GrGLProgram.cpp revision 24878f71d2c4583686130e0875c854f1e34bfb4b
1
2/*
3 * Copyright 2011 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10#include "GrGLProgram.h"
11
12#include "../GrAllocator.h"
13#include "GrGLShaderVar.h"
14#include "SkTrace.h"
15#include "SkXfermode.h"
16
17namespace {
18
19enum {
20    /// Used to mark a StageUniLocation field that should be bound
21    /// to a uniform during getUniformLocationsAndInitCache().
22    kUseUniform = 2000
23};
24
25}  // namespace
26
27#define PRINT_SHADERS 0
28
29typedef GrTAllocator<GrGLShaderVar> VarArray;
30
31// number of each input/output type in a single allocation block
32static const int gVarsPerBlock = 8;
33// except FS outputs where we expect 2 at most.
34static const int gMaxFSOutputs = 2;
35
36struct ShaderCodeSegments {
37    ShaderCodeSegments()
38    : fVSUnis(gVarsPerBlock)
39    , fVSAttrs(gVarsPerBlock)
40    , fVSOutputs(gVarsPerBlock)
41    , fGSInputs(gVarsPerBlock)
42    , fGSOutputs(gVarsPerBlock)
43    , fFSInputs(gVarsPerBlock)
44    , fFSUnis(gVarsPerBlock)
45    , fFSOutputs(gMaxFSOutputs)
46    , fUsesGS(false) {}
47    GrStringBuilder fHeader; // VS+FS, GLSL version, etc
48    VarArray        fVSUnis;
49    VarArray        fVSAttrs;
50    VarArray        fVSOutputs;
51    VarArray        fGSInputs;
52    VarArray        fGSOutputs;
53    VarArray        fFSInputs;
54    GrStringBuilder fGSHeader; // layout qualifiers specific to GS
55    VarArray        fFSUnis;
56    VarArray        fFSOutputs;
57    GrStringBuilder fFSFunctions;
58    GrStringBuilder fVSCode;
59    GrStringBuilder fGSCode;
60    GrStringBuilder fFSCode;
61
62    bool            fUsesGS;
63};
64
65typedef GrGLProgram::ProgramDesc::StageDesc StageDesc;
66
67#if GR_GL_ATTRIBUTE_MATRICES
68    #define VIEW_MATRIX_NAME "aViewM"
69#else
70    #define VIEW_MATRIX_NAME "uViewM"
71#endif
72
73#define POS_ATTR_NAME "aPosition"
74#define COL_ATTR_NAME "aColor"
75#define COV_ATTR_NAME "aCoverage"
76#define EDGE_ATTR_NAME "aEdge"
77#define COL_UNI_NAME "uColor"
78#define COV_UNI_NAME "uCoverage"
79#define EDGES_UNI_NAME "uEdges"
80#define COL_FILTER_UNI_NAME "uColorFilter"
81#define COL_MATRIX_UNI_NAME "uColorMatrix"
82#define COL_MATRIX_VEC_UNI_NAME "uColorMatrixVec"
83
84namespace {
85inline void tex_attr_name(int coordIdx, GrStringBuilder* s) {
86    *s = "aTexCoord";
87    s->appendS32(coordIdx);
88}
89
90inline GrGLShaderVar::Type float_vector_type(int count) {
91    GR_STATIC_ASSERT(GrGLShaderVar::kFloat_Type == 0);
92    GR_STATIC_ASSERT(GrGLShaderVar::kVec2f_Type == 1);
93    GR_STATIC_ASSERT(GrGLShaderVar::kVec3f_Type == 2);
94    GR_STATIC_ASSERT(GrGLShaderVar::kVec4f_Type == 3);
95    GrAssert(count > 0 && count <= 4);
96    return (GrGLShaderVar::Type)(count - 1);
97}
98
99inline const char* float_vector_type_str(int count) {
100    return GrGLShaderVar::TypeString(float_vector_type(count));
101}
102
103inline const char* vector_homog_coord(int count) {
104    static const char* HOMOGS[] = {"ERROR", "", ".y", ".z", ".w"};
105    GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(HOMOGS));
106    return HOMOGS[count];
107}
108
109inline const char* vector_nonhomog_coords(int count) {
110    static const char* NONHOMOGS[] = {"ERROR", "", ".x", ".xy", ".xyz"};
111    GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(NONHOMOGS));
112    return NONHOMOGS[count];
113}
114
115inline const char* vector_all_coords(int count) {
116    static const char* ALL[] = {"ERROR", "", ".xy", ".xyz", ".xyzw"};
117    GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ALL));
118    return ALL[count];
119}
120
121inline const char* all_ones_vec(int count) {
122    static const char* ONESVEC[] = {"ERROR", "1.0", "vec2(1,1)",
123                                    "vec3(1,1,1)", "vec4(1,1,1,1)"};
124    GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ONESVEC));
125    return ONESVEC[count];
126}
127
128inline const char* all_zeros_vec(int count) {
129    static const char* ZEROSVEC[] = {"ERROR", "0.0", "vec2(0,0)",
130                                    "vec3(0,0,0)", "vec4(0,0,0,0)"};
131    GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ZEROSVEC));
132    return ZEROSVEC[count];
133}
134
135inline const char* declared_color_output_name() { return "fsColorOut"; }
136inline const char* dual_source_output_name() { return "dualSourceOut"; }
137
138inline void tex_matrix_name(int stage, GrStringBuilder* s) {
139#if GR_GL_ATTRIBUTE_MATRICES
140    *s = "aTexM";
141#else
142    *s = "uTexM";
143#endif
144    s->appendS32(stage);
145}
146
147inline void normalized_texel_size_name(int stage, GrStringBuilder* s) {
148    *s = "uTexelSize";
149    s->appendS32(stage);
150}
151
152inline void sampler_name(int stage, GrStringBuilder* s) {
153    *s = "uSampler";
154    s->appendS32(stage);
155}
156
157inline void radial2_param_name(int stage, GrStringBuilder* s) {
158    *s = "uRadial2Params";
159    s->appendS32(stage);
160}
161
162inline void convolve_param_names(int stage, GrStringBuilder* k, GrStringBuilder* i) {
163    *k = "uKernel";
164    k->appendS32(stage);
165    *i = "uImageIncrement";
166    i->appendS32(stage);
167}
168
169inline void image_increment_param_name(int stage, GrStringBuilder* i) {
170    *i = "uImageIncrement";
171    i->appendS32(stage);
172}
173
174inline void tex_domain_name(int stage, GrStringBuilder* s) {
175    *s = "uTexDom";
176    s->appendS32(stage);
177}
178}
179
180GrGLProgram::GrGLProgram() {
181}
182
183GrGLProgram::~GrGLProgram() {
184}
185
186void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff,
187                                GrBlendCoeff* dstCoeff) const {
188    switch (fProgramDesc.fDualSrcOutput) {
189        case ProgramDesc::kNone_DualSrcOutput:
190            break;
191        // the prog will write a coverage value to the secondary
192        // output and the dst is blended by one minus that value.
193        case ProgramDesc::kCoverage_DualSrcOutput:
194        case ProgramDesc::kCoverageISA_DualSrcOutput:
195        case ProgramDesc::kCoverageISC_DualSrcOutput:
196        *dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_BlendCoeff;
197        break;
198        default:
199            GrCrash("Unexpected dual source blend output");
200            break;
201    }
202}
203
204// assigns modulation of two vars to an output var
205// vars can be vec4s or floats (or one of each)
206// result is always vec4
207// if either var is "" then assign to the other var
208// if both are "" then assign all ones
209static inline void modulate_helper(const char* outputVar,
210                                   const char* var0,
211                                   const char* var1,
212                                   GrStringBuilder* code) {
213    GrAssert(NULL != outputVar);
214    GrAssert(NULL != var0);
215    GrAssert(NULL != var1);
216    GrAssert(NULL != code);
217
218    bool has0 = '\0' != *var0;
219    bool has1 = '\0' != *var1;
220
221    if (!has0 && !has1) {
222        code->appendf("\t%s = %s;\n", outputVar, all_ones_vec(4));
223    } else if (!has0) {
224        code->appendf("\t%s = vec4(%s);\n", outputVar, var1);
225    } else if (!has1) {
226        code->appendf("\t%s = vec4(%s);\n", outputVar, var0);
227    } else {
228        code->appendf("\t%s = vec4(%s * %s);\n", outputVar, var0, var1);
229    }
230}
231
232// assigns addition of two vars to an output var
233// vars can be vec4s or floats (or one of each)
234// result is always vec4
235// if either var is "" then assign to the other var
236// if both are "" then assign all zeros
237static inline void add_helper(const char* outputVar,
238                              const char* var0,
239                              const char* var1,
240                              GrStringBuilder* code) {
241    GrAssert(NULL != outputVar);
242    GrAssert(NULL != var0);
243    GrAssert(NULL != var1);
244    GrAssert(NULL != code);
245
246    bool has0 = '\0' != *var0;
247    bool has1 = '\0' != *var1;
248
249    if (!has0 && !has1) {
250        code->appendf("\t%s = %s;\n", outputVar, all_zeros_vec(4));
251    } else if (!has0) {
252        code->appendf("\t%s = vec4(%s);\n", outputVar, var1);
253    } else if (!has1) {
254        code->appendf("\t%s = vec4(%s);\n", outputVar, var0);
255    } else {
256        code->appendf("\t%s = vec4(%s + %s);\n", outputVar, var0, var1);
257    }
258}
259
260// given two blend coeffecients determine whether the src
261// and/or dst computation can be omitted.
262static inline void needBlendInputs(SkXfermode::Coeff srcCoeff,
263                                   SkXfermode::Coeff dstCoeff,
264                                   bool* needSrcValue,
265                                   bool* needDstValue) {
266    if (SkXfermode::kZero_Coeff == srcCoeff) {
267        switch (dstCoeff) {
268            // these all read the src
269            case SkXfermode::kSC_Coeff:
270            case SkXfermode::kISC_Coeff:
271            case SkXfermode::kSA_Coeff:
272            case SkXfermode::kISA_Coeff:
273                *needSrcValue = true;
274                break;
275            default:
276                *needSrcValue = false;
277                break;
278        }
279    } else {
280        *needSrcValue = true;
281    }
282    if (SkXfermode::kZero_Coeff == dstCoeff) {
283        switch (srcCoeff) {
284            // these all read the dst
285            case SkXfermode::kDC_Coeff:
286            case SkXfermode::kIDC_Coeff:
287            case SkXfermode::kDA_Coeff:
288            case SkXfermode::kIDA_Coeff:
289                *needDstValue = true;
290                break;
291            default:
292                *needDstValue = false;
293                break;
294        }
295    } else {
296        *needDstValue = true;
297    }
298}
299
300/**
301 * Create a blend_coeff * value string to be used in shader code. Sets empty
302 * string if result is trivially zero.
303 */
304static void blendTermString(GrStringBuilder* str, SkXfermode::Coeff coeff,
305                             const char* src, const char* dst,
306                             const char* value) {
307    switch (coeff) {
308    case SkXfermode::kZero_Coeff:    /** 0 */
309        *str = "";
310        break;
311    case SkXfermode::kOne_Coeff:     /** 1 */
312        *str = value;
313        break;
314    case SkXfermode::kSC_Coeff:
315        str->printf("(%s * %s)", src, value);
316        break;
317    case SkXfermode::kISC_Coeff:
318        str->printf("((%s - %s) * %s)", all_ones_vec(4), src, value);
319        break;
320    case SkXfermode::kDC_Coeff:
321        str->printf("(%s * %s)", dst, value);
322        break;
323    case SkXfermode::kIDC_Coeff:
324        str->printf("((%s - %s) * %s)", all_ones_vec(4), dst, value);
325        break;
326    case SkXfermode::kSA_Coeff:      /** src alpha */
327        str->printf("(%s.a * %s)", src, value);
328        break;
329    case SkXfermode::kISA_Coeff:     /** inverse src alpha (i.e. 1 - sa) */
330        str->printf("((1.0 - %s.a) * %s)", src, value);
331        break;
332    case SkXfermode::kDA_Coeff:      /** dst alpha */
333        str->printf("(%s.a * %s)", dst, value);
334        break;
335    case SkXfermode::kIDA_Coeff:     /** inverse dst alpha (i.e. 1 - da) */
336        str->printf("((1.0 - %s.a) * %s)", dst, value);
337        break;
338    default:
339        GrCrash("Unexpected xfer coeff.");
340        break;
341    }
342}
343/**
344 * Adds a line to the fragment shader code which modifies the color by
345 * the specified color filter.
346 */
347static void addColorFilter(GrStringBuilder* fsCode, const char * outputVar,
348                           SkXfermode::Coeff uniformCoeff,
349                           SkXfermode::Coeff colorCoeff,
350                           const char* inColor) {
351    GrStringBuilder colorStr, constStr;
352    blendTermString(&colorStr, colorCoeff, COL_FILTER_UNI_NAME,
353                    inColor, inColor);
354    blendTermString(&constStr, uniformCoeff, COL_FILTER_UNI_NAME,
355                    inColor, COL_FILTER_UNI_NAME);
356
357    add_helper(outputVar, colorStr.c_str(), constStr.c_str(), fsCode);
358}
359/**
360 * Adds code to the fragment shader code which modifies the color by
361 * the specified color matrix.
362 */
363static void addColorMatrix(GrStringBuilder* fsCode, const char * outputVar,
364                           const char* inColor) {
365    fsCode->appendf("\t%s = %s * vec4(%s.rgb / %s.a, %s.a) + %s;\n", outputVar, COL_MATRIX_UNI_NAME, inColor, inColor, inColor, COL_MATRIX_VEC_UNI_NAME);
366    fsCode->appendf("\t%s.rgb *= %s.a;\n", outputVar, outputVar);
367}
368
369namespace {
370
371// Adds a var that is computed in the VS and read in FS.
372// If there is a GS it will just pass it through.
373void append_varying(GrGLShaderVar::Type type,
374                    const char* name,
375                    ShaderCodeSegments* segments,
376                    const char** vsOutName = NULL,
377                    const char** fsInName = NULL) {
378    segments->fVSOutputs.push_back();
379    segments->fVSOutputs.back().setType(type);
380    segments->fVSOutputs.back().setTypeModifier(
381        GrGLShaderVar::kOut_TypeModifier);
382    segments->fVSOutputs.back().accessName()->printf("v%s", name);
383    if (vsOutName) {
384        *vsOutName = segments->fVSOutputs.back().getName().c_str();
385    }
386    // input to FS comes either from VS or GS
387    const GrStringBuilder* fsName;
388    if (segments->fUsesGS) {
389        // if we have a GS take each varying in as an array
390        // and output as non-array.
391        segments->fGSInputs.push_back();
392        segments->fGSInputs.back().setType(type);
393        segments->fGSInputs.back().setTypeModifier(
394            GrGLShaderVar::kIn_TypeModifier);
395        segments->fGSInputs.back().setUnsizedArray();
396        *segments->fGSInputs.back().accessName() =
397            segments->fVSOutputs.back().getName();
398        segments->fGSOutputs.push_back();
399        segments->fGSOutputs.back().setType(type);
400        segments->fGSOutputs.back().setTypeModifier(
401            GrGLShaderVar::kOut_TypeModifier);
402        segments->fGSOutputs.back().accessName()->printf("g%s", name);
403        fsName = segments->fGSOutputs.back().accessName();
404    } else {
405        fsName = segments->fVSOutputs.back().accessName();
406    }
407    segments->fFSInputs.push_back();
408    segments->fFSInputs.back().setType(type);
409    segments->fFSInputs.back().setTypeModifier(
410        GrGLShaderVar::kIn_TypeModifier);
411    segments->fFSInputs.back().setName(*fsName);
412    if (fsInName) {
413        *fsInName = fsName->c_str();
414    }
415}
416
417// version of above that adds a stage number to the
418// the var name (for uniqueness)
419void append_varying(GrGLShaderVar::Type type,
420                    const char* name,
421                    int stageNum,
422                    ShaderCodeSegments* segments,
423                    const char** vsOutName = NULL,
424                    const char** fsInName = NULL) {
425    GrStringBuilder nameWithStage(name);
426    nameWithStage.appendS32(stageNum);
427    append_varying(type, nameWithStage.c_str(), segments, vsOutName, fsInName);
428}
429}
430
431void GrGLProgram::genEdgeCoverage(const GrGLContextInfo& gl,
432                                  GrVertexLayout layout,
433                                  CachedData* programData,
434                                  GrStringBuilder* coverageVar,
435                                  ShaderCodeSegments* segments) const {
436    if (fProgramDesc.fEdgeAANumEdges > 0) {
437        segments->fFSUnis.push_back().set(GrGLShaderVar::kVec3f_Type,
438                                          GrGLShaderVar::kUniform_TypeModifier,
439                                          EDGES_UNI_NAME,
440                                          fProgramDesc.fEdgeAANumEdges);
441        programData->fUniLocations.fEdgesUni = kUseUniform;
442        int count = fProgramDesc.fEdgeAANumEdges;
443        segments->fFSCode.append(
444            "\tvec3 pos = vec3(gl_FragCoord.xy, 1);\n");
445        for (int i = 0; i < count; i++) {
446            segments->fFSCode.append("\tfloat a");
447            segments->fFSCode.appendS32(i);
448            segments->fFSCode.append(" = clamp(dot(" EDGES_UNI_NAME "[");
449            segments->fFSCode.appendS32(i);
450            segments->fFSCode.append("], pos), 0.0, 1.0);\n");
451        }
452        if (fProgramDesc.fEdgeAAConcave && (count & 0x01) == 0) {
453            // For concave polys, we consider the edges in pairs.
454            segments->fFSFunctions.append("float cross2(vec2 a, vec2 b) {\n");
455            segments->fFSFunctions.append("\treturn dot(a, vec2(b.y, -b.x));\n");
456            segments->fFSFunctions.append("}\n");
457            for (int i = 0; i < count; i += 2) {
458                segments->fFSCode.appendf("\tfloat eb%d;\n", i / 2);
459                segments->fFSCode.appendf("\tif (cross2(" EDGES_UNI_NAME "[%d].xy, " EDGES_UNI_NAME "[%d].xy) < 0.0) {\n", i, i + 1);
460                segments->fFSCode.appendf("\t\teb%d = a%d * a%d;\n", i / 2, i, i + 1);
461                segments->fFSCode.append("\t} else {\n");
462                segments->fFSCode.appendf("\t\teb%d = a%d + a%d - a%d * a%d;\n", i / 2, i, i + 1, i, i + 1);
463                segments->fFSCode.append("\t}\n");
464            }
465            segments->fFSCode.append("\tfloat edgeAlpha = ");
466            for (int i = 0; i < count / 2 - 1; i++) {
467                segments->fFSCode.appendf("min(eb%d, ", i);
468            }
469            segments->fFSCode.appendf("eb%d", count / 2 - 1);
470            for (int i = 0; i < count / 2 - 1; i++) {
471                segments->fFSCode.append(")");
472            }
473            segments->fFSCode.append(";\n");
474        } else {
475            segments->fFSCode.append("\tfloat edgeAlpha = ");
476            for (int i = 0; i < count - 1; i++) {
477                segments->fFSCode.appendf("min(a%d * a%d, ", i, i + 1);
478            }
479            segments->fFSCode.appendf("a%d * a0", count - 1);
480            for (int i = 0; i < count - 1; i++) {
481                segments->fFSCode.append(")");
482            }
483            segments->fFSCode.append(";\n");
484        }
485        *coverageVar = "edgeAlpha";
486    } else  if (layout & GrDrawTarget::kEdge_VertexLayoutBit) {
487        const char *vsName, *fsName;
488        append_varying(GrGLShaderVar::kVec4f_Type, "Edge", segments,
489            &vsName, &fsName);
490        segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type,
491            GrGLShaderVar::kAttribute_TypeModifier, EDGE_ATTR_NAME);
492        segments->fVSCode.appendf("\t%s = " EDGE_ATTR_NAME ";\n", vsName);
493        if (GrDrawState::kHairLine_EdgeType == fProgramDesc.fVertexEdgeType) {
494            segments->fFSCode.appendf("\tfloat edgeAlpha = abs(dot(vec3(gl_FragCoord.xy,1), %s.xyz));\n", fsName);
495            segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
496        } else if (GrDrawState::kQuad_EdgeType == fProgramDesc.fVertexEdgeType) {
497            segments->fFSCode.append("\tfloat edgeAlpha;\n");
498            // keep the derivative instructions outside the conditional
499            segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
500            segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
501            segments->fFSCode.appendf("\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName);
502            // today we know z and w are in device space. We could use derivatives
503            segments->fFSCode.appendf("\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, fsName);
504            segments->fFSCode.append ("\t} else {\n");
505            segments->fFSCode.appendf("\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
506                                      "\t\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
507                                      fsName, fsName);
508            segments->fFSCode.appendf("\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
509            segments->fFSCode.append("\t\tedgeAlpha = clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n"
510                                      "\t}\n");
511            if (kES2_GrGLBinding == gl.binding()) {
512                segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
513            }
514        } else {
515            GrAssert(GrDrawState::kHairQuad_EdgeType == fProgramDesc.fVertexEdgeType);
516            segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
517            segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
518            segments->fFSCode.appendf("\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
519                                      "\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
520                                      fsName, fsName);
521            segments->fFSCode.appendf("\tfloat edgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
522            segments->fFSCode.append("\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / dot(gF, gF));\n");
523            segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
524            if (kES2_GrGLBinding == gl.binding()) {
525                segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
526            }
527        }
528        *coverageVar = "edgeAlpha";
529    } else {
530        coverageVar->reset();
531    }
532}
533
534namespace {
535
536void genInputColor(GrGLProgram::ProgramDesc::ColorInput colorInput,
537                   GrGLProgram::CachedData* programData,
538                   ShaderCodeSegments* segments,
539                   GrStringBuilder* inColor) {
540    switch (colorInput) {
541        case GrGLProgram::ProgramDesc::kAttribute_ColorInput: {
542            segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type,
543                GrGLShaderVar::kAttribute_TypeModifier,
544                COL_ATTR_NAME);
545            const char *vsName, *fsName;
546            append_varying(GrGLShaderVar::kVec4f_Type, "Color", segments, &vsName, &fsName);
547            segments->fVSCode.appendf("\t%s = " COL_ATTR_NAME ";\n", vsName);
548            *inColor = fsName;
549            } break;
550        case GrGLProgram::ProgramDesc::kUniform_ColorInput:
551            segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
552                GrGLShaderVar::kUniform_TypeModifier,
553                COL_UNI_NAME);
554            programData->fUniLocations.fColorUni = kUseUniform;
555            *inColor = COL_UNI_NAME;
556            break;
557        case GrGLProgram::ProgramDesc::kTransBlack_ColorInput:
558            GrAssert(!"needComputedColor should be false.");
559            break;
560        case GrGLProgram::ProgramDesc::kSolidWhite_ColorInput:
561            break;
562        default:
563            GrCrash("Unknown color type.");
564            break;
565    }
566}
567
568void genAttributeCoverage(ShaderCodeSegments* segments,
569                          GrStringBuilder* inOutCoverage) {
570    segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type,
571                                       GrGLShaderVar::kAttribute_TypeModifier,
572                                       COV_ATTR_NAME);
573    const char *vsName, *fsName;
574    append_varying(GrGLShaderVar::kVec4f_Type, "Coverage",
575                   segments, &vsName, &fsName);
576    segments->fVSCode.appendf("\t%s = " COV_ATTR_NAME ";\n", vsName);
577    if (inOutCoverage->size()) {
578        segments->fFSCode.appendf("\tvec4 attrCoverage = %s * %s;\n",
579                                  fsName, inOutCoverage->c_str());
580        *inOutCoverage = "attrCoverage";
581    } else {
582        *inOutCoverage = fsName;
583    }
584}
585
586void genUniformCoverage(ShaderCodeSegments* segments,
587                        GrGLProgram::CachedData* programData,
588                        GrStringBuilder* inOutCoverage) {
589    segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
590                                      GrGLShaderVar::kUniform_TypeModifier,
591                                      COV_UNI_NAME);
592    programData->fUniLocations.fCoverageUni = kUseUniform;
593    if (inOutCoverage->size()) {
594        segments->fFSCode.appendf("\tvec4 uniCoverage = %s * %s;\n",
595                                  COV_UNI_NAME, inOutCoverage->c_str());
596        *inOutCoverage = "uniCoverage";
597    } else {
598        *inOutCoverage = COV_UNI_NAME;
599    }
600}
601
602}
603
604void GrGLProgram::genGeometryShader(const GrGLContextInfo& gl,
605                                    ShaderCodeSegments* segments) const {
606#if GR_GL_EXPERIMENTAL_GS
607    if (fProgramDesc.fExperimentalGS) {
608        GrAssert(gl.glslGeneration() >= k150_GrGLSLGeneration);
609        segments->fGSHeader.append("layout(triangles) in;\n"
610                                   "layout(triangle_strip, max_vertices = 6) out;\n");
611        segments->fGSCode.append("void main() {\n"
612                                 "\tfor (int i = 0; i < 3; ++i) {\n"
613                                  "\t\tgl_Position = gl_in[i].gl_Position;\n");
614        if (this->fProgramDesc.fEmitsPointSize) {
615            segments->fGSCode.append("\t\tgl_PointSize = 1.0;\n");
616        }
617        GrAssert(segments->fGSInputs.count() == segments->fGSOutputs.count());
618        int count = segments->fGSInputs.count();
619        for (int i = 0; i < count; ++i) {
620            segments->fGSCode.appendf("\t\t%s = %s[i];\n",
621                                      segments->fGSOutputs[i].getName().c_str(),
622                                      segments->fGSInputs[i].getName().c_str());
623        }
624        segments->fGSCode.append("\t\tEmitVertex();\n"
625                                 "\t}\n"
626                                 "\tEndPrimitive();\n"
627                                 "}\n");
628    }
629#endif
630}
631
632const char* GrGLProgram::adjustInColor(const GrStringBuilder& inColor) const {
633    if (inColor.size()) {
634          return inColor.c_str();
635    } else {
636        if (ProgramDesc::kSolidWhite_ColorInput == fProgramDesc.fColorInput) {
637            return all_ones_vec(4);
638        } else {
639            return all_zeros_vec(4);
640        }
641    }
642}
643
644
645bool GrGLProgram::genProgram(const GrGLContextInfo& gl,
646                             GrGLProgram::CachedData* programData) const {
647
648    ShaderCodeSegments segments;
649    const uint32_t& layout = fProgramDesc.fVertexLayout;
650
651    programData->fUniLocations.reset();
652
653#if GR_GL_EXPERIMENTAL_GS
654    segments.fUsesGS = fProgramDesc.fExperimentalGS;
655#endif
656
657    SkXfermode::Coeff colorCoeff, uniformCoeff;
658    bool applyColorMatrix = SkToBool(fProgramDesc.fColorMatrixEnabled);
659    // The rest of transfer mode color filters have not been implemented
660    if (fProgramDesc.fColorFilterXfermode < SkXfermode::kCoeffModesCnt) {
661        GR_DEBUGCODE(bool success =)
662            SkXfermode::ModeAsCoeff(static_cast<SkXfermode::Mode>
663                                    (fProgramDesc.fColorFilterXfermode),
664                                    &uniformCoeff, &colorCoeff);
665        GR_DEBUGASSERT(success);
666    } else {
667        colorCoeff = SkXfermode::kOne_Coeff;
668        uniformCoeff = SkXfermode::kZero_Coeff;
669    }
670
671    // no need to do the color filter / matrix at all if coverage is 0. The
672    // output color is scaled by the coverage. All the dual source outputs are
673    // scaled by the coverage as well.
674    if (ProgramDesc::kTransBlack_ColorInput == fProgramDesc.fCoverageInput) {
675        colorCoeff = SkXfermode::kZero_Coeff;
676        uniformCoeff = SkXfermode::kZero_Coeff;
677        applyColorMatrix = false;
678    }
679
680    // If we know the final color is going to be all zeros then we can
681    // simplify the color filter coeffecients. needComputedColor will then
682    // come out false below.
683    if (ProgramDesc::kTransBlack_ColorInput == fProgramDesc.fColorInput) {
684        colorCoeff = SkXfermode::kZero_Coeff;
685        if (SkXfermode::kDC_Coeff == uniformCoeff ||
686            SkXfermode::kDA_Coeff == uniformCoeff) {
687            uniformCoeff = SkXfermode::kZero_Coeff;
688        } else if (SkXfermode::kIDC_Coeff == uniformCoeff ||
689                   SkXfermode::kIDA_Coeff == uniformCoeff) {
690            uniformCoeff = SkXfermode::kOne_Coeff;
691        }
692    }
693
694    bool needColorFilterUniform;
695    bool needComputedColor;
696    needBlendInputs(uniformCoeff, colorCoeff,
697                    &needColorFilterUniform, &needComputedColor);
698
699    // the dual source output has no canonical var name, have to
700    // declare an output, which is incompatible with gl_FragColor/gl_FragData.
701    bool dualSourceOutputWritten = false;
702    segments.fHeader.printf(GrGetGLSLVersionDecl(gl.binding(),
703                                                 gl.glslGeneration()));
704
705    GrGLShaderVar colorOutput;
706    bool isColorDeclared = GrGLSLSetupFSColorOuput(gl.glslGeneration(),
707                                                   declared_color_output_name(),
708                                                   &colorOutput);
709    if (isColorDeclared) {
710        segments.fFSOutputs.push_back(colorOutput);
711    }
712
713#if GR_GL_ATTRIBUTE_MATRICES
714    segments.fVSAttrs.push_back().set(GrGLShaderVar::kMat33f_Type,
715        GrGLShaderVar::kAttribute_TypeModifier, VIEW_MATRIX_NAME);
716    programData->fUniLocations.fViewMatrixUni = kSetAsAttribute;
717#else
718    segments.fVSUnis.push_back().set(GrGLShaderVar::kMat33f_Type,
719        GrGLShaderVar::kUniform_TypeModifier, VIEW_MATRIX_NAME);
720    programData->fUniLocations.fViewMatrixUni = kUseUniform;
721#endif
722    segments.fVSAttrs.push_back().set(GrGLShaderVar::kVec2f_Type,
723        GrGLShaderVar::kAttribute_TypeModifier, POS_ATTR_NAME);
724
725    segments.fVSCode.append(
726        "void main() {\n"
727            "\tvec3 pos3 = " VIEW_MATRIX_NAME " * vec3("POS_ATTR_NAME", 1);\n"
728            "\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n");
729
730    // incoming color to current stage being processed.
731    GrStringBuilder inColor;
732
733    if (needComputedColor) {
734        genInputColor((ProgramDesc::ColorInput) fProgramDesc.fColorInput,
735                      programData, &segments, &inColor);
736    }
737
738    // we output point size in the GS if present
739    if (fProgramDesc.fEmitsPointSize && !segments.fUsesGS){
740        segments.fVSCode.append("\tgl_PointSize = 1.0;\n");
741    }
742
743    segments.fFSCode.append("void main() {\n");
744
745    // add texture coordinates that are used to the list of vertex attr decls
746    GrStringBuilder texCoordAttrs[GrDrawState::kMaxTexCoords];
747    for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
748        if (GrDrawTarget::VertexUsesTexCoordIdx(t, layout)) {
749            tex_attr_name(t, texCoordAttrs + t);
750            segments.fVSAttrs.push_back().set(GrGLShaderVar::kVec2f_Type,
751                GrGLShaderVar::kAttribute_TypeModifier,
752                texCoordAttrs[t].c_str());
753        }
754    }
755
756    ///////////////////////////////////////////////////////////////////////////
757    // compute the final color
758
759    // if we have color stages string them together, feeding the output color
760    // of each to the next and generating code for each stage.
761    if (needComputedColor) {
762        GrStringBuilder outColor;
763        for (int s = 0; s < fProgramDesc.fFirstCoverageStage; ++s) {
764            if (fProgramDesc.fStages[s].isEnabled()) {
765                // create var to hold stage result
766                outColor = "color";
767                outColor.appendS32(s);
768                segments.fFSCode.appendf("\tvec4 %s;\n", outColor.c_str());
769
770                const char* inCoords;
771                // figure out what our input coords are
772                if (GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s) &
773                    layout) {
774                    inCoords = POS_ATTR_NAME;
775                } else {
776                    int tcIdx = GrDrawTarget::VertexTexCoordsForStage(s, layout);
777                     // we better have input tex coordinates if stage is enabled.
778                    GrAssert(tcIdx >= 0);
779                    GrAssert(texCoordAttrs[tcIdx].size());
780                    inCoords = texCoordAttrs[tcIdx].c_str();
781                }
782
783                this->genStageCode(gl,
784                                   s,
785                                   fProgramDesc.fStages[s],
786                                   inColor.size() ? inColor.c_str() : NULL,
787                                   outColor.c_str(),
788                                   inCoords,
789                                   &segments,
790                                   &programData->fUniLocations.fStages[s]);
791                inColor = outColor;
792            }
793        }
794    }
795
796    // if have all ones or zeros for the "dst" input to the color filter then we
797    // may be able to make additional optimizations.
798    if (needColorFilterUniform && needComputedColor && !inColor.size()) {
799        GrAssert(ProgramDesc::kSolidWhite_ColorInput == fProgramDesc.fColorInput);
800        bool uniformCoeffIsZero = SkXfermode::kIDC_Coeff == uniformCoeff ||
801                                  SkXfermode::kIDA_Coeff == uniformCoeff;
802        if (uniformCoeffIsZero) {
803            uniformCoeff = SkXfermode::kZero_Coeff;
804            bool bogus;
805            needBlendInputs(SkXfermode::kZero_Coeff, colorCoeff,
806                            &needColorFilterUniform, &bogus);
807        }
808    }
809    if (needColorFilterUniform) {
810        segments.fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
811                                         GrGLShaderVar::kUniform_TypeModifier,
812                                         COL_FILTER_UNI_NAME);
813        programData->fUniLocations.fColorFilterUni = kUseUniform;
814    }
815    bool wroteFragColorZero = false;
816    if (SkXfermode::kZero_Coeff == uniformCoeff &&
817        SkXfermode::kZero_Coeff == colorCoeff &&
818        !applyColorMatrix) {
819        segments.fFSCode.appendf("\t%s = %s;\n",
820                                 colorOutput.getName().c_str(),
821                                 all_zeros_vec(4));
822        wroteFragColorZero = true;
823    } else if (SkXfermode::kDst_Mode != fProgramDesc.fColorFilterXfermode) {
824        segments.fFSCode.append("\tvec4 filteredColor;\n");
825        const char* color = adjustInColor(inColor);
826        addColorFilter(&segments.fFSCode, "filteredColor", uniformCoeff,
827                       colorCoeff, color);
828        inColor = "filteredColor";
829    }
830    if (applyColorMatrix) {
831        segments.fFSUnis.push_back().set(GrGLShaderVar::kMat44f_Type,
832                                         GrGLShaderVar::kUniform_TypeModifier,
833                                         COL_MATRIX_UNI_NAME);
834        segments.fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
835                                         GrGLShaderVar::kUniform_TypeModifier,
836                                         COL_MATRIX_VEC_UNI_NAME);
837        programData->fUniLocations.fColorMatrixUni = kUseUniform;
838        programData->fUniLocations.fColorMatrixVecUni = kUseUniform;
839        segments.fFSCode.append("\tvec4 matrixedColor;\n");
840        const char* color = adjustInColor(inColor);
841        addColorMatrix(&segments.fFSCode, "matrixedColor", color);
842        inColor = "matrixedColor";
843    }
844
845    ///////////////////////////////////////////////////////////////////////////
846    // compute the partial coverage (coverage stages and edge aa)
847
848    GrStringBuilder inCoverage;
849    bool coverageIsZero = ProgramDesc::kTransBlack_ColorInput ==
850                          fProgramDesc.fCoverageInput;
851    // we don't need to compute coverage at all if we know the final shader
852    // output will be zero and we don't have a dual src blend output.
853    if (!wroteFragColorZero ||
854        ProgramDesc::kNone_DualSrcOutput != fProgramDesc.fDualSrcOutput) {
855
856        if (!coverageIsZero) {
857            this->genEdgeCoverage(gl,
858                                  layout,
859                                  programData,
860                                  &inCoverage,
861                                  &segments);
862
863            switch (fProgramDesc.fCoverageInput) {
864                case ProgramDesc::kSolidWhite_ColorInput:
865                    // empty string implies solid white
866                    break;
867                case ProgramDesc::kAttribute_ColorInput:
868                    genAttributeCoverage(&segments, &inCoverage);
869                    break;
870                case ProgramDesc::kUniform_ColorInput:
871                    genUniformCoverage(&segments, programData, &inCoverage);
872                    break;
873                default:
874                    GrCrash("Unexpected input coverage.");
875            }
876
877            GrStringBuilder outCoverage;
878            const int& startStage = fProgramDesc.fFirstCoverageStage;
879            for (int s = startStage; s < GrDrawState::kNumStages; ++s) {
880                if (fProgramDesc.fStages[s].isEnabled()) {
881                    // create var to hold stage output
882                    outCoverage = "coverage";
883                    outCoverage.appendS32(s);
884                    segments.fFSCode.appendf("\tvec4 %s;\n",
885                                             outCoverage.c_str());
886
887                    const char* inCoords;
888                    // figure out what our input coords are
889                    if (GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s) &
890                        layout) {
891                        inCoords = POS_ATTR_NAME;
892                    } else {
893                        int tcIdx =
894                            GrDrawTarget::VertexTexCoordsForStage(s, layout);
895                        // we better have input tex coordinates if stage is
896                        // enabled.
897                        GrAssert(tcIdx >= 0);
898                        GrAssert(texCoordAttrs[tcIdx].size());
899                        inCoords = texCoordAttrs[tcIdx].c_str();
900                    }
901
902                    genStageCode(gl, s,
903                                 fProgramDesc.fStages[s],
904                                 inCoverage.size() ? inCoverage.c_str() : NULL,
905                                 outCoverage.c_str(),
906                                 inCoords,
907                                 &segments,
908                                 &programData->fUniLocations.fStages[s]);
909                    inCoverage = outCoverage;
910                }
911            }
912        }
913        if (ProgramDesc::kNone_DualSrcOutput != fProgramDesc.fDualSrcOutput) {
914            segments.fFSOutputs.push_back().set(GrGLShaderVar::kVec4f_Type,
915                GrGLShaderVar::kOut_TypeModifier,
916                dual_source_output_name());
917            bool outputIsZero = coverageIsZero;
918            GrStringBuilder coeff;
919            if (!outputIsZero &&
920                ProgramDesc::kCoverage_DualSrcOutput !=
921                fProgramDesc.fDualSrcOutput && !wroteFragColorZero) {
922                if (!inColor.size()) {
923                    outputIsZero = true;
924                } else {
925                    if (fProgramDesc.fDualSrcOutput ==
926                        ProgramDesc::kCoverageISA_DualSrcOutput) {
927                        coeff.printf("(1 - %s.a)", inColor.c_str());
928                    } else {
929                        coeff.printf("(vec4(1,1,1,1) - %s)", inColor.c_str());
930                    }
931                }
932            }
933            if (outputIsZero) {
934                segments.fFSCode.appendf("\t%s = %s;\n",
935                                         dual_source_output_name(),
936                                         all_zeros_vec(4));
937            } else {
938                modulate_helper(dual_source_output_name(),
939                                coeff.c_str(),
940                                inCoverage.c_str(),
941                                &segments.fFSCode);
942            }
943            dualSourceOutputWritten = true;
944        }
945    }
946
947    ///////////////////////////////////////////////////////////////////////////
948    // combine color and coverage as frag color
949
950    if (!wroteFragColorZero) {
951        if (coverageIsZero) {
952            segments.fFSCode.appendf("\t%s = %s;\n",
953                                     colorOutput.getName().c_str(),
954                                     all_zeros_vec(4));
955        } else {
956            modulate_helper(colorOutput.getName().c_str(),
957                            inColor.c_str(),
958                            inCoverage.c_str(),
959                            &segments.fFSCode);
960        }
961        if (ProgramDesc::kUnpremultiplied_RoundDown_OutputConfig ==
962            fProgramDesc.fOutputConfig) {
963            segments.fFSCode.appendf("\t%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(floor(%s.rgb / %s.a * 255.0)/255.0, %s.a);\n",
964                                        colorOutput.getName().c_str(),
965                                        colorOutput.getName().c_str(),
966                                        colorOutput.getName().c_str(),
967                                        colorOutput.getName().c_str(),
968                                        colorOutput.getName().c_str());
969        } else if (ProgramDesc::kUnpremultiplied_RoundUp_OutputConfig ==
970                   fProgramDesc.fOutputConfig) {
971            segments.fFSCode.appendf("\t%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(ceil(%s.rgb / %s.a * 255.0)/255.0, %s.a);\n",
972                                        colorOutput.getName().c_str(),
973                                        colorOutput.getName().c_str(),
974                                        colorOutput.getName().c_str(),
975                                        colorOutput.getName().c_str(),
976                                        colorOutput.getName().c_str());
977        }
978    }
979
980    segments.fVSCode.append("}\n");
981    segments.fFSCode.append("}\n");
982
983    ///////////////////////////////////////////////////////////////////////////
984    // insert GS
985#if GR_DEBUG
986    this->genGeometryShader(gl, &segments);
987#endif
988
989    ///////////////////////////////////////////////////////////////////////////
990    // compile and setup attribs and unis
991
992    if (!CompileShaders(gl, segments, programData)) {
993        return false;
994    }
995
996    if (!this->bindOutputsAttribsAndLinkProgram(gl, texCoordAttrs,
997                                                isColorDeclared,
998                                                dualSourceOutputWritten,
999                                                programData)) {
1000        return false;
1001    }
1002
1003    this->getUniformLocationsAndInitCache(gl, programData);
1004
1005    return true;
1006}
1007
1008namespace {
1009
1010inline void expand_decls(const VarArray& vars,
1011                         const GrGLContextInfo& gl,
1012                         GrStringBuilder* string) {
1013    const int count = vars.count();
1014    for (int i = 0; i < count; ++i) {
1015        vars[i].appendDecl(gl, string);
1016    }
1017}
1018
1019inline void print_shader(int stringCnt,
1020                         const char** strings,
1021                         int* stringLengths) {
1022    for (int i = 0; i < stringCnt; ++i) {
1023        if (NULL == stringLengths || stringLengths[i] < 0) {
1024            GrPrintf(strings[i]);
1025        } else {
1026            GrPrintf("%.*s", stringLengths[i], strings[i]);
1027        }
1028    }
1029}
1030
1031typedef SkTArray<const char*, true>         StrArray;
1032#define PREALLOC_STR_ARRAY(N) SkSTArray<(N), const char*, true>
1033
1034typedef SkTArray<int, true>                 LengthArray;
1035#define PREALLOC_LENGTH_ARRAY(N) SkSTArray<(N), int, true>
1036
1037// these shouldn't relocate
1038typedef GrTAllocator<GrStringBuilder>       TempArray;
1039#define PREALLOC_TEMP_ARRAY(N) GrSTAllocator<(N), GrStringBuilder>
1040
1041inline void append_string(const GrStringBuilder& str,
1042                          StrArray* strings,
1043                          LengthArray* lengths) {
1044    int length = (int) str.size();
1045    if (length) {
1046        strings->push_back(str.c_str());
1047        lengths->push_back(length);
1048    }
1049    GrAssert(strings->count() == lengths->count());
1050}
1051
1052inline void append_decls(const VarArray& vars,
1053                         const GrGLContextInfo& gl,
1054                         StrArray* strings,
1055                         LengthArray* lengths,
1056                         TempArray* temp) {
1057    expand_decls(vars, gl, &temp->push_back());
1058    append_string(temp->back(), strings, lengths);
1059}
1060
1061}
1062
1063bool GrGLProgram::CompileShaders(const GrGLContextInfo& gl,
1064                                 const ShaderCodeSegments& segments,
1065                                 CachedData* programData) {
1066    enum { kPreAllocStringCnt = 8 };
1067
1068    PREALLOC_STR_ARRAY(kPreAllocStringCnt)    strs;
1069    PREALLOC_LENGTH_ARRAY(kPreAllocStringCnt) lengths;
1070    PREALLOC_TEMP_ARRAY(kPreAllocStringCnt)   temps;
1071
1072    GrStringBuilder unis;
1073    GrStringBuilder inputs;
1074    GrStringBuilder outputs;
1075
1076    append_string(segments.fHeader, &strs, &lengths);
1077    append_decls(segments.fVSUnis, gl, &strs, &lengths, &temps);
1078    append_decls(segments.fVSAttrs, gl, &strs, &lengths, &temps);
1079    append_decls(segments.fVSOutputs, gl, &strs, &lengths, &temps);
1080    append_string(segments.fVSCode, &strs, &lengths);
1081
1082#if PRINT_SHADERS
1083    print_shader(strs.count(), &strs[0], &lengths[0]);
1084    GrPrintf("\n");
1085#endif
1086
1087    programData->fVShaderID =
1088        CompileShader(gl, GR_GL_VERTEX_SHADER, strs.count(),
1089                      &strs[0], &lengths[0]);
1090
1091    if (!programData->fVShaderID) {
1092        return false;
1093    }
1094    if (segments.fUsesGS) {
1095        strs.reset();
1096        lengths.reset();
1097        temps.reset();
1098        append_string(segments.fHeader, &strs, &lengths);
1099        append_string(segments.fGSHeader, &strs, &lengths);
1100        append_decls(segments.fGSInputs, gl, &strs, &lengths, &temps);
1101        append_decls(segments.fGSOutputs, gl, &strs, &lengths, &temps);
1102        append_string(segments.fGSCode, &strs, &lengths);
1103#if PRINT_SHADERS
1104        print_shader(strs.count(), &strs[0], &lengths[0]);
1105        GrPrintf("\n");
1106#endif
1107        programData->fGShaderID =
1108            CompileShader(gl, GR_GL_GEOMETRY_SHADER, strs.count(),
1109                          &strs[0], &lengths[0]);
1110    } else {
1111        programData->fGShaderID = 0;
1112    }
1113
1114    strs.reset();
1115    lengths.reset();
1116    temps.reset();
1117
1118    append_string(segments.fHeader, &strs, &lengths);
1119    GrStringBuilder precisionStr(GrGetGLSLShaderPrecisionDecl(gl.binding()));
1120    append_string(precisionStr, &strs, &lengths);
1121    append_decls(segments.fFSUnis, gl, &strs, &lengths, &temps);
1122    append_decls(segments.fFSInputs, gl, &strs, &lengths, &temps);
1123    // We shouldn't have declared outputs on 1.10
1124    GrAssert(k110_GrGLSLGeneration != gl.glslGeneration() ||
1125             segments.fFSOutputs.empty());
1126    append_decls(segments.fFSOutputs, gl, &strs, &lengths, &temps);
1127    append_string(segments.fFSFunctions, &strs, &lengths);
1128    append_string(segments.fFSCode, &strs, &lengths);
1129
1130#if PRINT_SHADERS
1131    print_shader(strs.count(), &strs[0], &lengths[0]);
1132    GrPrintf("\n");
1133#endif
1134
1135    programData->fFShaderID =
1136        CompileShader(gl, GR_GL_FRAGMENT_SHADER, strs.count(),
1137                      &strs[0], &lengths[0]);
1138
1139    if (!programData->fFShaderID) {
1140        return false;
1141    }
1142
1143    return true;
1144}
1145
1146#define GL_CALL(X) GR_GL_CALL(gl.interface(), X)
1147#define GL_CALL_RET(R, X) GR_GL_CALL_RET(gl.interface(), R, X)
1148
1149GrGLuint GrGLProgram::CompileShader(const GrGLContextInfo& gl,
1150                                    GrGLenum type,
1151                                    int stringCnt,
1152                                    const char** strings,
1153                                    int* stringLengths) {
1154    SK_TRACE_EVENT1("GrGLProgram::CompileShader",
1155                    "stringCount", SkStringPrintf("%i", stringCnt).c_str());
1156
1157    GrGLuint shader;
1158    GL_CALL_RET(shader, CreateShader(type));
1159    if (0 == shader) {
1160        return 0;
1161    }
1162
1163    GrGLint compiled = GR_GL_INIT_ZERO;
1164    GL_CALL(ShaderSource(shader, stringCnt, strings, stringLengths));
1165    GL_CALL(CompileShader(shader));
1166    GL_CALL(GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled));
1167
1168    if (!compiled) {
1169        GrGLint infoLen = GR_GL_INIT_ZERO;
1170        GL_CALL(GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen));
1171        SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
1172        if (infoLen > 0) {
1173            // retrieve length even though we don't need it to workaround
1174            // bug in chrome cmd buffer param validation.
1175            GrGLsizei length = GR_GL_INIT_ZERO;
1176            GL_CALL(GetShaderInfoLog(shader, infoLen+1,
1177                                         &length, (char*)log.get()));
1178            print_shader(stringCnt, strings, stringLengths);
1179            GrPrintf("\n%s", log.get());
1180        }
1181        GrAssert(!"Shader compilation failed!");
1182        GL_CALL(DeleteShader(shader));
1183        return 0;
1184    }
1185    return shader;
1186}
1187
1188bool GrGLProgram::bindOutputsAttribsAndLinkProgram(
1189                                        const GrGLContextInfo& gl,
1190                                        GrStringBuilder texCoordAttrNames[],
1191                                        bool bindColorOut,
1192                                        bool bindDualSrcOut,
1193                                        CachedData* programData) const {
1194    GL_CALL_RET(programData->fProgramID, CreateProgram());
1195    if (!programData->fProgramID) {
1196        return false;
1197    }
1198    const GrGLint& progID = programData->fProgramID;
1199
1200    GL_CALL(AttachShader(progID, programData->fVShaderID));
1201    if (programData->fGShaderID) {
1202        GL_CALL(AttachShader(progID, programData->fGShaderID));
1203    }
1204    GL_CALL(AttachShader(progID, programData->fFShaderID));
1205
1206    if (bindColorOut) {
1207        GL_CALL(BindFragDataLocation(programData->fProgramID,
1208                                     0, declared_color_output_name()));
1209    }
1210    if (bindDualSrcOut) {
1211        GL_CALL(BindFragDataLocationIndexed(programData->fProgramID,
1212                                            0, 1, dual_source_output_name()));
1213    }
1214
1215    // Bind the attrib locations to same values for all shaders
1216    GL_CALL(BindAttribLocation(progID, PositionAttributeIdx(), POS_ATTR_NAME));
1217    for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
1218        if (texCoordAttrNames[t].size()) {
1219            GL_CALL(BindAttribLocation(progID,
1220                                       TexCoordAttributeIdx(t),
1221                                       texCoordAttrNames[t].c_str()));
1222        }
1223    }
1224
1225    if (kSetAsAttribute == programData->fUniLocations.fViewMatrixUni) {
1226        GL_CALL(BindAttribLocation(progID,
1227                                   ViewMatrixAttributeIdx(),
1228                                   VIEW_MATRIX_NAME));
1229    }
1230
1231    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
1232        const StageUniLocations& unis = programData->fUniLocations.fStages[s];
1233        if (kSetAsAttribute == unis.fTextureMatrixUni) {
1234            GrStringBuilder matName;
1235            tex_matrix_name(s, &matName);
1236            GL_CALL(BindAttribLocation(progID,
1237                                       TextureMatrixAttributeIdx(s),
1238                                       matName.c_str()));
1239        }
1240    }
1241
1242    GL_CALL(BindAttribLocation(progID, ColorAttributeIdx(), COL_ATTR_NAME));
1243    GL_CALL(BindAttribLocation(progID, CoverageAttributeIdx(), COV_ATTR_NAME));
1244    GL_CALL(BindAttribLocation(progID, EdgeAttributeIdx(), EDGE_ATTR_NAME));
1245
1246    GL_CALL(LinkProgram(progID));
1247
1248    GrGLint linked = GR_GL_INIT_ZERO;
1249    GL_CALL(GetProgramiv(progID, GR_GL_LINK_STATUS, &linked));
1250    if (!linked) {
1251        GrGLint infoLen = GR_GL_INIT_ZERO;
1252        GL_CALL(GetProgramiv(progID, GR_GL_INFO_LOG_LENGTH, &infoLen));
1253        SkAutoMalloc log(sizeof(char)*(infoLen+1));  // outside if for debugger
1254        if (infoLen > 0) {
1255            // retrieve length even though we don't need it to workaround
1256            // bug in chrome cmd buffer param validation.
1257            GrGLsizei length = GR_GL_INIT_ZERO;
1258            GL_CALL(GetProgramInfoLog(progID,
1259                                      infoLen+1,
1260                                      &length,
1261                                      (char*)log.get()));
1262            GrPrintf((char*)log.get());
1263        }
1264        GrAssert(!"Error linking program");
1265        GL_CALL(DeleteProgram(progID));
1266        programData->fProgramID = 0;
1267        return false;
1268    }
1269    return true;
1270}
1271
1272void GrGLProgram::getUniformLocationsAndInitCache(const GrGLContextInfo& gl,
1273                                                  CachedData* programData) const {
1274    const GrGLint& progID = programData->fProgramID;
1275
1276    if (kUseUniform == programData->fUniLocations.fViewMatrixUni) {
1277        GL_CALL_RET(programData->fUniLocations.fViewMatrixUni,
1278                    GetUniformLocation(progID, VIEW_MATRIX_NAME));
1279        GrAssert(kUnusedUniform != programData->fUniLocations.fViewMatrixUni);
1280    }
1281    if (kUseUniform == programData->fUniLocations.fColorUni) {
1282        GL_CALL_RET(programData->fUniLocations.fColorUni,
1283                    GetUniformLocation(progID, COL_UNI_NAME));
1284        GrAssert(kUnusedUniform != programData->fUniLocations.fColorUni);
1285    }
1286    if (kUseUniform == programData->fUniLocations.fColorFilterUni) {
1287        GL_CALL_RET(programData->fUniLocations.fColorFilterUni,
1288                    GetUniformLocation(progID, COL_FILTER_UNI_NAME));
1289        GrAssert(kUnusedUniform != programData->fUniLocations.fColorFilterUni);
1290    }
1291
1292    if (kUseUniform == programData->fUniLocations.fColorMatrixUni) {
1293        GL_CALL_RET(programData->fUniLocations.fColorMatrixUni,
1294                    GetUniformLocation(progID, COL_MATRIX_UNI_NAME));
1295    }
1296
1297    if (kUseUniform == programData->fUniLocations.fColorMatrixVecUni) {
1298        GL_CALL_RET(programData->fUniLocations.fColorMatrixVecUni,
1299                    GetUniformLocation(progID, COL_MATRIX_VEC_UNI_NAME));
1300    }
1301    if (kUseUniform == programData->fUniLocations.fCoverageUni) {
1302        GL_CALL_RET(programData->fUniLocations.fCoverageUni,
1303                    GetUniformLocation(progID, COV_UNI_NAME));
1304        GrAssert(kUnusedUniform != programData->fUniLocations.fCoverageUni);
1305    }
1306
1307    if (kUseUniform == programData->fUniLocations.fEdgesUni) {
1308        GL_CALL_RET(programData->fUniLocations.fEdgesUni,
1309                    GetUniformLocation(progID, EDGES_UNI_NAME));
1310        GrAssert(kUnusedUniform != programData->fUniLocations.fEdgesUni);
1311    } else {
1312        programData->fUniLocations.fEdgesUni = kUnusedUniform;
1313    }
1314
1315    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
1316        StageUniLocations& locations = programData->fUniLocations.fStages[s];
1317        if (fProgramDesc.fStages[s].isEnabled()) {
1318            if (kUseUniform == locations.fTextureMatrixUni) {
1319                GrStringBuilder texMName;
1320                tex_matrix_name(s, &texMName);
1321                GL_CALL_RET(locations.fTextureMatrixUni,
1322                            GetUniformLocation(progID, texMName.c_str()));
1323                GrAssert(kUnusedUniform != locations.fTextureMatrixUni);
1324            }
1325
1326            if (kUseUniform == locations.fSamplerUni) {
1327                GrStringBuilder samplerName;
1328                sampler_name(s, &samplerName);
1329                GL_CALL_RET(locations.fSamplerUni,
1330                            GetUniformLocation(progID,samplerName.c_str()));
1331                GrAssert(kUnusedUniform != locations.fSamplerUni);
1332            }
1333
1334            if (kUseUniform == locations.fNormalizedTexelSizeUni) {
1335                GrStringBuilder texelSizeName;
1336                normalized_texel_size_name(s, &texelSizeName);
1337                GL_CALL_RET(locations.fNormalizedTexelSizeUni,
1338                            GetUniformLocation(progID, texelSizeName.c_str()));
1339                GrAssert(kUnusedUniform != locations.fNormalizedTexelSizeUni);
1340            }
1341
1342            if (kUseUniform == locations.fRadial2Uni) {
1343                GrStringBuilder radial2ParamName;
1344                radial2_param_name(s, &radial2ParamName);
1345                GL_CALL_RET(locations.fRadial2Uni,
1346                            GetUniformLocation(progID, radial2ParamName.c_str()));
1347                GrAssert(kUnusedUniform != locations.fRadial2Uni);
1348            }
1349
1350            if (kUseUniform == locations.fTexDomUni) {
1351                GrStringBuilder texDomName;
1352                tex_domain_name(s, &texDomName);
1353                GL_CALL_RET(locations.fTexDomUni,
1354                            GetUniformLocation(progID, texDomName.c_str()));
1355                GrAssert(kUnusedUniform != locations.fTexDomUni);
1356            }
1357
1358            GrStringBuilder kernelName, imageIncrementName;
1359            convolve_param_names(s, &kernelName, &imageIncrementName);
1360            if (kUseUniform == locations.fKernelUni) {
1361                GL_CALL_RET(locations.fKernelUni,
1362                            GetUniformLocation(progID, kernelName.c_str()));
1363                GrAssert(kUnusedUniform != locations.fKernelUni);
1364            }
1365
1366            if (kUseUniform == locations.fImageIncrementUni) {
1367                GL_CALL_RET(locations.fImageIncrementUni,
1368                            GetUniformLocation(progID,
1369                                               imageIncrementName.c_str()));
1370                GrAssert(kUnusedUniform != locations.fImageIncrementUni);
1371            }
1372        }
1373    }
1374    GL_CALL(UseProgram(progID));
1375
1376    // init sampler unis and set bogus values for state tracking
1377    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
1378        if (kUnusedUniform != programData->fUniLocations.fStages[s].fSamplerUni) {
1379            GL_CALL(Uniform1i(programData->fUniLocations.fStages[s].fSamplerUni, s));
1380        }
1381        programData->fTextureMatrices[s] = GrMatrix::InvalidMatrix();
1382        programData->fRadial2CenterX1[s] = GR_ScalarMax;
1383        programData->fRadial2Radius0[s] = -GR_ScalarMax;
1384        programData->fTextureWidth[s] = -1;
1385        programData->fTextureHeight[s] = -1;
1386        programData->fTextureDomain[s].setEmpty();
1387    }
1388    programData->fViewMatrix = GrMatrix::InvalidMatrix();
1389    programData->fColor = GrColor_ILLEGAL;
1390    programData->fColorFilterColor = GrColor_ILLEGAL;
1391}
1392
1393//============================================================================
1394// Stage code generation
1395//============================================================================
1396
1397namespace {
1398
1399bool isRadialMapping(GrGLProgram::StageDesc::CoordMapping mapping) {
1400    return
1401       (GrGLProgram::StageDesc::kRadial2Gradient_CoordMapping == mapping ||
1402        GrGLProgram::StageDesc::kRadial2GradientDegenerate_CoordMapping == mapping);
1403}
1404
1405GrGLShaderVar* genRadialVS(int stageNum,
1406                        ShaderCodeSegments* segments,
1407                        GrGLProgram::StageUniLocations* locations,
1408                        const char** radial2VaryingVSName,
1409                        const char** radial2VaryingFSName,
1410                        const char* varyingVSName,
1411                        int varyingDims, int coordDims) {
1412
1413    GrGLShaderVar* radial2FSParams = &segments->fFSUnis.push_back();
1414    radial2FSParams->setType(GrGLShaderVar::kFloat_Type);
1415    radial2FSParams->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
1416    radial2FSParams->setArrayCount(6);
1417    radial2_param_name(stageNum, radial2FSParams->accessName());
1418    segments->fVSUnis.push_back(*radial2FSParams).setEmitPrecision(true);
1419
1420    locations->fRadial2Uni = kUseUniform;
1421
1422    // for radial grads without perspective we can pass the linear
1423    // part of the quadratic as a varying.
1424    if (varyingDims == coordDims) {
1425        GrAssert(2 == coordDims);
1426        append_varying(GrGLShaderVar::kFloat_Type,
1427                       "Radial2BCoeff",
1428                       stageNum,
1429                       segments,
1430                       radial2VaryingVSName,
1431                       radial2VaryingFSName);
1432
1433        GrStringBuilder radial2p2;
1434        GrStringBuilder radial2p3;
1435        radial2FSParams->appendArrayAccess(2, &radial2p2);
1436        radial2FSParams->appendArrayAccess(3, &radial2p3);
1437
1438        // r2Var = 2 * (r2Parm[2] * varCoord.x - r2Param[3])
1439        const char* r2ParamName = radial2FSParams->getName().c_str();
1440        segments->fVSCode.appendf("\t%s = 2.0 *(%s * %s.x - %s);\n",
1441                                  *radial2VaryingVSName, radial2p2.c_str(),
1442                                  varyingVSName, radial2p3.c_str());
1443    }
1444
1445    return radial2FSParams;
1446}
1447
1448bool genRadial2GradientCoordMapping(int stageNum,
1449                                    ShaderCodeSegments* segments,
1450                                    const char* radial2VaryingFSName,
1451                                    GrGLShaderVar* radial2Params,
1452                                    GrStringBuilder& sampleCoords,
1453                                    GrStringBuilder& fsCoordName,
1454                                    int varyingDims,
1455                                    int coordDims) {
1456    GrStringBuilder cName("c");
1457    GrStringBuilder ac4Name("ac4");
1458    GrStringBuilder rootName("root");
1459
1460    cName.appendS32(stageNum);
1461    ac4Name.appendS32(stageNum);
1462    rootName.appendS32(stageNum);
1463
1464    GrStringBuilder radial2p0;
1465    GrStringBuilder radial2p1;
1466    GrStringBuilder radial2p2;
1467    GrStringBuilder radial2p3;
1468    GrStringBuilder radial2p4;
1469    GrStringBuilder radial2p5;
1470    radial2Params->appendArrayAccess(0, &radial2p0);
1471    radial2Params->appendArrayAccess(1, &radial2p1);
1472    radial2Params->appendArrayAccess(2, &radial2p2);
1473    radial2Params->appendArrayAccess(3, &radial2p3);
1474    radial2Params->appendArrayAccess(4, &radial2p4);
1475    radial2Params->appendArrayAccess(5, &radial2p5);
1476
1477    // if we were able to interpolate the linear component bVar is the varying
1478    // otherwise compute it
1479    GrStringBuilder bVar;
1480    if (coordDims == varyingDims) {
1481        bVar = radial2VaryingFSName;
1482        GrAssert(2 == varyingDims);
1483    } else {
1484        GrAssert(3 == varyingDims);
1485        bVar = "b";
1486        bVar.appendS32(stageNum);
1487        segments->fFSCode.appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n",
1488                                    bVar.c_str(), radial2p2.c_str(),
1489                                    fsCoordName.c_str(), radial2p3.c_str());
1490    }
1491
1492    // c = (x^2)+(y^2) - params[4]
1493    segments->fFSCode.appendf("\tfloat %s = dot(%s, %s) - %s;\n",
1494                              cName.c_str(), fsCoordName.c_str(),
1495                              fsCoordName.c_str(),
1496                              radial2p4.c_str());
1497    // ac4 = 4.0 * params[0] * c
1498    segments->fFSCode.appendf("\tfloat %s = %s * 4.0 * %s;\n",
1499                              ac4Name.c_str(), radial2p0.c_str(),
1500                              cName.c_str());
1501
1502    // root = sqrt(b^2-4ac)
1503    // (abs to avoid exception due to fp precision)
1504    segments->fFSCode.appendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n",
1505                              rootName.c_str(), bVar.c_str(), bVar.c_str(),
1506                              ac4Name.c_str());
1507
1508    // x coord is: (-b + params[5] * sqrt(b^2-4ac)) * params[1]
1509    // y coord is 0.5 (texture is effectively 1D)
1510    sampleCoords.printf("vec2((-%s + %s * %s) * %s, 0.5)",
1511                        bVar.c_str(), radial2p5.c_str(),
1512                        rootName.c_str(), radial2p1.c_str());
1513    return true;
1514}
1515
1516bool genRadial2GradientDegenerateCoordMapping(int stageNum,
1517                                              ShaderCodeSegments* segments,
1518                                              const char* radial2VaryingFSName,
1519                                              GrGLShaderVar* radial2Params,
1520                                              GrStringBuilder& sampleCoords,
1521                                              GrStringBuilder& fsCoordName,
1522                                              int varyingDims,
1523                                              int coordDims) {
1524    GrStringBuilder cName("c");
1525
1526    cName.appendS32(stageNum);
1527
1528    GrStringBuilder radial2p2;
1529    GrStringBuilder radial2p3;
1530    GrStringBuilder radial2p4;
1531    radial2Params->appendArrayAccess(2, &radial2p2);
1532    radial2Params->appendArrayAccess(3, &radial2p3);
1533    radial2Params->appendArrayAccess(4, &radial2p4);
1534
1535    // if we were able to interpolate the linear component bVar is the varying
1536    // otherwise compute it
1537    GrStringBuilder bVar;
1538    if (coordDims == varyingDims) {
1539        bVar = radial2VaryingFSName;
1540        GrAssert(2 == varyingDims);
1541    } else {
1542        GrAssert(3 == varyingDims);
1543        bVar = "b";
1544        bVar.appendS32(stageNum);
1545        segments->fFSCode.appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n",
1546                                    bVar.c_str(), radial2p2.c_str(),
1547                                    fsCoordName.c_str(), radial2p3.c_str());
1548    }
1549
1550    // c = (x^2)+(y^2) - params[4]
1551    segments->fFSCode.appendf("\tfloat %s = dot(%s, %s) - %s;\n",
1552                              cName.c_str(), fsCoordName.c_str(),
1553                              fsCoordName.c_str(),
1554                              radial2p4.c_str());
1555
1556    // x coord is: -c/b
1557    // y coord is 0.5 (texture is effectively 1D)
1558    sampleCoords.printf("vec2((-%s / %s), 0.5)", cName.c_str(), bVar.c_str());
1559    return true;
1560}
1561
1562void gen2x2FS(int stageNum,
1563              ShaderCodeSegments* segments,
1564              GrGLProgram::StageUniLocations* locations,
1565              GrStringBuilder* sampleCoords,
1566              const char* samplerName,
1567              const char* texelSizeName,
1568              const char* swizzle,
1569              const char* fsOutColor,
1570              GrStringBuilder& texFunc,
1571              GrStringBuilder& modulate,
1572              bool complexCoord,
1573              int coordDims) {
1574    locations->fNormalizedTexelSizeUni = kUseUniform;
1575    if (complexCoord) {
1576        // assign the coord to a var rather than compute 4x.
1577        GrStringBuilder coordVar("tCoord");
1578        coordVar.appendS32(stageNum);
1579        segments->fFSCode.appendf("\t%s %s = %s;\n",
1580                            float_vector_type_str(coordDims),
1581                            coordVar.c_str(), sampleCoords->c_str());
1582        *sampleCoords = coordVar;
1583    }
1584    GrAssert(2 == coordDims);
1585    GrStringBuilder accumVar("accum");
1586    accumVar.appendS32(stageNum);
1587    segments->fFSCode.appendf("\tvec4 %s  = %s(%s, %s + vec2(-%s.x,-%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
1588    segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(+%s.x,-%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
1589    segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(-%s.x,+%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
1590    segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(+%s.x,+%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
1591    segments->fFSCode.appendf("\t%s = .25 * %s%s;\n", fsOutColor, accumVar.c_str(), modulate.c_str());
1592
1593}
1594
1595void genConvolutionVS(int stageNum,
1596                      const StageDesc& desc,
1597                      ShaderCodeSegments* segments,
1598                      GrGLProgram::StageUniLocations* locations,
1599                      GrGLShaderVar** kernel,
1600                      const char** imageIncrementName,
1601                      const char* varyingVSName) {
1602    //GrGLShaderVar* kernel = &segments->fFSUnis.push_back();
1603    *kernel = &segments->fFSUnis.push_back();
1604    (*kernel)->setType(GrGLShaderVar::kFloat_Type);
1605    (*kernel)->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
1606    (*kernel)->setArrayCount(desc.fKernelWidth);
1607    GrGLShaderVar* imgInc = &segments->fFSUnis.push_back();
1608    imgInc->setType(GrGLShaderVar::kVec2f_Type);
1609    imgInc->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
1610
1611    convolve_param_names(stageNum,
1612                         (*kernel)->accessName(),
1613                         imgInc->accessName());
1614    *imageIncrementName = imgInc->getName().c_str();
1615
1616    // need image increment in both VS and FS
1617    segments->fVSUnis.push_back(*imgInc).setEmitPrecision(true);
1618
1619    locations->fKernelUni = kUseUniform;
1620    locations->fImageIncrementUni = kUseUniform;
1621    float scale = (desc.fKernelWidth - 1) * 0.5f;
1622    segments->fVSCode.appendf("\t%s -= vec2(%g, %g) * %s;\n",
1623                                  varyingVSName, scale, scale,
1624                                  *imageIncrementName);
1625}
1626
1627void genConvolutionFS(int stageNum,
1628                      const StageDesc& desc,
1629                      ShaderCodeSegments* segments,
1630                      const char* samplerName,
1631                      GrGLShaderVar* kernel,
1632                      const char* swizzle,
1633                      const char* imageIncrementName,
1634                      const char* fsOutColor,
1635                      GrStringBuilder& sampleCoords,
1636                      GrStringBuilder& texFunc,
1637                      GrStringBuilder& modulate) {
1638    GrStringBuilder sumVar("sum");
1639    sumVar.appendS32(stageNum);
1640    GrStringBuilder coordVar("coord");
1641    coordVar.appendS32(stageNum);
1642
1643    GrStringBuilder kernelIndex;
1644    kernel->appendArrayAccess("i", &kernelIndex);
1645
1646    segments->fFSCode.appendf("\tvec4 %s = vec4(0, 0, 0, 0);\n",
1647                              sumVar.c_str());
1648    segments->fFSCode.appendf("\tvec2 %s = %s;\n",
1649                              coordVar.c_str(),
1650                              sampleCoords.c_str());
1651    segments->fFSCode.appendf("\tfor (int i = 0; i < %d; i++) {\n",
1652                              desc.fKernelWidth);
1653    segments->fFSCode.appendf("\t\t%s += %s(%s, %s)%s * %s;\n",
1654                              sumVar.c_str(), texFunc.c_str(),
1655                              samplerName, coordVar.c_str(), swizzle,
1656                              kernelIndex.c_str());
1657    segments->fFSCode.appendf("\t\t%s += %s;\n",
1658                              coordVar.c_str(),
1659                              imageIncrementName);
1660    segments->fFSCode.append("\t}\n");
1661    segments->fFSCode.appendf("\t%s = %s%s;\n", fsOutColor,
1662                              sumVar.c_str(), modulate.c_str());
1663}
1664
1665void genMorphologyVS(int stageNum,
1666                     const StageDesc& desc,
1667                     ShaderCodeSegments* segments,
1668                     GrGLProgram::StageUniLocations* locations,
1669                     const char** imageIncrementName,
1670                     const char* varyingVSName) {
1671    GrGLShaderVar* imgInc = &segments->fFSUnis.push_back();
1672    imgInc->setType(GrGLShaderVar::kVec2f_Type);
1673    imgInc->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
1674
1675    image_increment_param_name(stageNum, imgInc->accessName());
1676    *imageIncrementName = imgInc->getName().c_str();
1677
1678    // need image increment in both VS and FS
1679    segments->fVSUnis.push_back(*imgInc).setEmitPrecision(true);
1680
1681    locations->fImageIncrementUni = kUseUniform;
1682    segments->fVSCode.appendf("\t%s -= vec2(%d, %d) * %s;\n",
1683                                  varyingVSName, desc.fKernelWidth,
1684                                  desc.fKernelWidth, *imageIncrementName);
1685}
1686
1687void genMorphologyFS(int stageNum,
1688                     const StageDesc& desc,
1689                     ShaderCodeSegments* segments,
1690                     const char* samplerName,
1691                     const char* swizzle,
1692                     const char* imageIncrementName,
1693                     const char* fsOutColor,
1694                     GrStringBuilder& sampleCoords,
1695                     GrStringBuilder& texFunc,
1696                     GrStringBuilder& modulate) {
1697    GrStringBuilder valueVar("value");
1698    valueVar.appendS32(stageNum);
1699    GrStringBuilder coordVar("coord");
1700    coordVar.appendS32(stageNum);
1701    bool isDilate = StageDesc::kDilate_FetchMode == desc.fFetchMode;
1702
1703   if (isDilate) {
1704        segments->fFSCode.appendf("\tvec4 %s = vec4(0, 0, 0, 0);\n",
1705                                  valueVar.c_str());
1706    } else {
1707        segments->fFSCode.appendf("\tvec4 %s = vec4(1, 1, 1, 1);\n",
1708                                  valueVar.c_str());
1709    }
1710    segments->fFSCode.appendf("\tvec2 %s = %s;\n",
1711                              coordVar.c_str(),
1712                              sampleCoords.c_str());
1713    segments->fFSCode.appendf("\tfor (int i = 0; i < %d; i++) {\n",
1714                              desc.fKernelWidth * 2 + 1);
1715    segments->fFSCode.appendf("\t\t%s = %s(%s, %s(%s, %s)%s);\n",
1716                              valueVar.c_str(), isDilate ? "max" : "min",
1717                              valueVar.c_str(), texFunc.c_str(),
1718                              samplerName, coordVar.c_str(), swizzle);
1719    segments->fFSCode.appendf("\t\t%s += %s;\n",
1720                              coordVar.c_str(),
1721                              imageIncrementName);
1722    segments->fFSCode.appendf("\t}\n");
1723    segments->fFSCode.appendf("\t%s = %s%s;\n", fsOutColor,
1724                              valueVar.c_str(), modulate.c_str());
1725}
1726
1727}
1728
1729void GrGLProgram::genStageCode(const GrGLContextInfo& gl,
1730                               int stageNum,
1731                               const GrGLProgram::StageDesc& desc,
1732                               const char* fsInColor, // NULL means no incoming color
1733                               const char* fsOutColor,
1734                               const char* vsInCoord,
1735                               ShaderCodeSegments* segments,
1736                               StageUniLocations* locations) const {
1737
1738    GrAssert(stageNum >= 0 && stageNum <= GrDrawState::kNumStages);
1739    GrAssert((desc.fInConfigFlags & StageDesc::kInConfigBitMask) ==
1740             desc.fInConfigFlags);
1741
1742    // First decide how many coords are needed to access the texture
1743    // Right now it's always 2 but we could start using 1D textures for
1744    // gradients.
1745    static const int coordDims = 2;
1746    int varyingDims;
1747    /// Vertex Shader Stuff
1748
1749    // decide whether we need a matrix to transform texture coords
1750    // and whether the varying needs a perspective coord.
1751    const char* matName = NULL;
1752    if (desc.fOptFlags & StageDesc::kIdentityMatrix_OptFlagBit) {
1753        varyingDims = coordDims;
1754    } else {
1755        GrGLShaderVar* mat;
1756    #if GR_GL_ATTRIBUTE_MATRICES
1757        mat = &segments->fVSAttrs.push_back();
1758        mat->setTypeModifier(GrGLShaderVar::kAttribute_TypeModifier);
1759        locations->fTextureMatrixUni = kSetAsAttribute;
1760    #else
1761        mat = &segments->fVSUnis.push_back();
1762        mat->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
1763        locations->fTextureMatrixUni = kUseUniform;
1764    #endif
1765        tex_matrix_name(stageNum, mat->accessName());
1766        mat->setType(GrGLShaderVar::kMat33f_Type);
1767        matName = mat->getName().c_str();
1768
1769        if (desc.fOptFlags & StageDesc::kNoPerspective_OptFlagBit) {
1770            varyingDims = coordDims;
1771        } else {
1772            varyingDims = coordDims + 1;
1773        }
1774    }
1775
1776    segments->fFSUnis.push_back().set(GrGLShaderVar::kSampler2D_Type,
1777        GrGLShaderVar::kUniform_TypeModifier, "");
1778    sampler_name(stageNum, segments->fFSUnis.back().accessName());
1779    locations->fSamplerUni = kUseUniform;
1780    const char* samplerName = segments->fFSUnis.back().getName().c_str();
1781
1782    const char* texelSizeName = NULL;
1783    if (StageDesc::k2x2_FetchMode == desc.fFetchMode) {
1784        segments->fFSUnis.push_back().set(GrGLShaderVar::kVec2f_Type,
1785            GrGLShaderVar::kUniform_TypeModifier, "");
1786        normalized_texel_size_name(stageNum, segments->fFSUnis.back().accessName());
1787        texelSizeName = segments->fFSUnis.back().getName().c_str();
1788    }
1789
1790    const char *varyingVSName, *varyingFSName;
1791    append_varying(float_vector_type(varyingDims),
1792                    "Stage",
1793                   stageNum,
1794                   segments,
1795                   &varyingVSName,
1796                   &varyingFSName);
1797
1798    if (!matName) {
1799        GrAssert(varyingDims == coordDims);
1800        segments->fVSCode.appendf("\t%s = %s;\n", varyingVSName, vsInCoord);
1801    } else {
1802        // varying = texMatrix * texCoord
1803        segments->fVSCode.appendf("\t%s = (%s * vec3(%s, 1))%s;\n",
1804                                  varyingVSName, matName, vsInCoord,
1805                                  vector_all_coords(varyingDims));
1806    }
1807
1808    GrGLShaderVar* radial2Params = NULL;
1809    const char* radial2VaryingVSName = NULL;
1810    const char* radial2VaryingFSName = NULL;
1811
1812    if (isRadialMapping((StageDesc::CoordMapping) desc.fCoordMapping)) {
1813        radial2Params = genRadialVS(stageNum, segments,
1814                                    locations,
1815                                    &radial2VaryingVSName,
1816                                    &radial2VaryingFSName,
1817                                    varyingVSName,
1818                                    varyingDims, coordDims);
1819    }
1820
1821    GrGLShaderVar* kernel = NULL;
1822    const char* imageIncrementName = NULL;
1823    if (StageDesc::kConvolution_FetchMode == desc.fFetchMode) {
1824        genConvolutionVS(stageNum, desc, segments, locations,
1825                         &kernel, &imageIncrementName, varyingVSName);
1826    } else if (StageDesc::kDilate_FetchMode == desc.fFetchMode ||
1827               StageDesc::kErode_FetchMode == desc.fFetchMode) {
1828        genMorphologyVS(stageNum, desc, segments, locations,
1829                        &imageIncrementName, varyingVSName);
1830    }
1831
1832    /// Fragment Shader Stuff
1833    GrStringBuilder fsCoordName;
1834    // function used to access the shader, may be made projective
1835    GrStringBuilder texFunc("texture2D");
1836    if (desc.fOptFlags & (StageDesc::kIdentityMatrix_OptFlagBit |
1837                          StageDesc::kNoPerspective_OptFlagBit)) {
1838        GrAssert(varyingDims == coordDims);
1839        fsCoordName = varyingFSName;
1840    } else {
1841        // if we have to do some special op on the varyings to get
1842        // our final tex coords then when in perspective we have to
1843        // do an explicit divide. Otherwise, we can use a Proj func.
1844        if  (StageDesc::kIdentity_CoordMapping == desc.fCoordMapping &&
1845             StageDesc::kSingle_FetchMode == desc.fFetchMode) {
1846            texFunc.append("Proj");
1847            fsCoordName = varyingFSName;
1848        } else {
1849            fsCoordName = "inCoord";
1850            fsCoordName.appendS32(stageNum);
1851            segments->fFSCode.appendf("\t%s %s = %s%s / %s%s;\n",
1852                                GrGLShaderVar::TypeString(float_vector_type(coordDims)),
1853                                fsCoordName.c_str(),
1854                                varyingFSName,
1855                                vector_nonhomog_coords(varyingDims),
1856                                varyingFSName,
1857                                vector_homog_coord(varyingDims));
1858        }
1859    }
1860
1861    GrStringBuilder sampleCoords;
1862    bool complexCoord = false;
1863    switch (desc.fCoordMapping) {
1864    case StageDesc::kIdentity_CoordMapping:
1865        sampleCoords = fsCoordName;
1866        break;
1867    case StageDesc::kSweepGradient_CoordMapping:
1868        sampleCoords.printf("vec2(atan(- %s.y, - %s.x) * 0.1591549430918 + 0.5, 0.5)", fsCoordName.c_str(), fsCoordName.c_str());
1869        complexCoord = true;
1870        break;
1871    case StageDesc::kRadialGradient_CoordMapping:
1872        sampleCoords.printf("vec2(length(%s.xy), 0.5)", fsCoordName.c_str());
1873        complexCoord = true;
1874        break;
1875    case StageDesc::kRadial2Gradient_CoordMapping:
1876        complexCoord = genRadial2GradientCoordMapping(
1877                           stageNum, segments,
1878                           radial2VaryingFSName, radial2Params,
1879                           sampleCoords, fsCoordName,
1880                           varyingDims, coordDims);
1881
1882        break;
1883    case StageDesc::kRadial2GradientDegenerate_CoordMapping:
1884        complexCoord = genRadial2GradientDegenerateCoordMapping(
1885                           stageNum, segments,
1886                           radial2VaryingFSName, radial2Params,
1887                           sampleCoords, fsCoordName,
1888                           varyingDims, coordDims);
1889        break;
1890
1891    };
1892
1893    static const uint32_t kMulByAlphaMask =
1894        (StageDesc::kMulRGBByAlpha_RoundUp_InConfigFlag |
1895         StageDesc::kMulRGBByAlpha_RoundDown_InConfigFlag);
1896
1897    const char* swizzle = "";
1898    if (desc.fInConfigFlags & StageDesc::kSwapRAndB_InConfigFlag) {
1899        GrAssert(!(desc.fInConfigFlags & StageDesc::kSmearAlpha_InConfigFlag));
1900        swizzle = ".bgra";
1901    } else if (desc.fInConfigFlags & StageDesc::kSmearAlpha_InConfigFlag) {
1902        GrAssert(!(desc.fInConfigFlags & kMulByAlphaMask));
1903        swizzle = ".aaaa";
1904    }
1905
1906    GrStringBuilder modulate;
1907    if (NULL != fsInColor) {
1908        modulate.printf(" * %s", fsInColor);
1909    }
1910
1911    if (desc.fOptFlags &
1912        StageDesc::kCustomTextureDomain_OptFlagBit) {
1913        GrStringBuilder texDomainName;
1914        tex_domain_name(stageNum, &texDomainName);
1915        segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
1916            GrGLShaderVar::kUniform_TypeModifier, texDomainName);
1917        GrStringBuilder coordVar("clampCoord");
1918        segments->fFSCode.appendf("\t%s %s = clamp(%s, %s.xy, %s.zw);\n",
1919                                  float_vector_type_str(coordDims),
1920                                  coordVar.c_str(),
1921                                  sampleCoords.c_str(),
1922                                  texDomainName.c_str(),
1923                                  texDomainName.c_str());
1924        sampleCoords = coordVar;
1925        locations->fTexDomUni = kUseUniform;
1926    }
1927
1928    switch (desc.fFetchMode) {
1929    case StageDesc::k2x2_FetchMode:
1930        GrAssert(!(desc.fInConfigFlags & kMulByAlphaMask));
1931        gen2x2FS(stageNum, segments, locations, &sampleCoords,
1932            samplerName, texelSizeName, swizzle, fsOutColor,
1933            texFunc, modulate, complexCoord, coordDims);
1934        break;
1935    case StageDesc::kConvolution_FetchMode:
1936        GrAssert(!(desc.fInConfigFlags & kMulByAlphaMask));
1937        genConvolutionFS(stageNum, desc, segments,
1938            samplerName, kernel, swizzle, imageIncrementName, fsOutColor,
1939            sampleCoords, texFunc, modulate);
1940        break;
1941    case StageDesc::kDilate_FetchMode:
1942    case StageDesc::kErode_FetchMode:
1943        GrAssert(!(desc.fInConfigFlags & kMulByAlphaMask));
1944        genMorphologyFS(stageNum, desc, segments,
1945            samplerName, swizzle, imageIncrementName, fsOutColor,
1946            sampleCoords, texFunc, modulate);
1947        break;
1948    default:
1949        if (desc.fInConfigFlags & kMulByAlphaMask) {
1950            // only one of the mul by alpha flags should be set
1951            GrAssert(GrIsPow2(kMulByAlphaMask & desc.fInConfigFlags));
1952            GrAssert(!(desc.fInConfigFlags &
1953                       StageDesc::kSmearAlpha_InConfigFlag));
1954            segments->fFSCode.appendf("\t%s = %s(%s, %s)%s;\n",
1955                                      fsOutColor, texFunc.c_str(),
1956                                      samplerName, sampleCoords.c_str(),
1957                                      swizzle);
1958            if (desc.fInConfigFlags &
1959                StageDesc::kMulRGBByAlpha_RoundUp_InConfigFlag) {
1960                segments->fFSCode.appendf("\t%s = vec4(ceil(%s.rgb*%s.a*255.0)/255.0,%s.a)%s;\n",
1961                                          fsOutColor, fsOutColor, fsOutColor,
1962                                          fsOutColor, modulate.c_str());
1963            } else {
1964                segments->fFSCode.appendf("\t%s = vec4(floor(%s.rgb*%s.a*255.0)/255.0,%s.a)%s;\n",
1965                                          fsOutColor, fsOutColor, fsOutColor,
1966                                          fsOutColor, modulate.c_str());
1967            }
1968        } else {
1969            segments->fFSCode.appendf("\t%s = %s(%s, %s)%s%s;\n",
1970                                      fsOutColor, texFunc.c_str(),
1971                                      samplerName, sampleCoords.c_str(),
1972                                      swizzle, modulate.c_str());
1973        }
1974    }
1975}
1976
1977
1978