GrGLProgram.cpp revision d8b5faca043100d7a1e4594b4d10e462532af390
1/*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrGLProgram.h"
9
10#include "GrAllocator.h"
11#include "GrEffect.h"
12#include "GrGLEffect.h"
13#include "gl/GrGLShaderBuilder.h"
14#include "GrGLShaderVar.h"
15#include "GrBackendEffectFactory.h"
16#include "SkTrace.h"
17#include "SkXfermode.h"
18
19SK_DEFINE_INST_COUNT(GrGLProgram)
20
21#define GL_CALL(X) GR_GL_CALL(fContextInfo.interface(), X)
22#define GL_CALL_RET(R, X) GR_GL_CALL_RET(fContextInfo.interface(), R, X)
23
24#define PRINT_SHADERS 0
25
26typedef GrGLProgram::Desc::StageDesc StageDesc;
27
28#define COL_ATTR_NAME "aColor"
29#define COV_ATTR_NAME "aCoverage"
30#define EDGE_ATTR_NAME "aEdge"
31
32namespace {
33inline void tex_attr_name(int coordIdx, SkString* s) {
34    *s = "aTexCoord";
35    s->appendS32(coordIdx);
36}
37
38inline const char* float_vector_type_str(int count) {
39    return GrGLShaderVar::TypeString(GrSLFloatVectorType(count));
40}
41
42inline const char* vector_all_coords(int count) {
43    static const char* ALL[] = {"ERROR", "", ".xy", ".xyz", ".xyzw"};
44    GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ALL));
45    return ALL[count];
46}
47
48inline const char* declared_color_output_name() { return "fsColorOut"; }
49inline const char* dual_source_output_name() { return "dualSourceOut"; }
50
51}
52
53GrGLProgram* GrGLProgram::Create(const GrGLContextInfo& gl,
54                                 const Desc& desc,
55                                 const GrEffectStage* stages[]) {
56    GrGLProgram* program = SkNEW_ARGS(GrGLProgram, (gl, desc, stages));
57    if (!program->succeeded()) {
58        delete program;
59        program = NULL;
60    }
61    return program;
62}
63
64GrGLProgram::GrGLProgram(const GrGLContextInfo& gl,
65                         const Desc& desc,
66                         const GrEffectStage* stages[])
67: fContextInfo(gl)
68, fUniformManager(gl) {
69    fDesc = desc;
70    fVShaderID = 0;
71    fGShaderID = 0;
72    fFShaderID = 0;
73    fProgramID = 0;
74
75    fViewMatrix = GrMatrix::InvalidMatrix();
76    fViewportSize.set(-1, -1);
77    fColor = GrColor_ILLEGAL;
78    fColorFilterColor = GrColor_ILLEGAL;
79    fRTHeight = -1;
80
81    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
82        fEffects[s] = NULL;
83        fTextureMatrices[s] = GrMatrix::InvalidMatrix();
84        // this is arbitrary, just initialize to something
85        fTextureOrigin[s] = GrSurface::kBottomLeft_Origin;
86    }
87
88    this->genProgram(stages);
89}
90
91GrGLProgram::~GrGLProgram() {
92    if (fVShaderID) {
93        GL_CALL(DeleteShader(fVShaderID));
94    }
95    if (fGShaderID) {
96        GL_CALL(DeleteShader(fGShaderID));
97    }
98    if (fFShaderID) {
99        GL_CALL(DeleteShader(fFShaderID));
100    }
101    if (fProgramID) {
102        GL_CALL(DeleteProgram(fProgramID));
103    }
104
105    for (int i = 0; i < GrDrawState::kNumStages; ++i) {
106        delete fEffects[i];
107    }
108}
109
110void GrGLProgram::abandon() {
111    fVShaderID = 0;
112    fGShaderID = 0;
113    fFShaderID = 0;
114    fProgramID = 0;
115}
116
117void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff,
118                                GrBlendCoeff* dstCoeff) const {
119    switch (fDesc.fDualSrcOutput) {
120        case Desc::kNone_DualSrcOutput:
121            break;
122        // the prog will write a coverage value to the secondary
123        // output and the dst is blended by one minus that value.
124        case Desc::kCoverage_DualSrcOutput:
125        case Desc::kCoverageISA_DualSrcOutput:
126        case Desc::kCoverageISC_DualSrcOutput:
127        *dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
128        break;
129        default:
130            GrCrash("Unexpected dual source blend output");
131            break;
132    }
133}
134
135// given two blend coeffecients determine whether the src
136// and/or dst computation can be omitted.
137static inline void needBlendInputs(SkXfermode::Coeff srcCoeff,
138                                   SkXfermode::Coeff dstCoeff,
139                                   bool* needSrcValue,
140                                   bool* needDstValue) {
141    if (SkXfermode::kZero_Coeff == srcCoeff) {
142        switch (dstCoeff) {
143            // these all read the src
144            case SkXfermode::kSC_Coeff:
145            case SkXfermode::kISC_Coeff:
146            case SkXfermode::kSA_Coeff:
147            case SkXfermode::kISA_Coeff:
148                *needSrcValue = true;
149                break;
150            default:
151                *needSrcValue = false;
152                break;
153        }
154    } else {
155        *needSrcValue = true;
156    }
157    if (SkXfermode::kZero_Coeff == dstCoeff) {
158        switch (srcCoeff) {
159            // these all read the dst
160            case SkXfermode::kDC_Coeff:
161            case SkXfermode::kIDC_Coeff:
162            case SkXfermode::kDA_Coeff:
163            case SkXfermode::kIDA_Coeff:
164                *needDstValue = true;
165                break;
166            default:
167                *needDstValue = false;
168                break;
169        }
170    } else {
171        *needDstValue = true;
172    }
173}
174
175/**
176 * Create a blend_coeff * value string to be used in shader code. Sets empty
177 * string if result is trivially zero.
178 */
179static void blendTermString(SkString* str, SkXfermode::Coeff coeff,
180                             const char* src, const char* dst,
181                             const char* value) {
182    switch (coeff) {
183    case SkXfermode::kZero_Coeff:    /** 0 */
184        *str = "";
185        break;
186    case SkXfermode::kOne_Coeff:     /** 1 */
187        *str = value;
188        break;
189    case SkXfermode::kSC_Coeff:
190        str->printf("(%s * %s)", src, value);
191        break;
192    case SkXfermode::kISC_Coeff:
193        str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), src, value);
194        break;
195    case SkXfermode::kDC_Coeff:
196        str->printf("(%s * %s)", dst, value);
197        break;
198    case SkXfermode::kIDC_Coeff:
199        str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), dst, value);
200        break;
201    case SkXfermode::kSA_Coeff:      /** src alpha */
202        str->printf("(%s.a * %s)", src, value);
203        break;
204    case SkXfermode::kISA_Coeff:     /** inverse src alpha (i.e. 1 - sa) */
205        str->printf("((1.0 - %s.a) * %s)", src, value);
206        break;
207    case SkXfermode::kDA_Coeff:      /** dst alpha */
208        str->printf("(%s.a * %s)", dst, value);
209        break;
210    case SkXfermode::kIDA_Coeff:     /** inverse dst alpha (i.e. 1 - da) */
211        str->printf("((1.0 - %s.a) * %s)", dst, value);
212        break;
213    default:
214        GrCrash("Unexpected xfer coeff.");
215        break;
216    }
217}
218/**
219 * Adds a line to the fragment shader code which modifies the color by
220 * the specified color filter.
221 */
222static void addColorFilter(SkString* fsCode, const char * outputVar,
223                           SkXfermode::Coeff uniformCoeff,
224                           SkXfermode::Coeff colorCoeff,
225                           const char* filterColor,
226                           const char* inColor) {
227    SkString colorStr, constStr;
228    blendTermString(&colorStr, colorCoeff, filterColor, inColor, inColor);
229    blendTermString(&constStr, uniformCoeff, filterColor, inColor, filterColor);
230
231    fsCode->appendf("\t%s = ", outputVar);
232    GrGLSLAdd4f(fsCode, colorStr.c_str(), constStr.c_str());
233    fsCode->append(";\n");
234}
235
236bool GrGLProgram::genEdgeCoverage(SkString* coverageVar,
237                                  GrGLShaderBuilder* builder) const {
238    if (fDesc.fVertexLayout & GrDrawTarget::kEdge_VertexLayoutBit) {
239        const char *vsName, *fsName;
240        builder->addVarying(kVec4f_GrSLType, "Edge", &vsName, &fsName);
241        builder->fVSAttrs.push_back().set(kVec4f_GrSLType,
242                                          GrGLShaderVar::kAttribute_TypeModifier,
243                                          EDGE_ATTR_NAME);
244        builder->fVSCode.appendf("\t%s = " EDGE_ATTR_NAME ";\n", vsName);
245        switch (fDesc.fVertexEdgeType) {
246        case GrDrawState::kHairLine_EdgeType:
247            builder->fFSCode.appendf("\tfloat edgeAlpha = abs(dot(vec3(%s.xy,1), %s.xyz));\n", builder->fragmentPosition(), fsName);
248            builder->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
249            break;
250        case GrDrawState::kQuad_EdgeType:
251            builder->fFSCode.append("\tfloat edgeAlpha;\n");
252            // keep the derivative instructions outside the conditional
253            builder->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
254            builder->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
255            builder->fFSCode.appendf("\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName);
256            // today we know z and w are in device space. We could use derivatives
257            builder->fFSCode.appendf("\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, fsName);
258            builder->fFSCode.append ("\t} else {\n");
259            builder->fFSCode.appendf("\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
260                                     "\t\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
261                                     fsName, fsName);
262            builder->fFSCode.appendf("\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
263            builder->fFSCode.append("\t\tedgeAlpha = clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n"
264                                    "\t}\n");
265            if (kES2_GrGLBinding == fContextInfo.binding()) {
266                builder->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
267            }
268            break;
269        case GrDrawState::kHairQuad_EdgeType:
270            builder->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
271            builder->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
272            builder->fFSCode.appendf("\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
273                                     "\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
274                                     fsName, fsName);
275            builder->fFSCode.appendf("\tfloat edgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
276            builder->fFSCode.append("\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / dot(gF, gF));\n");
277            builder->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
278            if (kES2_GrGLBinding == fContextInfo.binding()) {
279                builder->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
280            }
281            break;
282        case GrDrawState::kCircle_EdgeType:
283            builder->fFSCode.append("\tfloat edgeAlpha;\n");
284            builder->fFSCode.appendf("\tfloat d = distance(%s.xy, %s.xy);\n", builder->fragmentPosition(), fsName);
285            builder->fFSCode.appendf("\tfloat outerAlpha = smoothstep(d - 0.5, d + 0.5, %s.z);\n", fsName);
286            builder->fFSCode.appendf("\tfloat innerAlpha = %s.w == 0.0 ? 1.0 : smoothstep(%s.w - 0.5, %s.w + 0.5, d);\n", fsName, fsName, fsName);
287            builder->fFSCode.append("\tedgeAlpha = outerAlpha * innerAlpha;\n");
288            break;
289        default:
290            GrCrash("Unknown Edge Type!");
291            break;
292        }
293        *coverageVar = "edgeAlpha";
294        return true;
295    } else {
296        coverageVar->reset();
297        return false;
298    }
299}
300
301void GrGLProgram::genInputColor(GrGLShaderBuilder* builder, SkString* inColor) {
302    switch (fDesc.fColorInput) {
303        case GrGLProgram::Desc::kAttribute_ColorInput: {
304            builder->fVSAttrs.push_back().set(kVec4f_GrSLType,
305                GrGLShaderVar::kAttribute_TypeModifier,
306                COL_ATTR_NAME);
307            const char *vsName, *fsName;
308            builder->addVarying(kVec4f_GrSLType, "Color", &vsName, &fsName);
309            builder->fVSCode.appendf("\t%s = " COL_ATTR_NAME ";\n", vsName);
310            *inColor = fsName;
311            } break;
312        case GrGLProgram::Desc::kUniform_ColorInput: {
313            const char* name;
314            fUniforms.fColorUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
315                                                      kVec4f_GrSLType, "Color", &name);
316            *inColor = name;
317            break;
318        }
319        case GrGLProgram::Desc::kTransBlack_ColorInput:
320            GrAssert(!"needComputedColor should be false.");
321            break;
322        case GrGLProgram::Desc::kSolidWhite_ColorInput:
323            break;
324        default:
325            GrCrash("Unknown color type.");
326            break;
327    }
328}
329
330void GrGLProgram::genUniformCoverage(GrGLShaderBuilder* builder, SkString* inOutCoverage) {
331    const char* covUniName;
332    fUniforms.fCoverageUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
333                                                 kVec4f_GrSLType, "Coverage", &covUniName);
334    if (inOutCoverage->size()) {
335        builder->fFSCode.appendf("\tvec4 uniCoverage = %s * %s;\n",
336                                  covUniName, inOutCoverage->c_str());
337        *inOutCoverage = "uniCoverage";
338    } else {
339        *inOutCoverage = covUniName;
340    }
341}
342
343namespace {
344void gen_attribute_coverage(GrGLShaderBuilder* segments,
345                            SkString* inOutCoverage) {
346    segments->fVSAttrs.push_back().set(kVec4f_GrSLType,
347                                       GrGLShaderVar::kAttribute_TypeModifier,
348                                       COV_ATTR_NAME);
349    const char *vsName, *fsName;
350    segments->addVarying(kVec4f_GrSLType, "Coverage", &vsName, &fsName);
351    segments->fVSCode.appendf("\t%s = " COV_ATTR_NAME ";\n", vsName);
352    if (inOutCoverage->size()) {
353        segments->fFSCode.appendf("\tvec4 attrCoverage = %s * %s;\n",
354                                  fsName, inOutCoverage->c_str());
355        *inOutCoverage = "attrCoverage";
356    } else {
357        *inOutCoverage = fsName;
358    }
359}
360}
361
362void GrGLProgram::genGeometryShader(GrGLShaderBuilder* segments) const {
363#if GR_GL_EXPERIMENTAL_GS
364    if (fDesc.fExperimentalGS) {
365        GrAssert(fContextInfo.glslGeneration() >= k150_GrGLSLGeneration);
366        segments->fGSHeader.append("layout(triangles) in;\n"
367                                   "layout(triangle_strip, max_vertices = 6) out;\n");
368        segments->fGSCode.append("\tfor (int i = 0; i < 3; ++i) {\n"
369                                 "\t\tgl_Position = gl_in[i].gl_Position;\n");
370        if (fDesc.fEmitsPointSize) {
371            segments->fGSCode.append("\t\tgl_PointSize = 1.0;\n");
372        }
373        GrAssert(segments->fGSInputs.count() == segments->fGSOutputs.count());
374        int count = segments->fGSInputs.count();
375        for (int i = 0; i < count; ++i) {
376            segments->fGSCode.appendf("\t\t%s = %s[i];\n",
377                                      segments->fGSOutputs[i].getName().c_str(),
378                                      segments->fGSInputs[i].getName().c_str());
379        }
380        segments->fGSCode.append("\t\tEmitVertex();\n"
381                                 "\t}\n"
382                                 "\tEndPrimitive();\n");
383    }
384#endif
385}
386
387const char* GrGLProgram::adjustInColor(const SkString& inColor) const {
388    if (inColor.size()) {
389          return inColor.c_str();
390    } else {
391        if (Desc::kSolidWhite_ColorInput == fDesc.fColorInput) {
392            return GrGLSLOnesVecf(4);
393        } else {
394            return GrGLSLZerosVecf(4);
395        }
396    }
397}
398
399namespace {
400// prints a shader using params similar to glShaderSource
401void print_shader(GrGLint stringCnt,
402                  const GrGLchar** strings,
403                  GrGLint* stringLengths) {
404    for (int i = 0; i < stringCnt; ++i) {
405        if (NULL == stringLengths || stringLengths[i] < 0) {
406            GrPrintf(strings[i]);
407        } else {
408            GrPrintf("%.*s", stringLengths[i], strings[i]);
409        }
410    }
411}
412
413// Compiles a GL shader, returns shader ID or 0 if failed params have same meaning as glShaderSource
414GrGLuint compile_shader(const GrGLContextInfo& gl,
415                        GrGLenum type,
416                        int stringCnt,
417                        const char** strings,
418                        int* stringLengths) {
419    SK_TRACE_EVENT1("GrGLProgram::CompileShader",
420                    "stringCount", SkStringPrintf("%i", stringCnt).c_str());
421
422    GrGLuint shader;
423    GR_GL_CALL_RET(gl.interface(), shader, CreateShader(type));
424    if (0 == shader) {
425        return 0;
426    }
427
428    const GrGLInterface* gli = gl.interface();
429    GrGLint compiled = GR_GL_INIT_ZERO;
430    GR_GL_CALL(gli, ShaderSource(shader, stringCnt, strings, stringLengths));
431    GR_GL_CALL(gli, CompileShader(shader));
432    GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled));
433
434    if (!compiled) {
435        GrGLint infoLen = GR_GL_INIT_ZERO;
436        GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen));
437        SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
438        if (infoLen > 0) {
439            // retrieve length even though we don't need it to workaround bug in chrome cmd buffer
440            // param validation.
441            GrGLsizei length = GR_GL_INIT_ZERO;
442            GR_GL_CALL(gli, GetShaderInfoLog(shader, infoLen+1,
443                                             &length, (char*)log.get()));
444            print_shader(stringCnt, strings, stringLengths);
445            GrPrintf("\n%s", log.get());
446        }
447        GrAssert(!"Shader compilation failed!");
448        GR_GL_CALL(gli, DeleteShader(shader));
449        return 0;
450    }
451    return shader;
452}
453
454// helper version of above for when shader is already flattened into a single SkString
455GrGLuint compile_shader(const GrGLContextInfo& gl, GrGLenum type, const SkString& shader) {
456    const GrGLchar* str = shader.c_str();
457    int length = shader.size();
458    return compile_shader(gl, type, 1, &str, &length);
459}
460
461}
462
463// compiles all the shaders from builder and stores the shader IDs
464bool GrGLProgram::compileShaders(const GrGLShaderBuilder& builder) {
465
466    SkString shader;
467
468    builder.getShader(GrGLShaderBuilder::kVertex_ShaderType, &shader);
469#if PRINT_SHADERS
470    GrPrintf(shader.c_str());
471    GrPrintf("\n");
472#endif
473    if (!(fVShaderID = compile_shader(fContextInfo, GR_GL_VERTEX_SHADER, shader))) {
474        return false;
475    }
476
477    if (builder.fUsesGS) {
478        builder.getShader(GrGLShaderBuilder::kGeometry_ShaderType, &shader);
479#if PRINT_SHADERS
480        GrPrintf(shader.c_str());
481        GrPrintf("\n");
482#endif
483        if (!(fGShaderID = compile_shader(fContextInfo, GR_GL_GEOMETRY_SHADER, shader))) {
484            return false;
485        }
486    } else {
487        fGShaderID = 0;
488    }
489
490    builder.getShader(GrGLShaderBuilder::kFragment_ShaderType, &shader);
491#if PRINT_SHADERS
492    GrPrintf(shader.c_str());
493    GrPrintf("\n");
494#endif
495    if (!(fFShaderID = compile_shader(fContextInfo, GR_GL_FRAGMENT_SHADER, shader))) {
496        return false;
497    }
498
499    return true;
500}
501
502bool GrGLProgram::genProgram(const GrEffectStage* stages[]) {
503    GrAssert(0 == fProgramID);
504
505    GrGLShaderBuilder builder(fContextInfo, fUniformManager);
506    const uint32_t& layout = fDesc.fVertexLayout;
507
508#if GR_GL_EXPERIMENTAL_GS
509    builder.fUsesGS = fDesc.fExperimentalGS;
510#endif
511
512    SkXfermode::Coeff colorCoeff, uniformCoeff;
513    // The rest of transfer mode color filters have not been implemented
514    if (fDesc.fColorFilterXfermode < SkXfermode::kCoeffModesCnt) {
515        GR_DEBUGCODE(bool success =)
516            SkXfermode::ModeAsCoeff(static_cast<SkXfermode::Mode>
517                                    (fDesc.fColorFilterXfermode),
518                                    &uniformCoeff, &colorCoeff);
519        GR_DEBUGASSERT(success);
520    } else {
521        colorCoeff = SkXfermode::kOne_Coeff;
522        uniformCoeff = SkXfermode::kZero_Coeff;
523    }
524
525    // no need to do the color filter if coverage is 0. The output color is scaled by the coverage.
526    // All the dual source outputs are scaled by the coverage as well.
527    if (Desc::kTransBlack_ColorInput == fDesc.fCoverageInput) {
528        colorCoeff = SkXfermode::kZero_Coeff;
529        uniformCoeff = SkXfermode::kZero_Coeff;
530    }
531
532    // If we know the final color is going to be all zeros then we can
533    // simplify the color filter coefficients. needComputedColor will then
534    // come out false below.
535    if (Desc::kTransBlack_ColorInput == fDesc.fColorInput) {
536        colorCoeff = SkXfermode::kZero_Coeff;
537        if (SkXfermode::kDC_Coeff == uniformCoeff ||
538            SkXfermode::kDA_Coeff == uniformCoeff) {
539            uniformCoeff = SkXfermode::kZero_Coeff;
540        } else if (SkXfermode::kIDC_Coeff == uniformCoeff ||
541                   SkXfermode::kIDA_Coeff == uniformCoeff) {
542            uniformCoeff = SkXfermode::kOne_Coeff;
543        }
544    }
545
546    bool needColorFilterUniform;
547    bool needComputedColor;
548    needBlendInputs(uniformCoeff, colorCoeff,
549                    &needColorFilterUniform, &needComputedColor);
550
551    // the dual source output has no canonical var name, have to
552    // declare an output, which is incompatible with gl_FragColor/gl_FragData.
553    bool dualSourceOutputWritten = false;
554    builder.fHeader.append(GrGetGLSLVersionDecl(fContextInfo.binding(),
555                                                fContextInfo.glslGeneration()));
556
557    GrGLShaderVar colorOutput;
558    bool isColorDeclared = GrGLSLSetupFSColorOuput(fContextInfo.glslGeneration(),
559                                                   declared_color_output_name(),
560                                                   &colorOutput);
561    if (isColorDeclared) {
562        builder.fFSOutputs.push_back(colorOutput);
563    }
564
565    const char* viewMName;
566    fUniforms.fViewMatrixUni = builder.addUniform(GrGLShaderBuilder::kVertex_ShaderType,
567                                                  kMat33f_GrSLType, "ViewM", &viewMName);
568
569
570    builder.fVSCode.appendf("\tvec3 pos3 = %s * vec3(%s, 1);\n"
571                            "\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n",
572                            viewMName, builder.positionAttribute().getName().c_str());
573
574    // incoming color to current stage being processed.
575    SkString inColor;
576
577    if (needComputedColor) {
578        this->genInputColor(&builder, &inColor);
579    }
580
581    // we output point size in the GS if present
582    if (fDesc.fEmitsPointSize && !builder.fUsesGS){
583        builder.fVSCode.append("\tgl_PointSize = 1.0;\n");
584    }
585
586    // add texture coordinates that are used to the list of vertex attr decls
587    SkString texCoordAttrs[GrDrawState::kMaxTexCoords];
588    for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
589        if (GrDrawTarget::VertexUsesTexCoordIdx(t, layout)) {
590            tex_attr_name(t, texCoordAttrs + t);
591            builder.fVSAttrs.push_back().set(kVec2f_GrSLType,
592                GrGLShaderVar::kAttribute_TypeModifier,
593                texCoordAttrs[t].c_str());
594        }
595    }
596
597    ///////////////////////////////////////////////////////////////////////////
598    // compute the final color
599
600    // if we have color stages string them together, feeding the output color
601    // of each to the next and generating code for each stage.
602    if (needComputedColor) {
603        SkString outColor;
604        for (int s = 0; s < fDesc.fFirstCoverageStage; ++s) {
605            if (fDesc.fStages[s].isEnabled()) {
606                // create var to hold stage result
607                outColor = "color";
608                outColor.appendS32(s);
609                builder.fFSCode.appendf("\tvec4 %s;\n", outColor.c_str());
610
611                const char* inCoords;
612                // figure out what our input coords are
613                int tcIdx = GrDrawTarget::VertexTexCoordsForStage(s, layout);
614                if (tcIdx < 0) {
615                    inCoords = builder.positionAttribute().c_str();
616                } else {
617                    // must have input tex coordinates if stage is enabled.
618                    GrAssert(texCoordAttrs[tcIdx].size());
619                    inCoords = texCoordAttrs[tcIdx].c_str();
620                }
621
622                builder.setCurrentStage(s);
623                fEffects[s] = GenStageCode(*stages[s],
624                                           fDesc.fStages[s],
625                                           &fUniforms.fStages[s],
626                                           inColor.size() ? inColor.c_str() : NULL,
627                                           outColor.c_str(),
628                                           inCoords,
629                                           &builder);
630                builder.setNonStage();
631                inColor = outColor;
632            }
633        }
634    }
635
636    // if have all ones or zeros for the "dst" input to the color filter then we
637    // may be able to make additional optimizations.
638    if (needColorFilterUniform && needComputedColor && !inColor.size()) {
639        GrAssert(Desc::kSolidWhite_ColorInput == fDesc.fColorInput);
640        bool uniformCoeffIsZero = SkXfermode::kIDC_Coeff == uniformCoeff ||
641                                  SkXfermode::kIDA_Coeff == uniformCoeff;
642        if (uniformCoeffIsZero) {
643            uniformCoeff = SkXfermode::kZero_Coeff;
644            bool bogus;
645            needBlendInputs(SkXfermode::kZero_Coeff, colorCoeff,
646                            &needColorFilterUniform, &bogus);
647        }
648    }
649    const char* colorFilterColorUniName = NULL;
650    if (needColorFilterUniform) {
651        fUniforms.fColorFilterUni = builder.addUniform(GrGLShaderBuilder::kFragment_ShaderType,
652                                                       kVec4f_GrSLType, "FilterColor",
653                                                       &colorFilterColorUniName);
654    }
655    bool wroteFragColorZero = false;
656    if (SkXfermode::kZero_Coeff == uniformCoeff &&
657        SkXfermode::kZero_Coeff == colorCoeff) {
658        builder.fFSCode.appendf("\t%s = %s;\n",
659                                colorOutput.getName().c_str(),
660                                GrGLSLZerosVecf(4));
661        wroteFragColorZero = true;
662    } else if (SkXfermode::kDst_Mode != fDesc.fColorFilterXfermode) {
663        builder.fFSCode.append("\tvec4 filteredColor;\n");
664        const char* color = adjustInColor(inColor);
665        addColorFilter(&builder.fFSCode, "filteredColor", uniformCoeff,
666                       colorCoeff, colorFilterColorUniName, color);
667        inColor = "filteredColor";
668    }
669
670    ///////////////////////////////////////////////////////////////////////////
671    // compute the partial coverage (coverage stages and edge aa)
672
673    SkString inCoverage;
674    bool coverageIsZero = Desc::kTransBlack_ColorInput == fDesc.fCoverageInput;
675    // we don't need to compute coverage at all if we know the final shader
676    // output will be zero and we don't have a dual src blend output.
677    if (!wroteFragColorZero || Desc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) {
678
679        if (!coverageIsZero) {
680            bool inCoverageIsScalar  = this->genEdgeCoverage(&inCoverage, &builder);
681
682            switch (fDesc.fCoverageInput) {
683                case Desc::kSolidWhite_ColorInput:
684                    // empty string implies solid white
685                    break;
686                case Desc::kAttribute_ColorInput:
687                    gen_attribute_coverage(&builder, &inCoverage);
688                    inCoverageIsScalar = false;
689                    break;
690                case Desc::kUniform_ColorInput:
691                    this->genUniformCoverage(&builder, &inCoverage);
692                    inCoverageIsScalar = false;
693                    break;
694                default:
695                    GrCrash("Unexpected input coverage.");
696            }
697
698            SkString outCoverage;
699            const int& startStage = fDesc.fFirstCoverageStage;
700            for (int s = startStage; s < GrDrawState::kNumStages; ++s) {
701                if (fDesc.fStages[s].isEnabled()) {
702                    // create var to hold stage output
703                    outCoverage = "coverage";
704                    outCoverage.appendS32(s);
705                    builder.fFSCode.appendf("\tvec4 %s;\n", outCoverage.c_str());
706
707                    const char* inCoords;
708                    // figure out what our input coords are
709                    int tcIdx =
710                        GrDrawTarget::VertexTexCoordsForStage(s, layout);
711                    if (tcIdx < 0) {
712                        inCoords = builder.positionAttribute().c_str();
713                    } else {
714                        // must have input tex coordinates if stage is
715                        // enabled.
716                        GrAssert(texCoordAttrs[tcIdx].size());
717                        inCoords = texCoordAttrs[tcIdx].c_str();
718                    }
719
720                    // stages don't know how to deal with a scalar input. (Maybe they should. We
721                    // could pass a GrGLShaderVar)
722                    if (inCoverageIsScalar) {
723                        builder.fFSCode.appendf("\tvec4 %s4 = vec4(%s);\n",
724                                                inCoverage.c_str(), inCoverage.c_str());
725                        inCoverage.append("4");
726                    }
727                    builder.setCurrentStage(s);
728                    fEffects[s] = GenStageCode(*stages[s],
729                                               fDesc.fStages[s],
730                                               &fUniforms.fStages[s],
731                                               inCoverage.size() ? inCoverage.c_str() : NULL,
732                                               outCoverage.c_str(),
733                                               inCoords,
734                                               &builder);
735                    builder.setNonStage();
736                    inCoverage = outCoverage;
737                }
738            }
739        }
740
741        if (Desc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) {
742            builder.fFSOutputs.push_back().set(kVec4f_GrSLType,
743                                               GrGLShaderVar::kOut_TypeModifier,
744                                               dual_source_output_name());
745            bool outputIsZero = coverageIsZero;
746            SkString coeff;
747            if (!outputIsZero &&
748                Desc::kCoverage_DualSrcOutput != fDesc.fDualSrcOutput && !wroteFragColorZero) {
749                if (!inColor.size()) {
750                    outputIsZero = true;
751                } else {
752                    if (Desc::kCoverageISA_DualSrcOutput == fDesc.fDualSrcOutput) {
753                        coeff.printf("(1 - %s.a)", inColor.c_str());
754                    } else {
755                        coeff.printf("(vec4(1,1,1,1) - %s)", inColor.c_str());
756                    }
757                }
758            }
759            if (outputIsZero) {
760                builder.fFSCode.appendf("\t%s = %s;\n",
761                                        dual_source_output_name(),
762                                        GrGLSLZerosVecf(4));
763            } else {
764                builder.fFSCode.appendf("\t%s =", dual_source_output_name());
765                GrGLSLModulate4f(&builder.fFSCode, coeff.c_str(), inCoverage.c_str());
766                builder.fFSCode.append(";\n");
767            }
768            dualSourceOutputWritten = true;
769        }
770    }
771
772    ///////////////////////////////////////////////////////////////////////////
773    // combine color and coverage as frag color
774
775    if (!wroteFragColorZero) {
776        if (coverageIsZero) {
777            builder.fFSCode.appendf("\t%s = %s;\n",
778                                    colorOutput.getName().c_str(),
779                                    GrGLSLZerosVecf(4));
780        } else {
781            builder.fFSCode.appendf("\t%s = ", colorOutput.getName().c_str());
782            GrGLSLModulate4f(&builder.fFSCode, inColor.c_str(), inCoverage.c_str());
783            builder.fFSCode.append(";\n");
784        }
785    }
786
787    ///////////////////////////////////////////////////////////////////////////
788    // insert GS
789#if GR_DEBUG
790    this->genGeometryShader(&builder);
791#endif
792
793    ///////////////////////////////////////////////////////////////////////////
794    // compile and setup attribs and unis
795
796    if (!this->compileShaders(builder)) {
797        return false;
798    }
799
800    if (!this->bindOutputsAttribsAndLinkProgram(builder,
801                                                texCoordAttrs,
802                                                isColorDeclared,
803                                                dualSourceOutputWritten)) {
804        return false;
805    }
806
807    builder.finished(fProgramID);
808    this->initSamplerUniforms();
809    fUniforms.fRTHeight = builder.getRTHeightUniform();
810
811    return true;
812}
813
814bool GrGLProgram::bindOutputsAttribsAndLinkProgram(const GrGLShaderBuilder& builder,
815                                                   SkString texCoordAttrNames[],
816                                                   bool bindColorOut,
817                                                   bool bindDualSrcOut) {
818    GL_CALL_RET(fProgramID, CreateProgram());
819    if (!fProgramID) {
820        return false;
821    }
822
823    GL_CALL(AttachShader(fProgramID, fVShaderID));
824    if (fGShaderID) {
825        GL_CALL(AttachShader(fProgramID, fGShaderID));
826    }
827    GL_CALL(AttachShader(fProgramID, fFShaderID));
828
829    if (bindColorOut) {
830        GL_CALL(BindFragDataLocation(fProgramID, 0, declared_color_output_name()));
831    }
832    if (bindDualSrcOut) {
833        GL_CALL(BindFragDataLocationIndexed(fProgramID, 0, 1, dual_source_output_name()));
834    }
835
836    // Bind the attrib locations to same values for all shaders
837    GL_CALL(BindAttribLocation(fProgramID,
838                               PositionAttributeIdx(),
839                               builder.positionAttribute().c_str()));
840    for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
841        if (texCoordAttrNames[t].size()) {
842            GL_CALL(BindAttribLocation(fProgramID,
843                                       TexCoordAttributeIdx(t),
844                                       texCoordAttrNames[t].c_str()));
845        }
846    }
847
848    GL_CALL(BindAttribLocation(fProgramID, ColorAttributeIdx(), COL_ATTR_NAME));
849    GL_CALL(BindAttribLocation(fProgramID, CoverageAttributeIdx(), COV_ATTR_NAME));
850    GL_CALL(BindAttribLocation(fProgramID, EdgeAttributeIdx(), EDGE_ATTR_NAME));
851
852    GL_CALL(LinkProgram(fProgramID));
853
854    GrGLint linked = GR_GL_INIT_ZERO;
855    GL_CALL(GetProgramiv(fProgramID, GR_GL_LINK_STATUS, &linked));
856    if (!linked) {
857        GrGLint infoLen = GR_GL_INIT_ZERO;
858        GL_CALL(GetProgramiv(fProgramID, GR_GL_INFO_LOG_LENGTH, &infoLen));
859        SkAutoMalloc log(sizeof(char)*(infoLen+1));  // outside if for debugger
860        if (infoLen > 0) {
861            // retrieve length even though we don't need it to workaround
862            // bug in chrome cmd buffer param validation.
863            GrGLsizei length = GR_GL_INIT_ZERO;
864            GL_CALL(GetProgramInfoLog(fProgramID,
865                                      infoLen+1,
866                                      &length,
867                                      (char*)log.get()));
868            GrPrintf((char*)log.get());
869        }
870        GrAssert(!"Error linking program");
871        GL_CALL(DeleteProgram(fProgramID));
872        fProgramID = 0;
873        return false;
874    }
875    return true;
876}
877
878void GrGLProgram::initSamplerUniforms() {
879    GL_CALL(UseProgram(fProgramID));
880    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
881        int count = fUniforms.fStages[s].fSamplerUniforms.count();
882        // FIXME: We're still always reserving one texture per stage. After GrTextureParams are
883        // expressed by the effect rather than the GrEffectStage we can move texture binding
884        // into GrGLProgram and it should be easier to fix this.
885        GrAssert(count <= 1);
886        for (int t = 0; t < count; ++t) {
887            UniformHandle uh = fUniforms.fStages[s].fSamplerUniforms[t];
888            if (GrGLUniformManager::kInvalidUniformHandle != uh) {
889                fUniformManager.setSampler(uh, s);
890            }
891        }
892    }
893}
894
895///////////////////////////////////////////////////////////////////////////////
896// Stage code generation
897
898// TODO: Move this function to GrGLShaderBuilder
899GrGLEffect* GrGLProgram::GenStageCode(const GrEffectStage& stage,
900                                      const StageDesc& desc,
901                                      StageUniforms* uniforms,
902                                      const char* fsInColor, // NULL means no incoming color
903                                      const char* fsOutColor,
904                                      const char* vsInCoord,
905                                      GrGLShaderBuilder* builder) {
906
907    const GrEffect* effect = stage.getEffect();
908    GrGLEffect* glEffect = effect->getFactory().createGLInstance(*effect);
909
910    /// Vertex Shader Stuff
911
912    const char* vertexCoords;
913
914    // Has the effect not yet been updated to insert its own texture matrix if necessary.
915    if (glEffect->requiresTextureMatrix()) {
916        // Decide whether we need a matrix to transform texture coords and whether the varying needs
917        // a perspective coord.
918        const char* matName = NULL;
919        GrSLType texCoordVaryingType;
920        if (desc.fOptFlags & StageDesc::kIdentityMatrix_OptFlagBit) {
921            texCoordVaryingType = kVec2f_GrSLType;
922        } else {
923            uniforms->fTextureMatrixUni = builder->addUniform(GrGLShaderBuilder::kVertex_ShaderType,
924                                                              kMat33f_GrSLType, "TexM", &matName);
925            builder->getUniformVariable(uniforms->fTextureMatrixUni);
926
927            if (desc.fOptFlags & StageDesc::kNoPerspective_OptFlagBit) {
928                texCoordVaryingType = kVec2f_GrSLType;
929            } else {
930                texCoordVaryingType = kVec3f_GrSLType;
931            }
932        }
933        const char *varyingVSName, *varyingFSName;
934        builder->addVarying(texCoordVaryingType,
935                            "Stage",
936                            &varyingVSName,
937                            &varyingFSName);
938        builder->setupTextureAccess(varyingFSName, texCoordVaryingType);
939
940        if (!matName) {
941            GrAssert(kVec2f_GrSLType == texCoordVaryingType);
942            builder->fVSCode.appendf("\t%s = %s;\n", varyingVSName, vsInCoord);
943        } else {
944            // varying = texMatrix * texCoord
945            builder->fVSCode.appendf("\t%s = (%s * vec3(%s, 1))%s;\n",
946                                     varyingVSName, matName, vsInCoord,
947                                     vector_all_coords(GrSLTypeToVecLength(texCoordVaryingType)));
948        }
949        vertexCoords = varyingVSName;
950    } else {
951        vertexCoords = vsInCoord;
952    }
953
954    // setup texture samplers for gl effect
955    int numTextures = effect->numTextures();
956    SkSTArray<8, GrGLShaderBuilder::TextureSampler> textureSamplers;
957    textureSamplers.push_back_n(numTextures);
958    for (int i = 0; i < numTextures; ++i) {
959        textureSamplers[i].init(builder, &effect->textureAccess(i));
960        uniforms->fSamplerUniforms.push_back(textureSamplers[i].fSamplerUniform);
961    }
962
963    // Enclose custom code in a block to avoid namespace conflicts
964    builder->fVSCode.appendf("\t{ // %s\n", glEffect->name());
965    builder->fFSCode.appendf("\t{ // %s \n", glEffect->name());
966    glEffect->emitCode(builder,
967                       stage,
968                       desc.fEffectKey,
969                       vertexCoords,
970                       fsOutColor,
971                       fsInColor,
972                       textureSamplers);
973    builder->fVSCode.appendf("\t}\n");
974    builder->fFSCode.appendf("\t}\n");
975
976    return glEffect;
977}
978
979void GrGLProgram::setData(const GrDrawState& drawState) {
980    int rtHeight = drawState.getRenderTarget()->height();
981    if (GrGLUniformManager::kInvalidUniformHandle != fUniforms.fRTHeight && fRTHeight != rtHeight) {
982        fUniformManager.set1f(fUniforms.fRTHeight, GrIntToScalar(rtHeight));
983        fRTHeight = rtHeight;
984    }
985    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
986        if (NULL != fEffects[s]) {
987            const GrEffectStage& stage = drawState.getStage(s);
988            GrAssert(NULL != stage.getEffect());
989            fEffects[s]->setData(fUniformManager, stage);
990        }
991    }
992}
993