088    const GrGradientEffect& s = CastEffect<GrGradientEffect>(effect);
1089
1090    if (this->fColorType == s.getColorType()){
1091
1092        if (kTwo_ColorType == fColorType) {
1093            if (*this->getColors(0) != *s.getColors(0) ||
1094                *this->getColors(1) != *s.getColors(1)) {
1095                return false;
1096            }
1097        } else if (kThree_ColorType == fColorType) {
1098            if (*this->getColors(0) != *s.getColors(0) ||
1099                *this->getColors(1) != *s.getColors(1) ||
1100                *this->getColors(2) != *s.getColors(2)) {
1101                return false;
1102            }
1103        } else {
1104            if (fYCoord != s.getYCoord()) {
1105                return false;
1106            }
1107        }
1108
1109        return fTextureAccess.getTexture() == s.fTextureAccess.getTexture()  &&
1110            fTextureAccess.getParams().getTileModeX() ==
1111                s.fTextureAccess.getParams().getTileModeX() &&
1112            this->useAtlas() == s.useAtlas() &&
1113            fCoordTransform.getMatrix().cheapEqualTo(s.fCoordTransform.getMatrix());
1114    }
1115
1116    return false;
1117}
1118
1119void GrGradientEffect::getConstantColorComponents(GrColor* color, uint32_t* validFlags) const {
1120    if (fIsOpaque && (kA_GrColorComponentFlag & *validFlags) && 0xff == GrColorUnpackA(*color)) {
1121        *validFlags = kA_GrColorComponentFlag;
1122    } else {
1123        *validFlags = 0;
1124    }
1125}
1126
1127int GrGradientEffect::RandomGradientParams(SkRandom* random,
1128                                           SkColor colors[],
1129                                           SkScalar** stops,
1130                                           SkShader::TileMode* tm) {
1131    int outColors = random->nextRangeU(1, kMaxRandomGradientColors);
1132
1133    // if one color, omit stops, otherwise randomly decide whether or not to
1134    if (outColors == 1 || (outColors >= 2 && random->nextBool())) {
1135        *stops = NULL;
1136    }
1137
1138    SkScalar stop = 0.f;
1139    for (int i = 0; i < outColors; ++i) {
1140        colors[i] = random->nextU();
1141        if (NULL != *stops) {
1142            (*stops)[i] = stop;
1143            stop = i < outColors - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f;
1144        }
1145    }
1146    *tm = static_cast<SkShader::TileMode>(random->nextULessThan(SkShader::kTileModeCount));
1147
1148    return outColors;
1149}
1150
1151#endif
1152