SkGradientShader.cpp revision 811f20de4d20b80ef40ff954acd1e816388b30be
1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "SkGradientShaderPriv.h"
9#include "SkLinearGradient.h"
10#include "SkRadialGradient.h"
11#include "SkTwoPointRadialGradient.h"
12#include "SkTwoPointConicalGradient.h"
13#include "SkSweepGradient.h"
14
15SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc) {
16    SkASSERT(desc.fCount > 1);
17
18    fCacheAlpha = 256;  // init to a value that paint.getAlpha() can't return
19
20    fMapper = desc.fMapper;
21    SkSafeRef(fMapper);
22    fGradFlags = SkToU8(desc.fFlags);
23
24    SkASSERT((unsigned)desc.fTileMode < SkShader::kTileModeCount);
25    SkASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gTileProcs));
26    fTileMode = desc.fTileMode;
27    fTileProc = gTileProcs[desc.fTileMode];
28
29    fCache16 = fCache16Storage = NULL;
30    fCache32 = NULL;
31    fCache32PixelRef = NULL;
32
33    /*  Note: we let the caller skip the first and/or last position.
34        i.e. pos[0] = 0.3, pos[1] = 0.7
35        In these cases, we insert dummy entries to ensure that the final data
36        will be bracketed by [0, 1].
37        i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1
38
39        Thus colorCount (the caller's value, and fColorCount (our value) may
40        differ by up to 2. In the above example:
41            colorCount = 2
42            fColorCount = 4
43     */
44    fColorCount = desc.fCount;
45    // check if we need to add in dummy start and/or end position/colors
46    bool dummyFirst = false;
47    bool dummyLast = false;
48    if (desc.fPos) {
49        dummyFirst = desc.fPos[0] != 0;
50        dummyLast = desc.fPos[desc.fCount - 1] != SK_Scalar1;
51        fColorCount += dummyFirst + dummyLast;
52    }
53
54    if (fColorCount > kColorStorageCount) {
55        size_t size = sizeof(SkColor) + sizeof(Rec);
56        fOrigColors = reinterpret_cast<SkColor*>(
57                                        sk_malloc_throw(size * fColorCount));
58    }
59    else {
60        fOrigColors = fStorage;
61    }
62
63    // Now copy over the colors, adding the dummies as needed
64    {
65        SkColor* origColors = fOrigColors;
66        if (dummyFirst) {
67            *origColors++ = desc.fColors[0];
68        }
69        memcpy(origColors, desc.fColors, desc.fCount * sizeof(SkColor));
70        if (dummyLast) {
71            origColors += desc.fCount;
72            *origColors = desc.fColors[desc.fCount - 1];
73        }
74    }
75
76    fRecs = (Rec*)(fOrigColors + fColorCount);
77    if (fColorCount > 2) {
78        Rec* recs = fRecs;
79        recs->fPos = 0;
80        //  recs->fScale = 0; // unused;
81        recs += 1;
82        if (desc.fPos) {
83            /*  We need to convert the user's array of relative positions into
84                fixed-point positions and scale factors. We need these results
85                to be strictly monotonic (no two values equal or out of order).
86                Hence this complex loop that just jams a zero for the scale
87                value if it sees a segment out of order, and it assures that
88                we start at 0 and end at 1.0
89            */
90            SkFixed prev = 0;
91            int startIndex = dummyFirst ? 0 : 1;
92            int count = desc.fCount + dummyLast;
93            for (int i = startIndex; i < count; i++) {
94                // force the last value to be 1.0
95                SkFixed curr;
96                if (i == desc.fCount) {  // we're really at the dummyLast
97                    curr = SK_Fixed1;
98                } else {
99                    curr = SkScalarToFixed(desc.fPos[i]);
100                }
101                // pin curr withing range
102                if (curr < 0) {
103                    curr = 0;
104                } else if (curr > SK_Fixed1) {
105                    curr = SK_Fixed1;
106                }
107                recs->fPos = curr;
108                if (curr > prev) {
109                    recs->fScale = (1 << 24) / (curr - prev);
110                } else {
111                    recs->fScale = 0; // ignore this segment
112                }
113                // get ready for the next value
114                prev = curr;
115                recs += 1;
116            }
117        } else {    // assume even distribution
118            SkFixed dp = SK_Fixed1 / (desc.fCount - 1);
119            SkFixed p = dp;
120            SkFixed scale = (desc.fCount - 1) << 8;  // (1 << 24) / dp
121            for (int i = 1; i < desc.fCount - 1; i++) {
122                recs->fPos   = p;
123                recs->fScale = scale;
124                recs += 1;
125                p += dp;
126            }
127            recs->fPos = SK_Fixed1;
128            recs->fScale = scale;
129        }
130    }
131    this->initCommon();
132}
133
134static uint32_t pack_mode_flags(SkShader::TileMode mode, uint32_t flags) {
135    SkASSERT(0 == (flags >> 28));
136    SkASSERT(0 == ((uint32_t)mode >> 4));
137    return (flags << 4) | mode;
138}
139
140static SkShader::TileMode unpack_mode(uint32_t packed) {
141    return (SkShader::TileMode)(packed & 0xF);
142}
143
144static uint32_t unpack_flags(uint32_t packed) {
145    return packed >> 4;
146}
147
148SkGradientShaderBase::SkGradientShaderBase(SkReadBuffer& buffer) : INHERITED(buffer) {
149    fCacheAlpha = 256;
150
151    fMapper = buffer.readUnitMapper();
152
153    fCache16 = fCache16Storage = NULL;
154    fCache32 = NULL;
155    fCache32PixelRef = NULL;
156
157    int colorCount = fColorCount = buffer.getArrayCount();
158    if (colorCount > kColorStorageCount) {
159        size_t allocSize = (sizeof(SkColor) + sizeof(SkPMColor) + sizeof(Rec)) * colorCount;
160        if (buffer.validateAvailable(allocSize)) {
161            fOrigColors = reinterpret_cast<SkColor*>(sk_malloc_throw(allocSize));
162        } else {
163            fOrigColors =  NULL;
164            colorCount = fColorCount = 0;
165        }
166    } else {
167        fOrigColors = fStorage;
168    }
169    buffer.readColorArray(fOrigColors, colorCount);
170
171    {
172        uint32_t packed = buffer.readUInt();
173        fGradFlags = SkToU8(unpack_flags(packed));
174        fTileMode = unpack_mode(packed);
175    }
176    fTileProc = gTileProcs[fTileMode];
177    fRecs = (Rec*)(fOrigColors + colorCount);
178    if (colorCount > 2) {
179        Rec* recs = fRecs;
180        recs[0].fPos = 0;
181        for (int i = 1; i < colorCount; i++) {
182            recs[i].fPos = buffer.readInt();
183            recs[i].fScale = buffer.readUInt();
184        }
185    }
186    buffer.readMatrix(&fPtsToUnit);
187    this->initCommon();
188}
189
190SkGradientShaderBase::~SkGradientShaderBase() {
191    if (fCache16Storage) {
192        sk_free(fCache16Storage);
193    }
194    SkSafeUnref(fCache32PixelRef);
195    if (fOrigColors != fStorage) {
196        sk_free(fOrigColors);
197    }
198    SkSafeUnref(fMapper);
199}
200
201void SkGradientShaderBase::initCommon() {
202    fFlags = 0;
203    unsigned colorAlpha = 0xFF;
204    for (int i = 0; i < fColorCount; i++) {
205        colorAlpha &= SkColorGetA(fOrigColors[i]);
206    }
207    fColorsAreOpaque = colorAlpha == 0xFF;
208}
209
210void SkGradientShaderBase::flatten(SkWriteBuffer& buffer) const {
211    this->INHERITED::flatten(buffer);
212    buffer.writeFlattenable(fMapper);
213    buffer.writeColorArray(fOrigColors, fColorCount);
214    buffer.writeUInt(pack_mode_flags(fTileMode, fGradFlags));
215    if (fColorCount > 2) {
216        Rec* recs = fRecs;
217        for (int i = 1; i < fColorCount; i++) {
218            buffer.writeInt(recs[i].fPos);
219            buffer.writeUInt(recs[i].fScale);
220        }
221    }
222    buffer.writeMatrix(fPtsToUnit);
223}
224
225SkGradientShaderBase::GpuColorType SkGradientShaderBase::getGpuColorType(SkColor colors[3]) const {
226    if (fColorCount <= 3) {
227        memcpy(colors, fOrigColors, fColorCount * sizeof(SkColor));
228    }
229
230    if (SkShader::kClamp_TileMode == fTileMode) {
231        if (2 == fColorCount) {
232            return kTwo_GpuColorType;
233        } else if (3 == fColorCount &&
234                   (SkScalarAbs(
235                    SkFixedToScalar(fRecs[1].fPos) - SK_ScalarHalf) < SK_Scalar1 / 1000)) {
236            return kThree_GpuColorType;
237        }
238    }
239    return kTexture_GpuColorType;
240}
241
242void SkGradientShaderBase::FlipGradientColors(SkColor* colorDst, Rec* recDst,
243                                              SkColor* colorSrc, Rec* recSrc,
244                                              int count) {
245    SkAutoSTArray<8, SkColor> colorsTemp(count);
246    for (int i = 0; i < count; ++i) {
247        int offset = count - i - 1;
248        colorsTemp[i] = colorSrc[offset];
249    }
250    if (count > 2) {
251        SkAutoSTArray<8, Rec> recsTemp(count);
252        for (int i = 0; i < count; ++i) {
253            int offset = count - i - 1;
254            recsTemp[i].fPos = SK_Fixed1 - recSrc[offset].fPos;
255            recsTemp[i].fScale = recSrc[offset].fScale;
256        }
257        memcpy(recDst, recsTemp.get(), count * sizeof(Rec));
258    }
259    memcpy(colorDst, colorsTemp.get(), count * sizeof(SkColor));
260}
261
262void SkGradientShaderBase::flipGradientColors() {
263    FlipGradientColors(fOrigColors, fRecs, fOrigColors, fRecs, fColorCount);
264}
265
266bool SkGradientShaderBase::isOpaque() const {
267    return fColorsAreOpaque;
268}
269
270bool SkGradientShaderBase::setContext(const SkBitmap& device,
271                                 const SkPaint& paint,
272                                 const SkMatrix& matrix) {
273    if (!this->INHERITED::setContext(device, paint, matrix)) {
274        return false;
275    }
276
277    const SkMatrix& inverse = this->getTotalInverse();
278
279    fDstToIndex.setConcat(fPtsToUnit, inverse);
280    fDstToIndexProc = fDstToIndex.getMapXYProc();
281    fDstToIndexClass = (uint8_t)SkShader::ComputeMatrixClass(fDstToIndex);
282
283    // now convert our colors in to PMColors
284    unsigned paintAlpha = this->getPaintAlpha();
285
286    fFlags = this->INHERITED::getFlags();
287    if (fColorsAreOpaque && paintAlpha == 0xFF) {
288        fFlags |= kOpaqueAlpha_Flag;
289    }
290    // we can do span16 as long as our individual colors are opaque,
291    // regardless of the paint's alpha
292    if (fColorsAreOpaque) {
293        fFlags |= kHasSpan16_Flag;
294    }
295
296    this->setCacheAlpha(paintAlpha);
297    return true;
298}
299
300void SkGradientShaderBase::setCacheAlpha(U8CPU alpha) const {
301    // if the new alpha differs from the previous time we were called, inval our cache
302    // this will trigger the cache to be rebuilt.
303    // we don't care about the first time, since the cache ptrs will already be NULL
304    if (fCacheAlpha != alpha) {
305        fCache16 = NULL;            // inval the cache
306        fCache32 = NULL;            // inval the cache
307        fCacheAlpha = alpha;        // record the new alpha
308        // inform our subclasses
309        if (fCache32PixelRef) {
310            fCache32PixelRef->notifyPixelsChanged();
311        }
312    }
313}
314
315#define Fixed_To_Dot8(x)        (((x) + 0x80) >> 8)
316
317/** We take the original colors, not our premultiplied PMColors, since we can
318    build a 16bit table as long as the original colors are opaque, even if the
319    paint specifies a non-opaque alpha.
320*/
321void SkGradientShaderBase::Build16bitCache(uint16_t cache[], SkColor c0, SkColor c1,
322                                      int count) {
323    SkASSERT(count > 1);
324    SkASSERT(SkColorGetA(c0) == 0xFF);
325    SkASSERT(SkColorGetA(c1) == 0xFF);
326
327    SkFixed r = SkColorGetR(c0);
328    SkFixed g = SkColorGetG(c0);
329    SkFixed b = SkColorGetB(c0);
330
331    SkFixed dr = SkIntToFixed(SkColorGetR(c1) - r) / (count - 1);
332    SkFixed dg = SkIntToFixed(SkColorGetG(c1) - g) / (count - 1);
333    SkFixed db = SkIntToFixed(SkColorGetB(c1) - b) / (count - 1);
334
335    r = SkIntToFixed(r) + 0x8000;
336    g = SkIntToFixed(g) + 0x8000;
337    b = SkIntToFixed(b) + 0x8000;
338
339    do {
340        unsigned rr = r >> 16;
341        unsigned gg = g >> 16;
342        unsigned bb = b >> 16;
343        cache[0] = SkPackRGB16(SkR32ToR16(rr), SkG32ToG16(gg), SkB32ToB16(bb));
344        cache[kCache16Count] = SkDitherPack888ToRGB16(rr, gg, bb);
345        cache += 1;
346        r += dr;
347        g += dg;
348        b += db;
349    } while (--count != 0);
350}
351
352/*
353 *  r,g,b used to be SkFixed, but on gcc (4.2.1 mac and 4.6.3 goobuntu) in
354 *  release builds, we saw a compiler error where the 0xFF parameter in
355 *  SkPackARGB32() was being totally ignored whenever it was called with
356 *  a non-zero add (e.g. 0x8000).
357 *
358 *  We found two work-arounds:
359 *      1. change r,g,b to unsigned (or just one of them)
360 *      2. change SkPackARGB32 to + its (a << SK_A32_SHIFT) value instead
361 *         of using |
362 *
363 *  We chose #1 just because it was more localized.
364 *  See http://code.google.com/p/skia/issues/detail?id=1113
365 *
366 *  The type SkUFixed encapsulate this need for unsigned, but logically Fixed.
367 */
368typedef uint32_t SkUFixed;
369
370void SkGradientShaderBase::Build32bitCache(SkPMColor cache[], SkColor c0, SkColor c1,
371                                      int count, U8CPU paintAlpha, uint32_t gradFlags) {
372    SkASSERT(count > 1);
373
374    // need to apply paintAlpha to our two endpoints
375    uint32_t a0 = SkMulDiv255Round(SkColorGetA(c0), paintAlpha);
376    uint32_t a1 = SkMulDiv255Round(SkColorGetA(c1), paintAlpha);
377
378
379    const bool interpInPremul = SkToBool(gradFlags &
380                           SkGradientShader::kInterpolateColorsInPremul_Flag);
381
382    uint32_t r0 = SkColorGetR(c0);
383    uint32_t g0 = SkColorGetG(c0);
384    uint32_t b0 = SkColorGetB(c0);
385
386    uint32_t r1 = SkColorGetR(c1);
387    uint32_t g1 = SkColorGetG(c1);
388    uint32_t b1 = SkColorGetB(c1);
389
390    if (interpInPremul) {
391        r0 = SkMulDiv255Round(r0, a0);
392        g0 = SkMulDiv255Round(g0, a0);
393        b0 = SkMulDiv255Round(b0, a0);
394
395        r1 = SkMulDiv255Round(r1, a1);
396        g1 = SkMulDiv255Round(g1, a1);
397        b1 = SkMulDiv255Round(b1, a1);
398    }
399
400    SkFixed da = SkIntToFixed(a1 - a0) / (count - 1);
401    SkFixed dr = SkIntToFixed(r1 - r0) / (count - 1);
402    SkFixed dg = SkIntToFixed(g1 - g0) / (count - 1);
403    SkFixed db = SkIntToFixed(b1 - b0) / (count - 1);
404
405    /*  We pre-add 1/8 to avoid having to add this to our [0] value each time
406        in the loop. Without this, the bias for each would be
407            0x2000  0xA000  0xE000  0x6000
408        With this trick, we can add 0 for the first (no-op) and just adjust the
409        others.
410     */
411    SkUFixed a = SkIntToFixed(a0) + 0x2000;
412    SkUFixed r = SkIntToFixed(r0) + 0x2000;
413    SkUFixed g = SkIntToFixed(g0) + 0x2000;
414    SkUFixed b = SkIntToFixed(b0) + 0x2000;
415
416    /*
417     *  Our dither-cell (spatially) is
418     *      0 2
419     *      3 1
420     *  Where
421     *      [0] -> [-1/8 ... 1/8 ) values near 0
422     *      [1] -> [ 1/8 ... 3/8 ) values near 1/4
423     *      [2] -> [ 3/8 ... 5/8 ) values near 1/2
424     *      [3] -> [ 5/8 ... 7/8 ) values near 3/4
425     */
426
427    if (0xFF == a0 && 0 == da) {
428        do {
429            cache[kCache32Count*0] = SkPackARGB32(0xFF, (r + 0     ) >> 16,
430                                                        (g + 0     ) >> 16,
431                                                        (b + 0     ) >> 16);
432            cache[kCache32Count*1] = SkPackARGB32(0xFF, (r + 0x8000) >> 16,
433                                                        (g + 0x8000) >> 16,
434                                                        (b + 0x8000) >> 16);
435            cache[kCache32Count*2] = SkPackARGB32(0xFF, (r + 0xC000) >> 16,
436                                                        (g + 0xC000) >> 16,
437                                                        (b + 0xC000) >> 16);
438            cache[kCache32Count*3] = SkPackARGB32(0xFF, (r + 0x4000) >> 16,
439                                                        (g + 0x4000) >> 16,
440                                                        (b + 0x4000) >> 16);
441            cache += 1;
442            r += dr;
443            g += dg;
444            b += db;
445        } while (--count != 0);
446    } else if (interpInPremul) {
447        do {
448            cache[kCache32Count*0] = SkPackARGB32((a + 0     ) >> 16,
449                                                  (r + 0     ) >> 16,
450                                                  (g + 0     ) >> 16,
451                                                  (b + 0     ) >> 16);
452            cache[kCache32Count*1] = SkPackARGB32((a + 0x8000) >> 16,
453                                                  (r + 0x8000) >> 16,
454                                                  (g + 0x8000) >> 16,
455                                                  (b + 0x8000) >> 16);
456            cache[kCache32Count*2] = SkPackARGB32((a + 0xC000) >> 16,
457                                                  (r + 0xC000) >> 16,
458                                                  (g + 0xC000) >> 16,
459                                                  (b + 0xC000) >> 16);
460            cache[kCache32Count*3] = SkPackARGB32((a + 0x4000) >> 16,
461                                                  (r + 0x4000) >> 16,
462                                                  (g + 0x4000) >> 16,
463                                                  (b + 0x4000) >> 16);
464            cache += 1;
465            a += da;
466            r += dr;
467            g += dg;
468            b += db;
469        } while (--count != 0);
470    } else {    // interpolate in unpreml space
471        do {
472            cache[kCache32Count*0] = SkPremultiplyARGBInline((a + 0     ) >> 16,
473                                                             (r + 0     ) >> 16,
474                                                             (g + 0     ) >> 16,
475                                                             (b + 0     ) >> 16);
476            cache[kCache32Count*1] = SkPremultiplyARGBInline((a + 0x8000) >> 16,
477                                                             (r + 0x8000) >> 16,
478                                                             (g + 0x8000) >> 16,
479                                                             (b + 0x8000) >> 16);
480            cache[kCache32Count*2] = SkPremultiplyARGBInline((a + 0xC000) >> 16,
481                                                             (r + 0xC000) >> 16,
482                                                             (g + 0xC000) >> 16,
483                                                             (b + 0xC000) >> 16);
484            cache[kCache32Count*3] = SkPremultiplyARGBInline((a + 0x4000) >> 16,
485                                                             (r + 0x4000) >> 16,
486                                                             (g + 0x4000) >> 16,
487                                                             (b + 0x4000) >> 16);
488            cache += 1;
489            a += da;
490            r += dr;
491            g += dg;
492            b += db;
493        } while (--count != 0);
494    }
495}
496
497static inline int SkFixedToFFFF(SkFixed x) {
498    SkASSERT((unsigned)x <= SK_Fixed1);
499    return x - (x >> 16);
500}
501
502static inline U16CPU bitsTo16(unsigned x, const unsigned bits) {
503    SkASSERT(x < (1U << bits));
504    if (6 == bits) {
505        return (x << 10) | (x << 4) | (x >> 2);
506    }
507    if (8 == bits) {
508        return (x << 8) | x;
509    }
510    sk_throw();
511    return 0;
512}
513
514const uint16_t* SkGradientShaderBase::getCache16() const {
515    if (fCache16 == NULL) {
516        // double the count for dither entries
517        const int entryCount = kCache16Count * 2;
518        const size_t allocSize = sizeof(uint16_t) * entryCount;
519
520        if (fCache16Storage == NULL) { // set the storage and our working ptr
521            fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize);
522        }
523        fCache16 = fCache16Storage;
524        if (fColorCount == 2) {
525            Build16bitCache(fCache16, fOrigColors[0], fOrigColors[1],
526                            kCache16Count);
527        } else {
528            Rec* rec = fRecs;
529            int prevIndex = 0;
530            for (int i = 1; i < fColorCount; i++) {
531                int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache16Shift;
532                SkASSERT(nextIndex < kCache16Count);
533
534                if (nextIndex > prevIndex)
535                    Build16bitCache(fCache16 + prevIndex, fOrigColors[i-1], fOrigColors[i], nextIndex - prevIndex + 1);
536                prevIndex = nextIndex;
537            }
538        }
539
540        if (fMapper) {
541            fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize);
542            uint16_t* linear = fCache16;         // just computed linear data
543            uint16_t* mapped = fCache16Storage;  // storage for mapped data
544            SkUnitMapper* map = fMapper;
545            for (int i = 0; i < kCache16Count; i++) {
546                int index = map->mapUnit16(bitsTo16(i, kCache16Bits)) >> kCache16Shift;
547                mapped[i] = linear[index];
548                mapped[i + kCache16Count] = linear[index + kCache16Count];
549            }
550            sk_free(fCache16);
551            fCache16 = fCache16Storage;
552        }
553    }
554    return fCache16;
555}
556
557const SkPMColor* SkGradientShaderBase::getCache32() const {
558    if (fCache32 == NULL) {
559        SkImageInfo info;
560        info.fWidth = kCache32Count;
561        info.fHeight = 4;   // for our 4 dither rows
562        info.fAlphaType = kPremul_SkAlphaType;
563        info.fColorType = kN32_SkColorType;
564
565        if (NULL == fCache32PixelRef) {
566            fCache32PixelRef = SkMallocPixelRef::NewAllocate(info, 0, NULL);
567        }
568        fCache32 = (SkPMColor*)fCache32PixelRef->getAddr();
569        if (fColorCount == 2) {
570            Build32bitCache(fCache32, fOrigColors[0], fOrigColors[1],
571                            kCache32Count, fCacheAlpha, fGradFlags);
572        } else {
573            Rec* rec = fRecs;
574            int prevIndex = 0;
575            for (int i = 1; i < fColorCount; i++) {
576                int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache32Shift;
577                SkASSERT(nextIndex < kCache32Count);
578
579                if (nextIndex > prevIndex)
580                    Build32bitCache(fCache32 + prevIndex, fOrigColors[i-1],
581                                    fOrigColors[i], nextIndex - prevIndex + 1,
582                                    fCacheAlpha, fGradFlags);
583                prevIndex = nextIndex;
584            }
585        }
586
587        if (fMapper) {
588            SkMallocPixelRef* newPR = SkMallocPixelRef::NewAllocate(info, 0, NULL);
589            SkPMColor* linear = fCache32;           // just computed linear data
590            SkPMColor* mapped = (SkPMColor*)newPR->getAddr();    // storage for mapped data
591            SkUnitMapper* map = fMapper;
592            for (int i = 0; i < kCache32Count; i++) {
593                int index = map->mapUnit16((i << 8) | i) >> 8;
594                mapped[i + kCache32Count*0] = linear[index + kCache32Count*0];
595                mapped[i + kCache32Count*1] = linear[index + kCache32Count*1];
596                mapped[i + kCache32Count*2] = linear[index + kCache32Count*2];
597                mapped[i + kCache32Count*3] = linear[index + kCache32Count*3];
598            }
599            fCache32PixelRef->unref();
600            fCache32PixelRef = newPR;
601            fCache32 = (SkPMColor*)newPR->getAddr();
602        }
603    }
604    return fCache32;
605}
606
607/*
608 *  Because our caller might rebuild the same (logically the same) gradient
609 *  over and over, we'd like to return exactly the same "bitmap" if possible,
610 *  allowing the client to utilize a cache of our bitmap (e.g. with a GPU).
611 *  To do that, we maintain a private cache of built-bitmaps, based on our
612 *  colors and positions. Note: we don't try to flatten the fMapper, so if one
613 *  is present, we skip the cache for now.
614 */
615void SkGradientShaderBase::getGradientTableBitmap(SkBitmap* bitmap) const {
616    // our caller assumes no external alpha, so we ensure that our cache is
617    // built with 0xFF
618    this->setCacheAlpha(0xFF);
619
620    // don't have a way to put the mapper into our cache-key yet
621    if (fMapper) {
622        // force our cahce32pixelref to be built
623        (void)this->getCache32();
624        bitmap->setConfig(SkImageInfo::MakeN32Premul(kCache32Count, 1));
625        bitmap->setPixelRef(fCache32PixelRef);
626        return;
627    }
628
629    // build our key: [numColors + colors[] + {positions[]} + flags ]
630    int count = 1 + fColorCount + 1;
631    if (fColorCount > 2) {
632        count += fColorCount - 1;    // fRecs[].fPos
633    }
634
635    SkAutoSTMalloc<16, int32_t> storage(count);
636    int32_t* buffer = storage.get();
637
638    *buffer++ = fColorCount;
639    memcpy(buffer, fOrigColors, fColorCount * sizeof(SkColor));
640    buffer += fColorCount;
641    if (fColorCount > 2) {
642        for (int i = 1; i < fColorCount; i++) {
643            *buffer++ = fRecs[i].fPos;
644        }
645    }
646    *buffer++ = fGradFlags;
647    SkASSERT(buffer - storage.get() == count);
648
649    ///////////////////////////////////
650
651    SK_DECLARE_STATIC_MUTEX(gMutex);
652    static SkBitmapCache* gCache;
653    // each cache cost 1K of RAM, since each bitmap will be 1x256 at 32bpp
654    static const int MAX_NUM_CACHED_GRADIENT_BITMAPS = 32;
655    SkAutoMutexAcquire ama(gMutex);
656
657    if (NULL == gCache) {
658        gCache = SkNEW_ARGS(SkBitmapCache, (MAX_NUM_CACHED_GRADIENT_BITMAPS));
659    }
660    size_t size = count * sizeof(int32_t);
661
662    if (!gCache->find(storage.get(), size, bitmap)) {
663        // force our cahce32pixelref to be built
664        (void)this->getCache32();
665        bitmap->setConfig(SkImageInfo::MakeN32Premul(kCache32Count, 1));
666        bitmap->setPixelRef(fCache32PixelRef);
667
668        gCache->add(storage.get(), size, *bitmap);
669    }
670}
671
672void SkGradientShaderBase::commonAsAGradient(GradientInfo* info, bool flipGrad) const {
673    if (info) {
674        if (info->fColorCount >= fColorCount) {
675            SkColor* colorLoc;
676            Rec*     recLoc;
677            if (flipGrad && (info->fColors || info->fColorOffsets)) {
678                SkAutoSTArray<8, SkColor> colorStorage(fColorCount);
679                SkAutoSTArray<8, Rec> recStorage(fColorCount);
680                colorLoc = colorStorage.get();
681                recLoc = recStorage.get();
682                FlipGradientColors(colorLoc, recLoc, fOrigColors, fRecs, fColorCount);
683            } else {
684                colorLoc = fOrigColors;
685                recLoc = fRecs;
686            }
687            if (info->fColors) {
688                memcpy(info->fColors, colorLoc, fColorCount * sizeof(SkColor));
689            }
690            if (info->fColorOffsets) {
691                if (fColorCount == 2) {
692                    info->fColorOffsets[0] = 0;
693                    info->fColorOffsets[1] = SK_Scalar1;
694                } else if (fColorCount > 2) {
695                    for (int i = 0; i < fColorCount; ++i) {
696                        info->fColorOffsets[i] = SkFixedToScalar(recLoc[i].fPos);
697                    }
698                }
699            }
700        }
701        info->fColorCount = fColorCount;
702        info->fTileMode = fTileMode;
703        info->fGradientFlags = fGradFlags;
704    }
705}
706
707#ifndef SK_IGNORE_TO_STRING
708void SkGradientShaderBase::toString(SkString* str) const {
709
710    str->appendf("%d colors: ", fColorCount);
711
712    for (int i = 0; i < fColorCount; ++i) {
713        str->appendHex(fOrigColors[i]);
714        if (i < fColorCount-1) {
715            str->append(", ");
716        }
717    }
718
719    if (fColorCount > 2) {
720        str->append(" points: (");
721        for (int i = 0; i < fColorCount; ++i) {
722            str->appendScalar(SkFixedToScalar(fRecs[i].fPos));
723            if (i < fColorCount-1) {
724                str->append(", ");
725            }
726        }
727        str->append(")");
728    }
729
730    static const char* gTileModeName[SkShader::kTileModeCount] = {
731        "clamp", "repeat", "mirror"
732    };
733
734    str->append(" ");
735    str->append(gTileModeName[fTileMode]);
736
737    // TODO: add "fMapper->toString(str);" when SkUnitMapper::toString is added
738
739    this->INHERITED::toString(str);
740}
741#endif
742
743///////////////////////////////////////////////////////////////////////////////
744///////////////////////////////////////////////////////////////////////////////
745
746#include "SkEmptyShader.h"
747
748// assumes colors is SkColor* and pos is SkScalar*
749#define EXPAND_1_COLOR(count)               \
750    SkColor tmp[2];                         \
751    do {                                    \
752        if (1 == count) {                   \
753            tmp[0] = tmp[1] = colors[0];    \
754            colors = tmp;                   \
755            pos = NULL;                     \
756            count = 2;                      \
757        }                                   \
758    } while (0)
759
760static void desc_init(SkGradientShaderBase::Descriptor* desc,
761                      const SkColor colors[],
762                      const SkScalar pos[], int colorCount,
763                      SkShader::TileMode mode,
764                      SkUnitMapper* mapper, uint32_t flags) {
765    desc->fColors   = colors;
766    desc->fPos      = pos;
767    desc->fCount    = colorCount;
768    desc->fTileMode = mode;
769    desc->fMapper   = mapper;
770    desc->fFlags    = flags;
771}
772
773SkShader* SkGradientShader::CreateLinear(const SkPoint pts[2],
774                                         const SkColor colors[],
775                                         const SkScalar pos[], int colorCount,
776                                         SkShader::TileMode mode,
777                                         SkUnitMapper* mapper,
778                                         uint32_t flags) {
779    if (NULL == pts || NULL == colors || colorCount < 1) {
780        return NULL;
781    }
782    EXPAND_1_COLOR(colorCount);
783
784    SkGradientShaderBase::Descriptor desc;
785    desc_init(&desc, colors, pos, colorCount, mode, mapper, flags);
786    return SkNEW_ARGS(SkLinearGradient, (pts, desc));
787}
788
789SkShader* SkGradientShader::CreateRadial(const SkPoint& center, SkScalar radius,
790                                         const SkColor colors[],
791                                         const SkScalar pos[], int colorCount,
792                                         SkShader::TileMode mode,
793                                         SkUnitMapper* mapper,
794                                         uint32_t flags) {
795    if (radius <= 0 || NULL == colors || colorCount < 1) {
796        return NULL;
797    }
798    EXPAND_1_COLOR(colorCount);
799
800    SkGradientShaderBase::Descriptor desc;
801    desc_init(&desc, colors, pos, colorCount, mode, mapper, flags);
802    return SkNEW_ARGS(SkRadialGradient, (center, radius, desc));
803}
804
805SkShader* SkGradientShader::CreateTwoPointRadial(const SkPoint& start,
806                                                 SkScalar startRadius,
807                                                 const SkPoint& end,
808                                                 SkScalar endRadius,
809                                                 const SkColor colors[],
810                                                 const SkScalar pos[],
811                                                 int colorCount,
812                                                 SkShader::TileMode mode,
813                                                 SkUnitMapper* mapper,
814                                                 uint32_t flags) {
815    if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) {
816        return NULL;
817    }
818    EXPAND_1_COLOR(colorCount);
819
820    SkGradientShaderBase::Descriptor desc;
821    desc_init(&desc, colors, pos, colorCount, mode, mapper, flags);
822    return SkNEW_ARGS(SkTwoPointRadialGradient,
823                      (start, startRadius, end, endRadius, desc));
824}
825
826SkShader* SkGradientShader::CreateTwoPointConical(const SkPoint& start,
827                                                  SkScalar startRadius,
828                                                  const SkPoint& end,
829                                                  SkScalar endRadius,
830                                                  const SkColor colors[],
831                                                  const SkScalar pos[],
832                                                  int colorCount,
833                                                  SkShader::TileMode mode,
834                                                  SkUnitMapper* mapper,
835                                                  uint32_t flags) {
836    if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) {
837        return NULL;
838    }
839    if (start == end && startRadius == endRadius) {
840        return SkNEW(SkEmptyShader);
841    }
842
843    EXPAND_1_COLOR(colorCount);
844
845    bool flipGradient = startRadius > endRadius;
846
847    SkGradientShaderBase::Descriptor desc;
848
849    if (!flipGradient) {
850        desc_init(&desc, colors, pos, colorCount, mode, mapper, flags);
851        return SkNEW_ARGS(SkTwoPointConicalGradient,
852                          (start, startRadius, end, endRadius, flipGradient, desc));
853    } else {
854        SkAutoSTArray<8, SkColor> colorsNew(colorCount);
855        SkAutoSTArray<8, SkScalar> posNew(colorCount);
856        for (int i = 0; i < colorCount; ++i) {
857            colorsNew[i] = colors[colorCount - i - 1];
858        }
859
860        if (pos) {
861            for (int i = 0; i < colorCount; ++i) {
862                posNew[i] = 1 - pos[colorCount - i - 1];
863            }
864            desc_init(&desc, colorsNew.get(), posNew.get(), colorCount, mode, mapper, flags);
865        } else {
866            desc_init(&desc, colorsNew.get(), NULL, colorCount, mode, mapper, flags);
867        }
868
869        return SkNEW_ARGS(SkTwoPointConicalGradient,
870                          (end, endRadius, start, startRadius, flipGradient, desc));
871    }
872}
873
874SkShader* SkGradientShader::CreateSweep(SkScalar cx, SkScalar cy,
875                                        const SkColor colors[],
876                                        const SkScalar pos[],
877                                        int colorCount, SkUnitMapper* mapper,
878                                        uint32_t flags) {
879    if (NULL == colors || colorCount < 1) {
880        return NULL;
881    }
882    EXPAND_1_COLOR(colorCount);
883
884    SkGradientShaderBase::Descriptor desc;
885    desc_init(&desc, colors, pos, colorCount, SkShader::kClamp_TileMode, mapper, flags);
886    return SkNEW_ARGS(SkSweepGradient, (cx, cy, desc));
887}
888
889SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkGradientShader)
890    SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLinearGradient)
891    SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkRadialGradient)
892    SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSweepGradient)
893    SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointRadialGradient)
894    SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointConicalGradient)
895SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
896
897///////////////////////////////////////////////////////////////////////////////
898
899#if SK_SUPPORT_GPU
900
901#include "effects/GrTextureStripAtlas.h"
902#include "GrTBackendEffectFactory.h"
903#include "SkGr.h"
904
905GrGLGradientEffect::GrGLGradientEffect(const GrBackendEffectFactory& factory)
906    : INHERITED(factory)
907    , fCachedYCoord(SK_ScalarMax) {
908}
909
910GrGLGradientEffect::~GrGLGradientEffect() { }
911
912void GrGLGradientEffect::emitUniforms(GrGLShaderBuilder* builder, EffectKey key) {
913
914    if (SkGradientShaderBase::kTwo_GpuColorType == ColorTypeFromKey(key)) { // 2 Color case
915        fColorStartUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
916                                             kVec4f_GrSLType, "GradientStartColor");
917        fColorEndUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
918                                           kVec4f_GrSLType, "GradientEndColor");
919
920    } else if (SkGradientShaderBase::kThree_GpuColorType == ColorTypeFromKey(key)){ // 3 Color Case
921        fColorStartUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
922                                             kVec4f_GrSLType, "GradientStartColor");
923        fColorMidUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
924                                           kVec4f_GrSLType, "GradientMidColor");
925        fColorEndUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
926                                             kVec4f_GrSLType, "GradientEndColor");
927
928    } else { // if not a fast case
929        fFSYUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
930                                      kFloat_GrSLType, "GradientYCoordFS");
931    }
932}
933
934static inline void set_color_uni(const GrGLUniformManager& uman,
935                                 const GrGLUniformManager::UniformHandle uni,
936                                 const SkColor* color) {
937       uman.set4f(uni,
938                  SkColorGetR(*color) / 255.f,
939                  SkColorGetG(*color) / 255.f,
940                  SkColorGetB(*color) / 255.f,
941                  SkColorGetA(*color) / 255.f);
942}
943
944static inline void set_mul_color_uni(const GrGLUniformManager& uman,
945                                     const GrGLUniformManager::UniformHandle uni,
946                                     const SkColor* color){
947       float a = SkColorGetA(*color) / 255.f;
948       float aDiv255 = a / 255.f;
949       uman.set4f(uni,
950                  SkColorGetR(*color) * aDiv255,
951                  SkColorGetG(*color) * aDiv255,
952                  SkColorGetB(*color) * aDiv255,
953                  a);
954}
955
956void GrGLGradientEffect::setData(const GrGLUniformManager& uman,
957                                 const GrDrawEffect& drawEffect) {
958
959    const GrGradientEffect& e = drawEffect.castEffect<GrGradientEffect>();
960
961
962    if (SkGradientShaderBase::kTwo_GpuColorType == e.getColorType()){
963
964        if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
965            set_mul_color_uni(uman, fColorStartUni, e.getColors(0));
966            set_mul_color_uni(uman, fColorEndUni,   e.getColors(1));
967        } else {
968            set_color_uni(uman, fColorStartUni, e.getColors(0));
969            set_color_uni(uman, fColorEndUni,   e.getColors(1));
970        }
971
972    } else if (SkGradientShaderBase::kThree_GpuColorType == e.getColorType()){
973
974        if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
975            set_mul_color_uni(uman, fColorStartUni, e.getColors(0));
976            set_mul_color_uni(uman, fColorMidUni,   e.getColors(1));
977            set_mul_color_uni(uman, fColorEndUni,   e.getColors(2));
978        } else {
979            set_color_uni(uman, fColorStartUni, e.getColors(0));
980            set_color_uni(uman, fColorMidUni,   e.getColors(1));
981            set_color_uni(uman, fColorEndUni,   e.getColors(2));
982        }
983    } else {
984
985        SkScalar yCoord = e.getYCoord();
986        if (yCoord != fCachedYCoord) {
987            uman.set1f(fFSYUni, yCoord);
988            fCachedYCoord = yCoord;
989        }
990    }
991}
992
993
994GrGLEffect::EffectKey GrGLGradientEffect::GenBaseGradientKey(const GrDrawEffect& drawEffect) {
995    const GrGradientEffect& e = drawEffect.castEffect<GrGradientEffect>();
996
997    EffectKey key = 0;
998
999    if (SkGradientShaderBase::kTwo_GpuColorType == e.getColorType()) {
1000        key |= kTwoColorKey;
1001    } else if (SkGradientShaderBase::kThree_GpuColorType == e.getColorType()){
1002        key |= kThreeColorKey;
1003    }
1004
1005    if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
1006        key |= kPremulBeforeInterpKey;
1007    }
1008
1009    return key;
1010}
1011
1012void GrGLGradientEffect::emitColor(GrGLShaderBuilder* builder,
1013                                   const char* gradientTValue,
1014                                   EffectKey key,
1015                                   const char* outputColor,
1016                                   const char* inputColor,
1017                                   const TextureSamplerArray& samplers) {
1018    if (SkGradientShaderBase::kTwo_GpuColorType == ColorTypeFromKey(key)){
1019        builder->fsCodeAppendf("\tvec4 colorTemp = mix(%s, %s, clamp(%s, 0.0, 1.0));\n",
1020                               builder->getUniformVariable(fColorStartUni).c_str(),
1021                               builder->getUniformVariable(fColorEndUni).c_str(),
1022                               gradientTValue);
1023        // Note that we could skip this step if both colors are known to be opaque. Two
1024        // considerations:
1025        // The gradient SkShader reporting opaque is more restrictive than necessary in the two pt
1026        // case. Make sure the key reflects this optimization (and note that it can use the same
1027        // shader as thekBeforeIterp case). This same optimization applies to the 3 color case below.
1028        if (GrGradientEffect::kAfterInterp_PremulType == PremulTypeFromKey(key)) {
1029            builder->fsCodeAppend("\tcolorTemp.rgb *= colorTemp.a;\n");
1030        }
1031
1032        builder->fsCodeAppendf("\t%s = %s;\n", outputColor,
1033                               (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
1034    } else if (SkGradientShaderBase::kThree_GpuColorType == ColorTypeFromKey(key)){
1035        builder->fsCodeAppendf("\tfloat oneMinus2t = 1.0 - (2.0 * (%s));\n",
1036                               gradientTValue);
1037        builder->fsCodeAppendf("\tvec4 colorTemp = clamp(oneMinus2t, 0.0, 1.0) * %s;\n",
1038                               builder->getUniformVariable(fColorStartUni).c_str());
1039        if (kTegra3_GrGLRenderer == builder->ctxInfo().renderer()) {
1040            // The Tegra3 compiler will sometimes never return if we have
1041            // min(abs(oneMinus2t), 1.0), or do the abs first in a separate expression.
1042            builder->fsCodeAppend("\tfloat minAbs = abs(oneMinus2t);\n");
1043            builder->fsCodeAppend("\tminAbs = minAbs > 1.0 ? 1.0 : minAbs;\n");
1044            builder->fsCodeAppendf("\tcolorTemp += (1.0 - minAbs) * %s;\n",
1045                                   builder->getUniformVariable(fColorMidUni).c_str());
1046        } else {
1047            builder->fsCodeAppendf("\tcolorTemp += (1.0 - min(abs(oneMinus2t), 1.0)) * %s;\n",
1048                                   builder->getUniformVariable(fColorMidUni).c_str());
1049        }
1050        builder->fsCodeAppendf("\tcolorTemp += clamp(-oneMinus2t, 0.0, 1.0) * %s;\n",
1051                               builder->getUniformVariable(fColorEndUni).c_str());
1052        if (GrGradientEffect::kAfterInterp_PremulType == PremulTypeFromKey(key)) {
1053            builder->fsCodeAppend("\tcolorTemp.rgb *= colorTemp.a;\n");
1054        }
1055
1056        builder->fsCodeAppendf("\t%s = %s;\n", outputColor,
1057                               (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
1058    } else {
1059        builder->fsCodeAppendf("\tvec2 coord = vec2(%s, %s);\n",
1060                               gradientTValue,
1061                               builder->getUniformVariable(fFSYUni).c_str());
1062        builder->fsCodeAppendf("\t%s = ", outputColor);
1063        builder->fsAppendTextureLookupAndModulate(inputColor,
1064                                                  samplers[0],
1065                                                  "coord");
1066        builder->fsCodeAppend(";\n");
1067    }
1068}
1069
1070/////////////////////////////////////////////////////////////////////
1071
1072GrGradientEffect::GrGradientEffect(GrContext* ctx,
1073                                   const SkGradientShaderBase& shader,
1074                                   const SkMatrix& matrix,
1075                                   SkShader::TileMode tileMode) {
1076
1077    fIsOpaque = shader.isOpaque();
1078
1079    fColorType = shader.getGpuColorType(&fColors[0]);
1080
1081    // The two and three color specializations do not currently support tiling.
1082    if (SkGradientShaderBase::kTwo_GpuColorType == fColorType ||
1083        SkGradientShaderBase::kThree_GpuColorType == fColorType) {
1084        fRow = -1;
1085
1086        if (SkGradientShader::kInterpolateColorsInPremul_Flag & shader.getFlags()) {
1087            fPremulType = kBeforeInterp_PremulType;
1088        } else {
1089            fPremulType = kAfterInterp_PremulType;
1090        }
1091        fCoordTransform.reset(kCoordSet, matrix);
1092    } else {
1093        // doesn't matter how this is set, just be consistent because it is part of the effect key.
1094        fPremulType = kBeforeInterp_PremulType;
1095        SkBitmap bitmap;
1096        shader.getGradientTableBitmap(&bitmap);
1097
1098        GrTextureStripAtlas::Desc desc;
1099        desc.fWidth  = bitmap.width();
1100        desc.fHeight = 32;
1101        desc.fRowHeight = bitmap.height();
1102        desc.fContext = ctx;
1103        desc.fConfig = SkImageInfo2GrPixelConfig(bitmap.colorType(), bitmap.alphaType());
1104        fAtlas = GrTextureStripAtlas::GetAtlas(desc);
1105        SkASSERT(NULL != fAtlas);
1106
1107        // We always filter the gradient table. Each table is one row of a texture, always y-clamp.
1108        GrTextureParams params;
1109        params.setFilterMode(GrTextureParams::kBilerp_FilterMode);
1110        params.setTileModeX(tileMode);
1111
1112        fRow = fAtlas->lockRow(bitmap);
1113        if (-1 != fRow) {
1114            fYCoord = fAtlas->getYOffset(fRow) + SK_ScalarHalf *
1115            fAtlas->getVerticalScaleFactor();
1116            fCoordTransform.reset(kCoordSet, matrix, fAtlas->getTexture());
1117            fTextureAccess.reset(fAtlas->getTexture(), params);
1118        } else {
1119            GrTexture* texture = GrLockAndRefCachedBitmapTexture(ctx, bitmap, &params);
1120            fCoordTransform.reset(kCoordSet, matrix, texture);
1121            fTextureAccess.reset(texture, params);
1122            fYCoord = SK_ScalarHalf;
1123
1124            // Unlock immediately, this is not great, but we don't have a way of
1125            // knowing when else to unlock it currently, so it may get purged from
1126            // the cache, but it'll still be ref'd until it's no longer being used.
1127            GrUnlockAndUnrefCachedBitmapTexture(texture);
1128        }
1129        this->addTextureAccess(&fTextureAccess);
1130    }
1131    this->addCoordTransform(&fCoordTransform);
1132}
1133
1134GrGradientEffect::~GrGradientEffect() {
1135    if (this->useAtlas()) {
1136        fAtlas->unlockRow(fRow);
1137    }
1138}
1139
1140bool GrGradientEffect::onIsEqual(const GrEffect& effect) const {
1141    const GrGradientEffect& s = CastEffect<GrGradientEffect>(effect);
1142
1143    if (this->fColorType == s.getColorType()){
1144
1145        if (SkGradientShaderBase::kTwo_GpuColorType == fColorType) {
1146            if (*this->getColors(0) != *s.getColors(0) ||
1147                *this->getColors(1) != *s.getColors(1)) {
1148                return false;
1149            }
1150        } else if (SkGradientShaderBase::kThree_GpuColorType == fColorType) {
1151            if (*this->getColors(0) != *s.getColors(0) ||
1152                *this->getColors(1) != *s.getColors(1) ||
1153                *this->getColors(2) != *s.getColors(2)) {
1154                return false;
1155            }
1156        } else {
1157            if (fYCoord != s.getYCoord()) {
1158                return false;
1159            }
1160        }
1161
1162        return fTextureAccess.getTexture() == s.fTextureAccess.getTexture()  &&
1163            fTextureAccess.getParams().getTileModeX() ==
1164                s.fTextureAccess.getParams().getTileModeX() &&
1165            this->useAtlas() == s.useAtlas() &&
1166            fCoordTransform.getMatrix().cheapEqualTo(s.fCoordTransform.getMatrix());
1167    }
1168
1169    return false;
1170}
1171
1172void GrGradientEffect::getConstantColorComponents(GrColor* color, uint32_t* validFlags) const {
1173    if (fIsOpaque && (kA_GrColorComponentFlag & *validFlags) && 0xff == GrColorUnpackA(*color)) {
1174        *validFlags = kA_GrColorComponentFlag;
1175    } else {
1176        *validFlags = 0;
1177    }
1178}
1179
1180int GrGradientEffect::RandomGradientParams(SkRandom* random,
1181                                           SkColor colors[],
1182                                           SkScalar** stops,
1183                                           SkShader::TileMode* tm) {
1184    int outColors = random->nextRangeU(1, kMaxRandomGradientColors);
1185
1186    // if one color, omit stops, otherwise randomly decide whether or not to
1187    if (outColors == 1 || (outColors >= 2 && random->nextBool())) {
1188        *stops = NULL;
1189    }
1190
1191    SkScalar stop = 0.f;
1192    for (int i = 0; i < outColors; ++i) {
1193        colors[i] = random->nextU();
1194        if (NULL != *stops) {
1195            (*stops)[i] = stop;
1196            stop = i < outColors - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f;
1197        }
1198    }
1199    *tm = static_cast<SkShader::TileMode>(random->nextULessThan(SkShader::kTileModeCount));
1200
1201    return outColors;
1202}
1203
1204#endif
1205