SkTwoPointConicalGradient.cpp revision 3d3a860d0ba878adb905512a45c500a67532b0a3
1
2/*
3 * Copyright 2012 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9#include "SkTwoPointConicalGradient.h"
10
11static int valid_divide(float numer, float denom, float* ratio) {
12    SkASSERT(ratio);
13    if (0 == denom) {
14        return 0;
15    }
16    *ratio = numer / denom;
17    return 1;
18}
19
20// Return the number of distinct real roots, and write them into roots[] in
21// ascending order
22static int find_quad_roots(float A, float B, float C, float roots[2]) {
23    SkASSERT(roots);
24
25    if (A == 0) {
26        return valid_divide(-C, B, roots);
27    }
28
29    float R = B*B - 4*A*C;
30    if (R < 0) {
31        return 0;
32    }
33    R = sk_float_sqrt(R);
34
35#if 1
36    float Q = B;
37    if (Q < 0) {
38        Q -= R;
39    } else {
40        Q += R;
41    }
42#else
43    // on 10.6 this was much slower than the above branch :(
44    float Q = B + copysignf(R, B);
45#endif
46    Q *= -0.5f;
47    if (0 == Q) {
48        roots[0] = 0;
49        return 1;
50    }
51
52    float r0 = Q / A;
53    float r1 = C / Q;
54    roots[0] = r0 < r1 ? r0 : r1;
55    roots[1] = r0 > r1 ? r0 : r1;
56    return 2;
57}
58
59static float lerp(float x, float dx, float t) {
60    return x + t * dx;
61}
62
63static float sqr(float x) { return x * x; }
64
65void TwoPtRadial::init(const SkPoint& center0, SkScalar rad0,
66                       const SkPoint& center1, SkScalar rad1) {
67    fCenterX = SkScalarToFloat(center0.fX);
68    fCenterY = SkScalarToFloat(center0.fY);
69    fDCenterX = SkScalarToFloat(center1.fX) - fCenterX;
70    fDCenterY = SkScalarToFloat(center1.fY) - fCenterY;
71    fRadius = SkScalarToFloat(rad0);
72    fDRadius = SkScalarToFloat(rad1) - fRadius;
73
74    fA = sqr(fDCenterX) + sqr(fDCenterY) - sqr(fDRadius);
75    fRadius2 = sqr(fRadius);
76    fRDR = fRadius * fDRadius;
77}
78
79void TwoPtRadial::setup(SkScalar fx, SkScalar fy, SkScalar dfx, SkScalar dfy) {
80    fRelX = SkScalarToFloat(fx) - fCenterX;
81    fRelY = SkScalarToFloat(fy) - fCenterY;
82    fIncX = SkScalarToFloat(dfx);
83    fIncY = SkScalarToFloat(dfy);
84    fB = -2 * (fDCenterX * fRelX + fDCenterY * fRelY + fRDR);
85    fDB = -2 * (fDCenterX * fIncX + fDCenterY * fIncY);
86}
87
88SkFixed TwoPtRadial::nextT() {
89    float roots[2];
90
91    float C = sqr(fRelX) + sqr(fRelY) - fRadius2;
92    int countRoots = find_quad_roots(fA, fB, C, roots);
93
94    fRelX += fIncX;
95    fRelY += fIncY;
96    fB += fDB;
97
98    if (0 == countRoots) {
99        return kDontDrawT;
100    }
101
102    // Prefer the bigger t value if both give a radius(t) > 0
103    // find_quad_roots returns the values sorted, so we start with the last
104    float t = roots[countRoots - 1];
105    float r = lerp(fRadius, fDRadius, t);
106    if (r <= 0) {
107        t = roots[0];   // might be the same as roots[countRoots-1]
108        r = lerp(fRadius, fDRadius, t);
109        if (r <= 0) {
110            return kDontDrawT;
111        }
112    }
113    return SkFloatToFixed(t);
114}
115
116typedef void (*TwoPointConicalProc)(TwoPtRadial* rec, SkPMColor* dstC,
117                                    const SkPMColor* cache, int toggle, int count);
118
119static void twopoint_clamp(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
120                           const SkPMColor* SK_RESTRICT cache, int toggle,
121                           int count) {
122    for (; count > 0; --count) {
123        SkFixed t = rec->nextT();
124        if (TwoPtRadial::DontDrawT(t)) {
125            *dstC++ = 0;
126        } else {
127            SkFixed index = SkClampMax(t, 0xFFFF);
128            SkASSERT(index <= 0xFFFF);
129            *dstC++ = cache[toggle +
130                            (index >> SkGradientShaderBase::kCache32Shift)];
131        }
132        toggle = next_dither_toggle(toggle);
133    }
134}
135
136static void twopoint_repeat(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
137                            const SkPMColor* SK_RESTRICT cache, int toggle,
138                            int count) {
139    for (; count > 0; --count) {
140        SkFixed t = rec->nextT();
141        if (TwoPtRadial::DontDrawT(t)) {
142            *dstC++ = 0;
143        } else {
144            SkFixed index = repeat_tileproc(t);
145            SkASSERT(index <= 0xFFFF);
146            *dstC++ = cache[toggle +
147                            (index >> SkGradientShaderBase::kCache32Shift)];
148        }
149        toggle = next_dither_toggle(toggle);
150    }
151}
152
153static void twopoint_mirror(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
154                            const SkPMColor* SK_RESTRICT cache, int toggle,
155                            int count) {
156    for (; count > 0; --count) {
157        SkFixed t = rec->nextT();
158        if (TwoPtRadial::DontDrawT(t)) {
159            *dstC++ = 0;
160        } else {
161            SkFixed index = mirror_tileproc(t);
162            SkASSERT(index <= 0xFFFF);
163            *dstC++ = cache[toggle +
164                            (index >> SkGradientShaderBase::kCache32Shift)];
165        }
166        toggle = next_dither_toggle(toggle);
167    }
168}
169
170void SkTwoPointConicalGradient::init() {
171    fRec.init(fCenter1, fRadius1, fCenter2, fRadius2);
172    fPtsToUnit.reset();
173}
174
175/////////////////////////////////////////////////////////////////////
176
177SkTwoPointConicalGradient::SkTwoPointConicalGradient(
178        const SkPoint& start, SkScalar startRadius,
179        const SkPoint& end, SkScalar endRadius,
180        const Descriptor& desc)
181    : SkGradientShaderBase(desc),
182    fCenter1(start),
183    fCenter2(end),
184    fRadius1(startRadius),
185    fRadius2(endRadius) {
186    // this is degenerate, and should be caught by our caller
187    SkASSERT(fCenter1 != fCenter2 || fRadius1 != fRadius2);
188    this->init();
189}
190
191bool SkTwoPointConicalGradient::isOpaque() const {
192    // Because areas outside the cone are left untouched, we cannot treat the
193    // shader as opaque even if the gradient itself is opaque.
194    // TODO(junov): Compute whether the cone fills the plane crbug.com/222380
195    return false;
196}
197
198void SkTwoPointConicalGradient::shadeSpan(int x, int y, SkPMColor* dstCParam,
199                                          int count) {
200    int toggle = init_dither_toggle(x, y);
201
202    SkASSERT(count > 0);
203
204    SkPMColor* SK_RESTRICT dstC = dstCParam;
205
206    SkMatrix::MapXYProc dstProc = fDstToIndexProc;
207
208    const SkPMColor* SK_RESTRICT cache = this->getCache32();
209
210    TwoPointConicalProc shadeProc = twopoint_repeat;
211    if (SkShader::kClamp_TileMode == fTileMode) {
212        shadeProc = twopoint_clamp;
213    } else if (SkShader::kMirror_TileMode == fTileMode) {
214        shadeProc = twopoint_mirror;
215    } else {
216        SkASSERT(SkShader::kRepeat_TileMode == fTileMode);
217    }
218
219    if (fDstToIndexClass != kPerspective_MatrixClass) {
220        SkPoint srcPt;
221        dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
222                SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
223        SkScalar dx, fx = srcPt.fX;
224        SkScalar dy, fy = srcPt.fY;
225
226        if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
227            SkFixed fixedX, fixedY;
228            (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), &fixedX, &fixedY);
229            dx = SkFixedToScalar(fixedX);
230            dy = SkFixedToScalar(fixedY);
231        } else {
232            SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
233            dx = fDstToIndex.getScaleX();
234            dy = fDstToIndex.getSkewY();
235        }
236
237        fRec.setup(fx, fy, dx, dy);
238        (*shadeProc)(&fRec, dstC, cache, toggle, count);
239    } else {    // perspective case
240        SkScalar dstX = SkIntToScalar(x);
241        SkScalar dstY = SkIntToScalar(y);
242        for (; count > 0; --count) {
243            SkPoint srcPt;
244            dstProc(fDstToIndex, dstX, dstY, &srcPt);
245            dstX += SK_Scalar1;
246
247            fRec.setup(srcPt.fX, srcPt.fY, 0, 0);
248            (*shadeProc)(&fRec, dstC, cache, toggle, 1);
249            toggle = next_dither_toggle(toggle);
250        }
251    }
252}
253
254bool SkTwoPointConicalGradient::setContext(const SkBitmap& device,
255                                           const SkPaint& paint,
256                                           const SkMatrix& matrix) {
257    if (!this->INHERITED::setContext(device, paint, matrix)) {
258        return false;
259    }
260
261    // we don't have a span16 proc
262    fFlags &= ~kHasSpan16_Flag;
263
264    // in general, we might discard based on computed-radius, so clear
265    // this flag (todo: sometimes we can detect that we never discard...)
266    fFlags &= ~kOpaqueAlpha_Flag;
267
268    return true;
269}
270
271SkShader::BitmapType SkTwoPointConicalGradient::asABitmap(
272    SkBitmap* bitmap, SkMatrix* matrix, SkShader::TileMode* xy) const {
273    SkPoint diff = fCenter2 - fCenter1;
274    SkScalar diffLen = 0;
275
276    if (bitmap) {
277        this->getGradientTableBitmap(bitmap);
278    }
279    if (matrix) {
280        diffLen = diff.length();
281    }
282    if (matrix) {
283        if (diffLen) {
284            SkScalar invDiffLen = SkScalarInvert(diffLen);
285            // rotate to align circle centers with the x-axis
286            matrix->setSinCos(-SkScalarMul(invDiffLen, diff.fY),
287                              SkScalarMul(invDiffLen, diff.fX));
288        } else {
289            matrix->reset();
290        }
291        matrix->preTranslate(-fCenter1.fX, -fCenter1.fY);
292    }
293    if (xy) {
294        xy[0] = fTileMode;
295        xy[1] = kClamp_TileMode;
296    }
297    return kTwoPointConical_BitmapType;
298}
299
300SkShader::GradientType SkTwoPointConicalGradient::asAGradient(
301    GradientInfo* info) const {
302    if (info) {
303        commonAsAGradient(info);
304        info->fPoint[0] = fCenter1;
305        info->fPoint[1] = fCenter2;
306        info->fRadius[0] = fRadius1;
307        info->fRadius[1] = fRadius2;
308    }
309    return kConical_GradientType;
310}
311
312SkTwoPointConicalGradient::SkTwoPointConicalGradient(
313    SkFlattenableReadBuffer& buffer)
314    : INHERITED(buffer),
315    fCenter1(buffer.readPoint()),
316    fCenter2(buffer.readPoint()),
317    fRadius1(buffer.readScalar()),
318    fRadius2(buffer.readScalar()) {
319    this->init();
320};
321
322void SkTwoPointConicalGradient::flatten(
323    SkFlattenableWriteBuffer& buffer) const {
324    this->INHERITED::flatten(buffer);
325    buffer.writePoint(fCenter1);
326    buffer.writePoint(fCenter2);
327    buffer.writeScalar(fRadius1);
328    buffer.writeScalar(fRadius2);
329}
330
331/////////////////////////////////////////////////////////////////////
332
333#if SK_SUPPORT_GPU
334
335#include "GrTBackendEffectFactory.h"
336
337// For brevity
338typedef GrGLUniformManager::UniformHandle UniformHandle;
339static const UniformHandle kInvalidUniformHandle = GrGLUniformManager::kInvalidUniformHandle;
340
341class GrGLConical2Gradient : public GrGLGradientEffect {
342public:
343
344    GrGLConical2Gradient(const GrBackendEffectFactory& factory, const GrDrawEffect&);
345    virtual ~GrGLConical2Gradient() { }
346
347    virtual void emitCode(GrGLShaderBuilder*,
348                          const GrDrawEffect&,
349                          EffectKey,
350                          const char* outputColor,
351                          const char* inputColor,
352                          const TextureSamplerArray&) SK_OVERRIDE;
353    virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE;
354
355    static EffectKey GenKey(const GrDrawEffect&, const GrGLCaps& caps);
356
357protected:
358
359    UniformHandle           fVSParamUni;
360    UniformHandle           fFSParamUni;
361
362    const char* fVSVaryingName;
363    const char* fFSVaryingName;
364
365    bool fIsDegenerate;
366
367    // @{
368    /// Values last uploaded as uniforms
369
370    SkScalar fCachedCenter;
371    SkScalar fCachedRadius;
372    SkScalar fCachedDiffRadius;
373
374    // @}
375
376private:
377
378    typedef GrGLGradientEffect INHERITED;
379
380};
381
382/////////////////////////////////////////////////////////////////////
383
384class GrConical2Gradient : public GrGradientEffect {
385public:
386
387    static GrEffectRef* Create(GrContext* ctx,
388                               const SkTwoPointConicalGradient& shader,
389                               const SkMatrix& matrix,
390                               SkShader::TileMode tm) {
391        AutoEffectUnref effect(SkNEW_ARGS(GrConical2Gradient, (ctx, shader, matrix, tm)));
392        return CreateEffectRef(effect);
393    }
394
395    virtual ~GrConical2Gradient() { }
396
397    static const char* Name() { return "Two-Point Conical Gradient"; }
398    virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE {
399        return GrTBackendEffectFactory<GrConical2Gradient>::getInstance();
400    }
401
402    // The radial gradient parameters can collapse to a linear (instead of quadratic) equation.
403    bool isDegenerate() const { return SkScalarAbs(fDiffRadius) == SkScalarAbs(fCenterX1); }
404    SkScalar center() const { return fCenterX1; }
405    SkScalar diffRadius() const { return fDiffRadius; }
406    SkScalar radius() const { return fRadius0; }
407
408    typedef GrGLConical2Gradient GLEffect;
409
410private:
411    virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE {
412        const GrConical2Gradient& s = CastEffect<GrConical2Gradient>(sBase);
413        return (INHERITED::onIsEqual(sBase) &&
414                this->fCenterX1 == s.fCenterX1 &&
415                this->fRadius0 == s.fRadius0 &&
416                this->fDiffRadius == s.fDiffRadius);
417    }
418
419    GrConical2Gradient(GrContext* ctx,
420                       const SkTwoPointConicalGradient& shader,
421                       const SkMatrix& matrix,
422                       SkShader::TileMode tm)
423        : INHERITED(ctx, shader, matrix, tm)
424        , fCenterX1(shader.getCenterX1())
425        , fRadius0(shader.getStartRadius())
426        , fDiffRadius(shader.getDiffRadius()) { }
427
428    GR_DECLARE_EFFECT_TEST;
429
430    // @{
431    // Cache of values - these can change arbitrarily, EXCEPT
432    // we shouldn't change between degenerate and non-degenerate?!
433
434    SkScalar fCenterX1;
435    SkScalar fRadius0;
436    SkScalar fDiffRadius;
437
438    // @}
439
440    typedef GrGradientEffect INHERITED;
441};
442
443GR_DEFINE_EFFECT_TEST(GrConical2Gradient);
444
445GrEffectRef* GrConical2Gradient::TestCreate(SkMWCRandom* random,
446                                            GrContext* context,
447                                            const GrDrawTargetCaps&,
448                                            GrTexture**) {
449    SkPoint center1 = {random->nextUScalar1(), random->nextUScalar1()};
450    SkScalar radius1 = random->nextUScalar1();
451    SkPoint center2;
452    SkScalar radius2;
453    do {
454        center2.set(random->nextUScalar1(), random->nextUScalar1());
455        radius2 = random->nextUScalar1 ();
456        // If the circles are identical the factory will give us an empty shader.
457    } while (radius1 == radius2 && center1 == center2);
458
459    SkColor colors[kMaxRandomGradientColors];
460    SkScalar stopsArray[kMaxRandomGradientColors];
461    SkScalar* stops = stopsArray;
462    SkShader::TileMode tm;
463    int colorCount = RandomGradientParams(random, colors, &stops, &tm);
464    SkAutoTUnref<SkShader> shader(SkGradientShader::CreateTwoPointConical(center1, radius1,
465                                                                          center2, radius2,
466                                                                          colors, stops, colorCount,
467                                                                          tm));
468    SkPaint paint;
469    return shader->asNewEffect(context, paint);
470}
471
472
473/////////////////////////////////////////////////////////////////////
474
475GrGLConical2Gradient::GrGLConical2Gradient(const GrBackendEffectFactory& factory,
476                                           const GrDrawEffect& drawEffect)
477    : INHERITED(factory)
478    , fVSParamUni(kInvalidUniformHandle)
479    , fFSParamUni(kInvalidUniformHandle)
480    , fVSVaryingName(NULL)
481    , fFSVaryingName(NULL)
482    , fCachedCenter(SK_ScalarMax)
483    , fCachedRadius(-SK_ScalarMax)
484    , fCachedDiffRadius(-SK_ScalarMax) {
485
486    const GrConical2Gradient& data = drawEffect.castEffect<GrConical2Gradient>();
487    fIsDegenerate = data.isDegenerate();
488}
489
490void GrGLConical2Gradient::emitCode(GrGLShaderBuilder* builder,
491                                    const GrDrawEffect&,
492                                    EffectKey key,
493                                    const char* outputColor,
494                                    const char* inputColor,
495                                    const TextureSamplerArray& samplers) {
496    const char* fsCoords;
497    const char* vsCoordsVarying;
498    GrSLType coordsVaryingType;
499    this->setupMatrix(builder, key, &fsCoords, &vsCoordsVarying, &coordsVaryingType);
500
501    this->emitYCoordUniform(builder);
502    // 2 copies of uniform array, 1 for each of vertex & fragment shader,
503    // to work around Xoom bug. Doesn't seem to cause performance decrease
504    // in test apps, but need to keep an eye on it.
505    fVSParamUni = builder->addUniformArray(GrGLShaderBuilder::kVertex_ShaderType,
506                                           kFloat_GrSLType, "Conical2VSParams", 6);
507    fFSParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_ShaderType,
508                                           kFloat_GrSLType, "Conical2FSParams", 6);
509
510    // For radial gradients without perspective we can pass the linear
511    // part of the quadratic as a varying.
512    if (kVec2f_GrSLType == coordsVaryingType) {
513        builder->addVarying(kFloat_GrSLType, "Conical2BCoeff",
514                            &fVSVaryingName, &fFSVaryingName);
515    }
516
517    // VS
518    {
519        SkString p2; // distance between centers
520        SkString p3; // start radius
521        SkString p5; // difference in radii (r1 - r0)
522        builder->getUniformVariable(fVSParamUni).appendArrayAccess(2, &p2);
523        builder->getUniformVariable(fVSParamUni).appendArrayAccess(3, &p3);
524        builder->getUniformVariable(fVSParamUni).appendArrayAccess(5, &p5);
525
526        // For radial gradients without perspective we can pass the linear
527        // part of the quadratic as a varying.
528        if (kVec2f_GrSLType == coordsVaryingType) {
529            // r2Var = -2 * (r2Parm[2] * varCoord.x - r2Param[3] * r2Param[5])
530            builder->vsCodeAppendf("\t%s = -2.0 * (%s * %s.x + %s * %s);\n",
531                                   fVSVaryingName, p2.c_str(),
532                                   vsCoordsVarying, p3.c_str(), p5.c_str());
533        }
534    }
535
536    // FS
537    {
538
539        SkString cName("c");
540        SkString ac4Name("ac4");
541        SkString dName("d");
542        SkString qName("q");
543        SkString r0Name("r0");
544        SkString r1Name("r1");
545        SkString tName("t");
546        SkString p0; // 4a
547        SkString p1; // 1/a
548        SkString p2; // distance between centers
549        SkString p3; // start radius
550        SkString p4; // start radius squared
551        SkString p5; // difference in radii (r1 - r0)
552
553        builder->getUniformVariable(fFSParamUni).appendArrayAccess(0, &p0);
554        builder->getUniformVariable(fFSParamUni).appendArrayAccess(1, &p1);
555        builder->getUniformVariable(fFSParamUni).appendArrayAccess(2, &p2);
556        builder->getUniformVariable(fFSParamUni).appendArrayAccess(3, &p3);
557        builder->getUniformVariable(fFSParamUni).appendArrayAccess(4, &p4);
558        builder->getUniformVariable(fFSParamUni).appendArrayAccess(5, &p5);
559
560        // If we we're able to interpolate the linear component,
561        // bVar is the varying; otherwise compute it
562        SkString bVar;
563        if (kVec2f_GrSLType == coordsVaryingType) {
564            bVar = fFSVaryingName;
565        } else {
566            bVar = "b";
567            builder->fsCodeAppendf("\tfloat %s = -2.0 * (%s * %s.x + %s * %s);\n",
568                                   bVar.c_str(), p2.c_str(), fsCoords,
569                                   p3.c_str(), p5.c_str());
570        }
571
572        // output will default to transparent black (we simply won't write anything
573        // else to it if invalid, instead of discarding or returning prematurely)
574        builder->fsCodeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", outputColor);
575
576        // c = (x^2)+(y^2) - params[4]
577        builder->fsCodeAppendf("\tfloat %s = dot(%s, %s) - %s;\n", cName.c_str(),
578                               fsCoords, fsCoords,
579                               p4.c_str());
580
581        // Non-degenerate case (quadratic)
582        if (!fIsDegenerate) {
583
584            // ac4 = params[0] * c
585            builder->fsCodeAppendf("\tfloat %s = %s * %s;\n", ac4Name.c_str(), p0.c_str(),
586                                   cName.c_str());
587
588            // d = b^2 - ac4
589            builder->fsCodeAppendf("\tfloat %s = %s * %s - %s;\n", dName.c_str(),
590                                   bVar.c_str(), bVar.c_str(), ac4Name.c_str());
591
592            // only proceed if discriminant is >= 0
593            builder->fsCodeAppendf("\tif (%s >= 0.0) {\n", dName.c_str());
594
595            // intermediate value we'll use to compute the roots
596            // q = -0.5 * (b +/- sqrt(d))
597            builder->fsCodeAppendf("\t\tfloat %s = -0.5 * (%s + (%s < 0.0 ? -1.0 : 1.0)"
598                                   " * sqrt(%s));\n", qName.c_str(), bVar.c_str(),
599                                   bVar.c_str(), dName.c_str());
600
601            // compute both roots
602            // r0 = q * params[1]
603            builder->fsCodeAppendf("\t\tfloat %s = %s * %s;\n", r0Name.c_str(),
604                                   qName.c_str(), p1.c_str());
605            // r1 = c / q
606            builder->fsCodeAppendf("\t\tfloat %s = %s / %s;\n", r1Name.c_str(),
607                                   cName.c_str(), qName.c_str());
608
609            // Note: If there are two roots that both generate radius(t) > 0, the
610            // Canvas spec says to choose the larger t.
611
612            // so we'll look at the larger one first:
613            builder->fsCodeAppendf("\t\tfloat %s = max(%s, %s);\n", tName.c_str(),
614                                   r0Name.c_str(), r1Name.c_str());
615
616            // if r(t) > 0, then we're done; t will be our x coordinate
617            builder->fsCodeAppendf("\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
618                                   p5.c_str(), p3.c_str());
619
620            builder->fsCodeAppend("\t\t");
621            this->emitColorLookup(builder, tName.c_str(), outputColor, inputColor, samplers[0]);
622
623            // otherwise, if r(t) for the larger root was <= 0, try the other root
624            builder->fsCodeAppend("\t\t} else {\n");
625            builder->fsCodeAppendf("\t\t\t%s = min(%s, %s);\n", tName.c_str(),
626                                   r0Name.c_str(), r1Name.c_str());
627
628            // if r(t) > 0 for the smaller root, then t will be our x coordinate
629            builder->fsCodeAppendf("\t\t\tif (%s * %s + %s > 0.0) {\n",
630                                   tName.c_str(), p5.c_str(), p3.c_str());
631
632            builder->fsCodeAppend("\t\t\t");
633            this->emitColorLookup(builder, tName.c_str(), outputColor, inputColor, samplers[0]);
634
635            // end if (r(t) > 0) for smaller root
636            builder->fsCodeAppend("\t\t\t}\n");
637            // end if (r(t) > 0), else, for larger root
638            builder->fsCodeAppend("\t\t}\n");
639            // end if (discriminant >= 0)
640            builder->fsCodeAppend("\t}\n");
641        } else {
642
643            // linear case: t = -c/b
644            builder->fsCodeAppendf("\tfloat %s = -(%s / %s);\n", tName.c_str(),
645                                   cName.c_str(), bVar.c_str());
646
647            // if r(t) > 0, then t will be the x coordinate
648            builder->fsCodeAppendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
649                                   p5.c_str(), p3.c_str());
650            builder->fsCodeAppend("\t");
651            this->emitColorLookup(builder, tName.c_str(), outputColor, inputColor, samplers[0]);
652            builder->fsCodeAppend("\t}\n");
653        }
654    }
655}
656
657void GrGLConical2Gradient::setData(const GrGLUniformManager& uman,
658                                   const GrDrawEffect& drawEffect) {
659    INHERITED::setData(uman, drawEffect);
660    const GrConical2Gradient& data = drawEffect.castEffect<GrConical2Gradient>();
661    GrAssert(data.isDegenerate() == fIsDegenerate);
662    SkScalar centerX1 = data.center();
663    SkScalar radius0 = data.radius();
664    SkScalar diffRadius = data.diffRadius();
665
666    if (fCachedCenter != centerX1 ||
667        fCachedRadius != radius0 ||
668        fCachedDiffRadius != diffRadius) {
669
670        SkScalar a = SkScalarMul(centerX1, centerX1) - diffRadius * diffRadius;
671
672        // When we're in the degenerate (linear) case, the second
673        // value will be INF but the program doesn't read it. (We
674        // use the same 6 uniforms even though we don't need them
675        // all in the linear case just to keep the code complexity
676        // down).
677        float values[6] = {
678            SkScalarToFloat(a * 4),
679            1.f / (SkScalarToFloat(a)),
680            SkScalarToFloat(centerX1),
681            SkScalarToFloat(radius0),
682            SkScalarToFloat(SkScalarMul(radius0, radius0)),
683            SkScalarToFloat(diffRadius)
684        };
685
686        uman.set1fv(fVSParamUni, 0, 6, values);
687        uman.set1fv(fFSParamUni, 0, 6, values);
688        fCachedCenter = centerX1;
689        fCachedRadius = radius0;
690        fCachedDiffRadius = diffRadius;
691    }
692}
693
694GrGLEffect::EffectKey GrGLConical2Gradient::GenKey(const GrDrawEffect& drawEffect,
695                                                   const GrGLCaps&) {
696    enum {
697        kIsDegenerate = 1 << kMatrixKeyBitCnt,
698    };
699
700    EffectKey key = GenMatrixKey(drawEffect);
701    if (drawEffect.castEffect<GrConical2Gradient>().isDegenerate()) {
702        key |= kIsDegenerate;
703    }
704    return key;
705}
706
707/////////////////////////////////////////////////////////////////////
708
709GrEffectRef* SkTwoPointConicalGradient::asNewEffect(GrContext* context, const SkPaint&) const {
710    SkASSERT(NULL != context);
711    SkASSERT(fPtsToUnit.isIdentity());
712    // invert the localM, translate to center1, rotate so center2 is on x axis.
713    SkMatrix matrix;
714    if (!this->getLocalMatrix().invert(&matrix)) {
715        return NULL;
716    }
717    matrix.postTranslate(-fCenter1.fX, -fCenter1.fY);
718
719    SkPoint diff = fCenter2 - fCenter1;
720    SkScalar diffLen = diff.length();
721    if (0 != diffLen) {
722        SkScalar invDiffLen = SkScalarInvert(diffLen);
723        SkMatrix rot;
724        rot.setSinCos(-SkScalarMul(invDiffLen, diff.fY),
725                       SkScalarMul(invDiffLen, diff.fX));
726        matrix.postConcat(rot);
727    }
728
729    return GrConical2Gradient::Create(context, *this, matrix, fTileMode);
730}
731
732#else
733
734GrEffectRef* SkTwoPointConicalGradient::asNewEffect(GrContext*, const SkPaint&) const {
735    SkDEBUGFAIL("Should not call in GPU-less build");
736    return NULL;
737}
738
739#endif
740
741#ifdef SK_DEVELOPER
742void SkTwoPointConicalGradient::toString(SkString* str) const {
743    str->append("SkTwoPointConicalGradient: (");
744
745    str->append("center1: (");
746    str->appendScalar(fCenter1.fX);
747    str->append(", ");
748    str->appendScalar(fCenter1.fY);
749    str->append(") radius1: ");
750    str->appendScalar(fRadius1);
751    str->append(" ");
752
753    str->append("center2: (");
754    str->appendScalar(fCenter2.fX);
755    str->append(", ");
756    str->appendScalar(fCenter2.fY);
757    str->append(") radius2: ");
758    str->appendScalar(fRadius2);
759    str->append(" ");
760
761    this->INHERITED::toString(str);
762
763    str->append(")");
764}
765#endif
766