GrGLProgram.cpp revision dbbf843dfe2a62ad341ebe4f946667204c64231d
1/*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrGLProgram.h"
9
10#include "GrAllocator.h"
11#include "GrCustomStage.h"
12#include "GrGLProgramStage.h"
13#include "gl/GrGLShaderBuilder.h"
14#include "GrGLShaderVar.h"
15#include "GrProgramStageFactory.h"
16#include "SkTrace.h"
17#include "SkXfermode.h"
18
19SK_DEFINE_INST_COUNT(GrGLProgram)
20
21#define GL_CALL(X) GR_GL_CALL(fContextInfo.interface(), X)
22#define GL_CALL_RET(R, X) GR_GL_CALL_RET(fContextInfo.interface(), R, X)
23
24#define PRINT_SHADERS 0
25
26typedef GrGLProgram::Desc::StageDesc StageDesc;
27
28#define POS_ATTR_NAME "aPosition"
29#define COL_ATTR_NAME "aColor"
30#define COV_ATTR_NAME "aCoverage"
31#define EDGE_ATTR_NAME "aEdge"
32
33namespace {
34inline void tex_attr_name(int coordIdx, SkString* s) {
35    *s = "aTexCoord";
36    s->appendS32(coordIdx);
37}
38
39inline const char* float_vector_type_str(int count) {
40    return GrGLShaderVar::TypeString(GrSLFloatVectorType(count));
41}
42
43inline const char* vector_all_coords(int count) {
44    static const char* ALL[] = {"ERROR", "", ".xy", ".xyz", ".xyzw"};
45    GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ALL));
46    return ALL[count];
47}
48
49inline const char* declared_color_output_name() { return "fsColorOut"; }
50inline const char* dual_source_output_name() { return "dualSourceOut"; }
51
52}
53
54GrGLProgram* GrGLProgram::Create(const GrGLContextInfo& gl,
55                                 const Desc& desc,
56                                 const GrCustomStage** customStages) {
57    GrGLProgram* program = SkNEW_ARGS(GrGLProgram, (gl, desc, customStages));
58    if (!program->succeeded()) {
59        delete program;
60        program = NULL;
61    }
62    return program;
63}
64
65GrGLProgram::GrGLProgram(const GrGLContextInfo& gl,
66                         const Desc& desc,
67                         const GrCustomStage** customStages)
68: fContextInfo(gl)
69, fUniformManager(gl) {
70    fDesc = desc;
71    fVShaderID = 0;
72    fGShaderID = 0;
73    fFShaderID = 0;
74    fProgramID = 0;
75
76    fViewMatrix = GrMatrix::InvalidMatrix();
77    fViewportSize.set(-1, -1);
78    fColor = GrColor_ILLEGAL;
79    fColorFilterColor = GrColor_ILLEGAL;
80
81    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
82        fProgramStage[s] = NULL;
83        fTextureMatrices[s] = GrMatrix::InvalidMatrix();
84        // this is arbitrary, just initialize to something
85        fTextureOrientation[s] = GrGLTexture::kBottomUp_Orientation;
86    }
87
88    this->genProgram(customStages);
89}
90
91GrGLProgram::~GrGLProgram() {
92    if (fVShaderID) {
93        GL_CALL(DeleteShader(fVShaderID));
94    }
95    if (fGShaderID) {
96        GL_CALL(DeleteShader(fGShaderID));
97    }
98    if (fFShaderID) {
99        GL_CALL(DeleteShader(fFShaderID));
100    }
101    if (fProgramID) {
102        GL_CALL(DeleteProgram(fProgramID));
103    }
104
105    for (int i = 0; i < GrDrawState::kNumStages; ++i) {
106        delete fProgramStage[i];
107    }
108}
109
110void GrGLProgram::abandon() {
111    fVShaderID = 0;
112    fGShaderID = 0;
113    fFShaderID = 0;
114    fProgramID = 0;
115}
116
117void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff,
118                                GrBlendCoeff* dstCoeff) const {
119    switch (fDesc.fDualSrcOutput) {
120        case Desc::kNone_DualSrcOutput:
121            break;
122        // the prog will write a coverage value to the secondary
123        // output and the dst is blended by one minus that value.
124        case Desc::kCoverage_DualSrcOutput:
125        case Desc::kCoverageISA_DualSrcOutput:
126        case Desc::kCoverageISC_DualSrcOutput:
127        *dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
128        break;
129        default:
130            GrCrash("Unexpected dual source blend output");
131            break;
132    }
133}
134
135// given two blend coeffecients determine whether the src
136// and/or dst computation can be omitted.
137static inline void needBlendInputs(SkXfermode::Coeff srcCoeff,
138                                   SkXfermode::Coeff dstCoeff,
139                                   bool* needSrcValue,
140                                   bool* needDstValue) {
141    if (SkXfermode::kZero_Coeff == srcCoeff) {
142        switch (dstCoeff) {
143            // these all read the src
144            case SkXfermode::kSC_Coeff:
145            case SkXfermode::kISC_Coeff:
146            case SkXfermode::kSA_Coeff:
147            case SkXfermode::kISA_Coeff:
148                *needSrcValue = true;
149                break;
150            default:
151                *needSrcValue = false;
152                break;
153        }
154    } else {
155        *needSrcValue = true;
156    }
157    if (SkXfermode::kZero_Coeff == dstCoeff) {
158        switch (srcCoeff) {
159            // these all read the dst
160            case SkXfermode::kDC_Coeff:
161            case SkXfermode::kIDC_Coeff:
162            case SkXfermode::kDA_Coeff:
163            case SkXfermode::kIDA_Coeff:
164                *needDstValue = true;
165                break;
166            default:
167                *needDstValue = false;
168                break;
169        }
170    } else {
171        *needDstValue = true;
172    }
173}
174
175/**
176 * Create a blend_coeff * value string to be used in shader code. Sets empty
177 * string if result is trivially zero.
178 */
179static void blendTermString(SkString* str, SkXfermode::Coeff coeff,
180                             const char* src, const char* dst,
181                             const char* value) {
182    switch (coeff) {
183    case SkXfermode::kZero_Coeff:    /** 0 */
184        *str = "";
185        break;
186    case SkXfermode::kOne_Coeff:     /** 1 */
187        *str = value;
188        break;
189    case SkXfermode::kSC_Coeff:
190        str->printf("(%s * %s)", src, value);
191        break;
192    case SkXfermode::kISC_Coeff:
193        str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), src, value);
194        break;
195    case SkXfermode::kDC_Coeff:
196        str->printf("(%s * %s)", dst, value);
197        break;
198    case SkXfermode::kIDC_Coeff:
199        str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), dst, value);
200        break;
201    case SkXfermode::kSA_Coeff:      /** src alpha */
202        str->printf("(%s.a * %s)", src, value);
203        break;
204    case SkXfermode::kISA_Coeff:     /** inverse src alpha (i.e. 1 - sa) */
205        str->printf("((1.0 - %s.a) * %s)", src, value);
206        break;
207    case SkXfermode::kDA_Coeff:      /** dst alpha */
208        str->printf("(%s.a * %s)", dst, value);
209        break;
210    case SkXfermode::kIDA_Coeff:     /** inverse dst alpha (i.e. 1 - da) */
211        str->printf("((1.0 - %s.a) * %s)", dst, value);
212        break;
213    default:
214        GrCrash("Unexpected xfer coeff.");
215        break;
216    }
217}
218/**
219 * Adds a line to the fragment shader code which modifies the color by
220 * the specified color filter.
221 */
222static void addColorFilter(SkString* fsCode, const char * outputVar,
223                           SkXfermode::Coeff uniformCoeff,
224                           SkXfermode::Coeff colorCoeff,
225                           const char* filterColor,
226                           const char* inColor) {
227    SkString colorStr, constStr;
228    blendTermString(&colorStr, colorCoeff, filterColor, inColor, inColor);
229    blendTermString(&constStr, uniformCoeff, filterColor, inColor, filterColor);
230
231    fsCode->appendf("\t%s = ", outputVar);
232    GrGLSLAdd4f(fsCode, colorStr.c_str(), constStr.c_str());
233    fsCode->append(";\n");
234}
235
236bool GrGLProgram::genEdgeCoverage(SkString* coverageVar,
237                                  GrGLShaderBuilder* segments) const {
238    if (fDesc.fVertexLayout & GrDrawTarget::kEdge_VertexLayoutBit) {
239        const char *vsName, *fsName;
240        segments->addVarying(kVec4f_GrSLType, "Edge", &vsName, &fsName);
241        segments->fVSAttrs.push_back().set(kVec4f_GrSLType,
242            GrGLShaderVar::kAttribute_TypeModifier, EDGE_ATTR_NAME);
243        segments->fVSCode.appendf("\t%s = " EDGE_ATTR_NAME ";\n", vsName);
244        switch (fDesc.fVertexEdgeType) {
245        case GrDrawState::kHairLine_EdgeType:
246            segments->fFSCode.appendf("\tfloat edgeAlpha = abs(dot(vec3(gl_FragCoord.xy,1), %s.xyz));\n", fsName);
247            segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
248            break;
249        case GrDrawState::kQuad_EdgeType:
250            segments->fFSCode.append("\tfloat edgeAlpha;\n");
251            // keep the derivative instructions outside the conditional
252            segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
253            segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
254            segments->fFSCode.appendf("\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName);
255            // today we know z and w are in device space. We could use derivatives
256            segments->fFSCode.appendf("\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, fsName);
257            segments->fFSCode.append ("\t} else {\n");
258            segments->fFSCode.appendf("\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
259                                      "\t\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
260                                      fsName, fsName);
261            segments->fFSCode.appendf("\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
262            segments->fFSCode.append("\t\tedgeAlpha = clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n"
263                                      "\t}\n");
264            if (kES2_GrGLBinding == fContextInfo.binding()) {
265                segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
266            }
267            break;
268        case GrDrawState::kHairQuad_EdgeType:
269            segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
270            segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
271            segments->fFSCode.appendf("\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
272                                      "\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
273                                      fsName, fsName);
274            segments->fFSCode.appendf("\tfloat edgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
275            segments->fFSCode.append("\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / dot(gF, gF));\n");
276            segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
277            if (kES2_GrGLBinding == fContextInfo.binding()) {
278                segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
279            }
280            break;
281        case GrDrawState::kCircle_EdgeType:
282            segments->fFSCode.append("\tfloat edgeAlpha;\n");
283            segments->fFSCode.appendf("\tfloat d = distance(gl_FragCoord.xy, %s.xy);\n", fsName);
284            segments->fFSCode.appendf("\tfloat outerAlpha = smoothstep(d - 0.5, d + 0.5, %s.z);\n", fsName);
285            segments->fFSCode.appendf("\tfloat innerAlpha = %s.w == 0.0 ? 1.0 : smoothstep(%s.w - 0.5, %s.w + 0.5, d);\n", fsName, fsName, fsName);
286            segments->fFSCode.append("\tedgeAlpha = outerAlpha * innerAlpha;\n");
287            break;
288        default:
289            GrCrash("Unknown Edge Type!");
290            break;
291        }
292        *coverageVar = "edgeAlpha";
293        return true;
294    } else {
295        coverageVar->reset();
296        return false;
297    }
298}
299
300void GrGLProgram::genInputColor(GrGLShaderBuilder* builder, SkString* inColor) {
301    switch (fDesc.fColorInput) {
302        case GrGLProgram::Desc::kAttribute_ColorInput: {
303            builder->fVSAttrs.push_back().set(kVec4f_GrSLType,
304                GrGLShaderVar::kAttribute_TypeModifier,
305                COL_ATTR_NAME);
306            const char *vsName, *fsName;
307            builder->addVarying(kVec4f_GrSLType, "Color", &vsName, &fsName);
308            builder->fVSCode.appendf("\t%s = " COL_ATTR_NAME ";\n", vsName);
309            *inColor = fsName;
310            } break;
311        case GrGLProgram::Desc::kUniform_ColorInput: {
312            const char* name;
313            fUniforms.fColorUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
314                                                      kVec4f_GrSLType, "Color", &name);
315            *inColor = name;
316            break;
317        }
318        case GrGLProgram::Desc::kTransBlack_ColorInput:
319            GrAssert(!"needComputedColor should be false.");
320            break;
321        case GrGLProgram::Desc::kSolidWhite_ColorInput:
322            break;
323        default:
324            GrCrash("Unknown color type.");
325            break;
326    }
327}
328
329void GrGLProgram::genUniformCoverage(GrGLShaderBuilder* builder, SkString* inOutCoverage) {
330    const char* covUniName;
331    fUniforms.fCoverageUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
332                                                 kVec4f_GrSLType, "Coverage", &covUniName);
333    if (inOutCoverage->size()) {
334        builder->fFSCode.appendf("\tvec4 uniCoverage = %s * %s;\n",
335                                  covUniName, inOutCoverage->c_str());
336        *inOutCoverage = "uniCoverage";
337    } else {
338        *inOutCoverage = covUniName;
339    }
340}
341
342namespace {
343void gen_attribute_coverage(GrGLShaderBuilder* segments,
344                            SkString* inOutCoverage) {
345    segments->fVSAttrs.push_back().set(kVec4f_GrSLType,
346                                       GrGLShaderVar::kAttribute_TypeModifier,
347                                       COV_ATTR_NAME);
348    const char *vsName, *fsName;
349    segments->addVarying(kVec4f_GrSLType, "Coverage", &vsName, &fsName);
350    segments->fVSCode.appendf("\t%s = " COV_ATTR_NAME ";\n", vsName);
351    if (inOutCoverage->size()) {
352        segments->fFSCode.appendf("\tvec4 attrCoverage = %s * %s;\n",
353                                  fsName, inOutCoverage->c_str());
354        *inOutCoverage = "attrCoverage";
355    } else {
356        *inOutCoverage = fsName;
357    }
358}
359}
360
361void GrGLProgram::genGeometryShader(GrGLShaderBuilder* segments) const {
362#if GR_GL_EXPERIMENTAL_GS
363    if (fDesc.fExperimentalGS) {
364        GrAssert(fContextInfo.glslGeneration() >= k150_GrGLSLGeneration);
365        segments->fGSHeader.append("layout(triangles) in;\n"
366                                   "layout(triangle_strip, max_vertices = 6) out;\n");
367        segments->fGSCode.append("void main() {\n"
368                                 "\tfor (int i = 0; i < 3; ++i) {\n"
369                                  "\t\tgl_Position = gl_in[i].gl_Position;\n");
370        if (fDesc.fEmitsPointSize) {
371            segments->fGSCode.append("\t\tgl_PointSize = 1.0;\n");
372        }
373        GrAssert(segments->fGSInputs.count() == segments->fGSOutputs.count());
374        int count = segments->fGSInputs.count();
375        for (int i = 0; i < count; ++i) {
376            segments->fGSCode.appendf("\t\t%s = %s[i];\n",
377                                      segments->fGSOutputs[i].getName().c_str(),
378                                      segments->fGSInputs[i].getName().c_str());
379        }
380        segments->fGSCode.append("\t\tEmitVertex();\n"
381                                 "\t}\n"
382                                 "\tEndPrimitive();\n"
383                                 "}\n");
384    }
385#endif
386}
387
388const char* GrGLProgram::adjustInColor(const SkString& inColor) const {
389    if (inColor.size()) {
390          return inColor.c_str();
391    } else {
392        if (Desc::kSolidWhite_ColorInput == fDesc.fColorInput) {
393            return GrGLSLOnesVecf(4);
394        } else {
395            return GrGLSLZerosVecf(4);
396        }
397    }
398}
399
400namespace {
401// prints a shader using params similar to glShaderSource
402void print_shader(GrGLint stringCnt,
403                  const GrGLchar** strings,
404                  GrGLint* stringLengths) {
405    for (int i = 0; i < stringCnt; ++i) {
406        if (NULL == stringLengths || stringLengths[i] < 0) {
407            GrPrintf(strings[i]);
408        } else {
409            GrPrintf("%.*s", stringLengths[i], strings[i]);
410        }
411    }
412}
413
414// Compiles a GL shader, returns shader ID or 0 if failed params have same meaning as glShaderSource
415GrGLuint compile_shader(const GrGLContextInfo& gl,
416                        GrGLenum type,
417                        int stringCnt,
418                        const char** strings,
419                        int* stringLengths) {
420    SK_TRACE_EVENT1("GrGLProgram::CompileShader",
421                    "stringCount", SkStringPrintf("%i", stringCnt).c_str());
422
423    GrGLuint shader;
424    GR_GL_CALL_RET(gl.interface(), shader, CreateShader(type));
425    if (0 == shader) {
426        return 0;
427    }
428
429    const GrGLInterface* gli = gl.interface();
430    GrGLint compiled = GR_GL_INIT_ZERO;
431    GR_GL_CALL(gli, ShaderSource(shader, stringCnt, strings, stringLengths));
432    GR_GL_CALL(gli, CompileShader(shader));
433    GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled));
434
435    if (!compiled) {
436        GrGLint infoLen = GR_GL_INIT_ZERO;
437        GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen));
438        SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
439        if (infoLen > 0) {
440            // retrieve length even though we don't need it to workaround bug in chrome cmd buffer
441            // param validation.
442            GrGLsizei length = GR_GL_INIT_ZERO;
443            GR_GL_CALL(gli, GetShaderInfoLog(shader, infoLen+1,
444                                             &length, (char*)log.get()));
445            print_shader(stringCnt, strings, stringLengths);
446            GrPrintf("\n%s", log.get());
447        }
448        GrAssert(!"Shader compilation failed!");
449        GR_GL_CALL(gli, DeleteShader(shader));
450        return 0;
451    }
452    return shader;
453}
454
455// helper version of above for when shader is already flattened into a single SkString
456GrGLuint compile_shader(const GrGLContextInfo& gl, GrGLenum type, const SkString& shader) {
457    const GrGLchar* str = shader.c_str();
458    int length = shader.size();
459    return compile_shader(gl, type, 1, &str, &length);
460}
461
462}
463
464// compiles all the shaders from builder and stores the shader IDs
465bool GrGLProgram::compileShaders(const GrGLShaderBuilder& builder) {
466
467    SkString shader;
468
469    builder.getShader(GrGLShaderBuilder::kVertex_ShaderType, &shader);
470#if PRINT_SHADERS
471    GrPrintf(shader.c_str());
472    GrPrintf("\n");
473#endif
474    if (!(fVShaderID = compile_shader(fContextInfo, GR_GL_VERTEX_SHADER, shader))) {
475        return false;
476    }
477
478    if (builder.fUsesGS) {
479        builder.getShader(GrGLShaderBuilder::kGeometry_ShaderType, &shader);
480#if PRINT_SHADERS
481        GrPrintf(shader.c_str());
482        GrPrintf("\n");
483#endif
484        if (!(fGShaderID = compile_shader(fContextInfo, GR_GL_GEOMETRY_SHADER, shader))) {
485            return false;
486        }
487    } else {
488        fGShaderID = 0;
489    }
490
491    builder.getShader(GrGLShaderBuilder::kFragment_ShaderType, &shader);
492#if PRINT_SHADERS
493    GrPrintf(shader.c_str());
494    GrPrintf("\n");
495#endif
496    if (!(fFShaderID = compile_shader(fContextInfo, GR_GL_FRAGMENT_SHADER, shader))) {
497        return false;
498    }
499
500    return true;
501}
502
503bool GrGLProgram::genProgram(const GrCustomStage** customStages) {
504    GrAssert(0 == fProgramID);
505
506    GrGLShaderBuilder builder(fContextInfo, fUniformManager);
507    const uint32_t& layout = fDesc.fVertexLayout;
508
509#if GR_GL_EXPERIMENTAL_GS
510    builder.fUsesGS = fDesc.fExperimentalGS;
511#endif
512
513    SkXfermode::Coeff colorCoeff, uniformCoeff;
514    bool applyColorMatrix = SkToBool(fDesc.fColorMatrixEnabled);
515    // The rest of transfer mode color filters have not been implemented
516    if (fDesc.fColorFilterXfermode < SkXfermode::kCoeffModesCnt) {
517        GR_DEBUGCODE(bool success =)
518            SkXfermode::ModeAsCoeff(static_cast<SkXfermode::Mode>
519                                    (fDesc.fColorFilterXfermode),
520                                    &uniformCoeff, &colorCoeff);
521        GR_DEBUGASSERT(success);
522    } else {
523        colorCoeff = SkXfermode::kOne_Coeff;
524        uniformCoeff = SkXfermode::kZero_Coeff;
525    }
526
527    // no need to do the color filter / matrix at all if coverage is 0. The
528    // output color is scaled by the coverage. All the dual source outputs are
529    // scaled by the coverage as well.
530    if (Desc::kTransBlack_ColorInput == fDesc.fCoverageInput) {
531        colorCoeff = SkXfermode::kZero_Coeff;
532        uniformCoeff = SkXfermode::kZero_Coeff;
533        applyColorMatrix = false;
534    }
535
536    // If we know the final color is going to be all zeros then we can
537    // simplify the color filter coeffecients. needComputedColor will then
538    // come out false below.
539    if (Desc::kTransBlack_ColorInput == fDesc.fColorInput) {
540        colorCoeff = SkXfermode::kZero_Coeff;
541        if (SkXfermode::kDC_Coeff == uniformCoeff ||
542            SkXfermode::kDA_Coeff == uniformCoeff) {
543            uniformCoeff = SkXfermode::kZero_Coeff;
544        } else if (SkXfermode::kIDC_Coeff == uniformCoeff ||
545                   SkXfermode::kIDA_Coeff == uniformCoeff) {
546            uniformCoeff = SkXfermode::kOne_Coeff;
547        }
548    }
549
550    bool needColorFilterUniform;
551    bool needComputedColor;
552    needBlendInputs(uniformCoeff, colorCoeff,
553                    &needColorFilterUniform, &needComputedColor);
554
555    // the dual source output has no canonical var name, have to
556    // declare an output, which is incompatible with gl_FragColor/gl_FragData.
557    bool dualSourceOutputWritten = false;
558    builder.fHeader.append(GrGetGLSLVersionDecl(fContextInfo.binding(),
559                                                fContextInfo.glslGeneration()));
560
561    GrGLShaderVar colorOutput;
562    bool isColorDeclared = GrGLSLSetupFSColorOuput(fContextInfo.glslGeneration(),
563                                                   declared_color_output_name(),
564                                                   &colorOutput);
565    if (isColorDeclared) {
566        builder.fFSOutputs.push_back(colorOutput);
567    }
568
569    const char* viewMName;
570    fUniforms.fViewMatrixUni = builder.addUniform(GrGLShaderBuilder::kVertex_ShaderType,
571                                                  kMat33f_GrSLType, "ViewM", &viewMName);
572
573    builder.fVSAttrs.push_back().set(kVec2f_GrSLType,
574                                     GrGLShaderVar::kAttribute_TypeModifier,
575                                     POS_ATTR_NAME);
576
577    builder.fVSCode.appendf("void main() {\n"
578                              "\tvec3 pos3 = %s * vec3("POS_ATTR_NAME", 1);\n"
579                              "\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n",
580                            viewMName);
581
582    // incoming color to current stage being processed.
583    SkString inColor;
584
585    if (needComputedColor) {
586        this->genInputColor(&builder, &inColor);
587    }
588
589    // we output point size in the GS if present
590    if (fDesc.fEmitsPointSize && !builder.fUsesGS){
591        builder.fVSCode.append("\tgl_PointSize = 1.0;\n");
592    }
593
594    builder.fFSCode.append("void main() {\n");
595
596    // add texture coordinates that are used to the list of vertex attr decls
597    SkString texCoordAttrs[GrDrawState::kMaxTexCoords];
598    for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
599        if (GrDrawTarget::VertexUsesTexCoordIdx(t, layout)) {
600            tex_attr_name(t, texCoordAttrs + t);
601            builder.fVSAttrs.push_back().set(kVec2f_GrSLType,
602                GrGLShaderVar::kAttribute_TypeModifier,
603                texCoordAttrs[t].c_str());
604        }
605    }
606
607    ///////////////////////////////////////////////////////////////////////////
608    // compute the final color
609
610    // if we have color stages string them together, feeding the output color
611    // of each to the next and generating code for each stage.
612    if (needComputedColor) {
613        SkString outColor;
614        for (int s = 0; s < fDesc.fFirstCoverageStage; ++s) {
615            if (fDesc.fStages[s].isEnabled()) {
616                // create var to hold stage result
617                outColor = "color";
618                outColor.appendS32(s);
619                builder.fFSCode.appendf("\tvec4 %s;\n", outColor.c_str());
620
621                const char* inCoords;
622                // figure out what our input coords are
623                int tcIdx = GrDrawTarget::VertexTexCoordsForStage(s, layout);
624                if (tcIdx < 0) {
625                    inCoords = POS_ATTR_NAME;
626                } else {
627                    // must have input tex coordinates if stage is enabled.
628                    GrAssert(texCoordAttrs[tcIdx].size());
629                    inCoords = texCoordAttrs[tcIdx].c_str();
630                }
631
632                builder.setCurrentStage(s);
633                fProgramStage[s] = GenStageCode(customStages[s],
634                                                fDesc.fStages[s],
635                                                &fUniforms.fStages[s],
636                                                inColor.size() ? inColor.c_str() : NULL,
637                                                outColor.c_str(),
638                                                inCoords,
639                                                &builder);
640                builder.setNonStage();
641                inColor = outColor;
642            }
643        }
644    }
645
646    // if have all ones or zeros for the "dst" input to the color filter then we
647    // may be able to make additional optimizations.
648    if (needColorFilterUniform && needComputedColor && !inColor.size()) {
649        GrAssert(Desc::kSolidWhite_ColorInput == fDesc.fColorInput);
650        bool uniformCoeffIsZero = SkXfermode::kIDC_Coeff == uniformCoeff ||
651                                  SkXfermode::kIDA_Coeff == uniformCoeff;
652        if (uniformCoeffIsZero) {
653            uniformCoeff = SkXfermode::kZero_Coeff;
654            bool bogus;
655            needBlendInputs(SkXfermode::kZero_Coeff, colorCoeff,
656                            &needColorFilterUniform, &bogus);
657        }
658    }
659    const char* colorFilterColorUniName = NULL;
660    if (needColorFilterUniform) {
661        fUniforms.fColorFilterUni = builder.addUniform(GrGLShaderBuilder::kFragment_ShaderType,
662                                                       kVec4f_GrSLType, "FilterColor",
663                                                       &colorFilterColorUniName);
664    }
665    bool wroteFragColorZero = false;
666    if (SkXfermode::kZero_Coeff == uniformCoeff &&
667        SkXfermode::kZero_Coeff == colorCoeff &&
668        !applyColorMatrix) {
669        builder.fFSCode.appendf("\t%s = %s;\n",
670                                colorOutput.getName().c_str(),
671                                GrGLSLZerosVecf(4));
672        wroteFragColorZero = true;
673    } else if (SkXfermode::kDst_Mode != fDesc.fColorFilterXfermode) {
674        builder.fFSCode.append("\tvec4 filteredColor;\n");
675        const char* color = adjustInColor(inColor);
676        addColorFilter(&builder.fFSCode, "filteredColor", uniformCoeff,
677                       colorCoeff, colorFilterColorUniName, color);
678        inColor = "filteredColor";
679    }
680    if (applyColorMatrix) {
681        const char* colMatrixName;
682        const char* colMatrixVecName;
683        fUniforms.fColorMatrixUni = builder.addUniform(GrGLShaderBuilder::kFragment_ShaderType,
684                                                       kMat44f_GrSLType, "ColorMatrix",
685                                                       &colMatrixName);
686        fUniforms.fColorMatrixVecUni = builder.addUniform(GrGLShaderBuilder::kFragment_ShaderType,
687                                                          kVec4f_GrSLType, "ColorMatrixVec",
688                                                          &colMatrixVecName);
689        const char* color = adjustInColor(inColor);
690        builder.fFSCode.appendf("\tvec4 matrixedColor = %s * vec4(%s.rgb / %s.a, %s.a) + %s;\n",
691                                colMatrixName, color, color, color, colMatrixVecName);
692        builder.fFSCode.append("\tmatrixedColor.rgb *= matrixedColor.a;\n");
693
694        inColor = "matrixedColor";
695    }
696
697    ///////////////////////////////////////////////////////////////////////////
698    // compute the partial coverage (coverage stages and edge aa)
699
700    SkString inCoverage;
701    bool coverageIsZero = Desc::kTransBlack_ColorInput == fDesc.fCoverageInput;
702    // we don't need to compute coverage at all if we know the final shader
703    // output will be zero and we don't have a dual src blend output.
704    if (!wroteFragColorZero || Desc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) {
705
706        if (!coverageIsZero) {
707            bool inCoverageIsScalar  = this->genEdgeCoverage(&inCoverage, &builder);
708
709            switch (fDesc.fCoverageInput) {
710                case Desc::kSolidWhite_ColorInput:
711                    // empty string implies solid white
712                    break;
713                case Desc::kAttribute_ColorInput:
714                    gen_attribute_coverage(&builder, &inCoverage);
715                    inCoverageIsScalar = false;
716                    break;
717                case Desc::kUniform_ColorInput:
718                    this->genUniformCoverage(&builder, &inCoverage);
719                    inCoverageIsScalar = false;
720                    break;
721                default:
722                    GrCrash("Unexpected input coverage.");
723            }
724
725            SkString outCoverage;
726            const int& startStage = fDesc.fFirstCoverageStage;
727            for (int s = startStage; s < GrDrawState::kNumStages; ++s) {
728                if (fDesc.fStages[s].isEnabled()) {
729                    // create var to hold stage output
730                    outCoverage = "coverage";
731                    outCoverage.appendS32(s);
732                    builder.fFSCode.appendf("\tvec4 %s;\n", outCoverage.c_str());
733
734                    const char* inCoords;
735                    // figure out what our input coords are
736                    int tcIdx =
737                        GrDrawTarget::VertexTexCoordsForStage(s, layout);
738                    if (tcIdx < 0) {
739                        inCoords = POS_ATTR_NAME;
740                    } else {
741                        // must have input tex coordinates if stage is
742                        // enabled.
743                        GrAssert(texCoordAttrs[tcIdx].size());
744                        inCoords = texCoordAttrs[tcIdx].c_str();
745                    }
746
747                    // stages don't know how to deal with a scalar input. (Maybe they should. We
748                    // could pass a GrGLShaderVar)
749                    if (inCoverageIsScalar) {
750                        builder.fFSCode.appendf("\tvec4 %s4 = vec4(%s);\n",
751                                                inCoverage.c_str(), inCoverage.c_str());
752                        inCoverage.append("4");
753                    }
754                    builder.setCurrentStage(s);
755                    fProgramStage[s] = GenStageCode(customStages[s],
756                                                    fDesc.fStages[s],
757                                                    &fUniforms.fStages[s],
758                                                    inCoverage.size() ? inCoverage.c_str() : NULL,
759                                                    outCoverage.c_str(),
760                                                    inCoords,
761                                                    &builder);
762                    builder.setNonStage();
763                    inCoverage = outCoverage;
764                }
765            }
766        }
767
768        if (Desc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) {
769            builder.fFSOutputs.push_back().set(kVec4f_GrSLType,
770                                               GrGLShaderVar::kOut_TypeModifier,
771                                               dual_source_output_name());
772            bool outputIsZero = coverageIsZero;
773            SkString coeff;
774            if (!outputIsZero &&
775                Desc::kCoverage_DualSrcOutput != fDesc.fDualSrcOutput && !wroteFragColorZero) {
776                if (!inColor.size()) {
777                    outputIsZero = true;
778                } else {
779                    if (Desc::kCoverageISA_DualSrcOutput == fDesc.fDualSrcOutput) {
780                        coeff.printf("(1 - %s.a)", inColor.c_str());
781                    } else {
782                        coeff.printf("(vec4(1,1,1,1) - %s)", inColor.c_str());
783                    }
784                }
785            }
786            if (outputIsZero) {
787                builder.fFSCode.appendf("\t%s = %s;\n",
788                                        dual_source_output_name(),
789                                        GrGLSLZerosVecf(4));
790            } else {
791                builder.fFSCode.appendf("\t%s =", dual_source_output_name());
792                GrGLSLModulate4f(&builder.fFSCode, coeff.c_str(), inCoverage.c_str());
793                builder.fFSCode.append(";\n");
794            }
795            dualSourceOutputWritten = true;
796        }
797    }
798
799    ///////////////////////////////////////////////////////////////////////////
800    // combine color and coverage as frag color
801
802    if (!wroteFragColorZero) {
803        if (coverageIsZero) {
804            builder.fFSCode.appendf("\t%s = %s;\n",
805                                    colorOutput.getName().c_str(),
806                                    GrGLSLZerosVecf(4));
807        } else {
808            builder.fFSCode.appendf("\t%s = ", colorOutput.getName().c_str());
809            GrGLSLModulate4f(&builder.fFSCode, inColor.c_str(), inCoverage.c_str());
810            builder.fFSCode.append(";\n");
811        }
812    }
813
814    builder.fVSCode.append("}\n");
815    builder.fFSCode.append("}\n");
816
817    ///////////////////////////////////////////////////////////////////////////
818    // insert GS
819#if GR_DEBUG
820    this->genGeometryShader(&builder);
821#endif
822
823    ///////////////////////////////////////////////////////////////////////////
824    // compile and setup attribs and unis
825
826    if (!this->compileShaders(builder)) {
827        return false;
828    }
829
830    if (!this->bindOutputsAttribsAndLinkProgram(texCoordAttrs,
831                                                isColorDeclared,
832                                                dualSourceOutputWritten)) {
833        return false;
834    }
835
836    builder.finished(fProgramID);
837    this->initSamplerUniforms();
838
839    return true;
840}
841
842bool GrGLProgram::bindOutputsAttribsAndLinkProgram(SkString texCoordAttrNames[],
843                                                   bool bindColorOut,
844                                                   bool bindDualSrcOut) {
845    GL_CALL_RET(fProgramID, CreateProgram());
846    if (!fProgramID) {
847        return false;
848    }
849
850    GL_CALL(AttachShader(fProgramID, fVShaderID));
851    if (fGShaderID) {
852        GL_CALL(AttachShader(fProgramID, fGShaderID));
853    }
854    GL_CALL(AttachShader(fProgramID, fFShaderID));
855
856    if (bindColorOut) {
857        GL_CALL(BindFragDataLocation(fProgramID, 0, declared_color_output_name()));
858    }
859    if (bindDualSrcOut) {
860        GL_CALL(BindFragDataLocationIndexed(fProgramID, 0, 1, dual_source_output_name()));
861    }
862
863    // Bind the attrib locations to same values for all shaders
864    GL_CALL(BindAttribLocation(fProgramID, PositionAttributeIdx(), POS_ATTR_NAME));
865    for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
866        if (texCoordAttrNames[t].size()) {
867            GL_CALL(BindAttribLocation(fProgramID,
868                                       TexCoordAttributeIdx(t),
869                                       texCoordAttrNames[t].c_str()));
870        }
871    }
872
873    GL_CALL(BindAttribLocation(fProgramID, ColorAttributeIdx(), COL_ATTR_NAME));
874    GL_CALL(BindAttribLocation(fProgramID, CoverageAttributeIdx(), COV_ATTR_NAME));
875    GL_CALL(BindAttribLocation(fProgramID, EdgeAttributeIdx(), EDGE_ATTR_NAME));
876
877    GL_CALL(LinkProgram(fProgramID));
878
879    GrGLint linked = GR_GL_INIT_ZERO;
880    GL_CALL(GetProgramiv(fProgramID, GR_GL_LINK_STATUS, &linked));
881    if (!linked) {
882        GrGLint infoLen = GR_GL_INIT_ZERO;
883        GL_CALL(GetProgramiv(fProgramID, GR_GL_INFO_LOG_LENGTH, &infoLen));
884        SkAutoMalloc log(sizeof(char)*(infoLen+1));  // outside if for debugger
885        if (infoLen > 0) {
886            // retrieve length even though we don't need it to workaround
887            // bug in chrome cmd buffer param validation.
888            GrGLsizei length = GR_GL_INIT_ZERO;
889            GL_CALL(GetProgramInfoLog(fProgramID,
890                                      infoLen+1,
891                                      &length,
892                                      (char*)log.get()));
893            GrPrintf((char*)log.get());
894        }
895        GrAssert(!"Error linking program");
896        GL_CALL(DeleteProgram(fProgramID));
897        fProgramID = 0;
898        return false;
899    }
900    return true;
901}
902
903void GrGLProgram::initSamplerUniforms() {
904    GL_CALL(UseProgram(fProgramID));
905    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
906        int count = fUniforms.fStages[s].fSamplerUniforms.count();
907        // FIXME: We're still always reserving one texture per stage. After GrTextureParams are
908        // expressed by the custom stage rather than the GrSamplerState we can move texture binding
909        // into GrGLProgram and it should be easier to fix this.
910        GrAssert(count <= 1);
911        for (int t = 0; t < count; ++t) {
912            UniformHandle uh = fUniforms.fStages[s].fSamplerUniforms[t];
913            if (GrGLUniformManager::kInvalidUniformHandle != uh) {
914                fUniformManager.setSampler(uh, s);
915            }
916        }
917    }
918}
919
920///////////////////////////////////////////////////////////////////////////////
921// Stage code generation
922
923// TODO: Move this function to GrGLShaderBuilder
924GrGLProgramStage* GrGLProgram::GenStageCode(const GrCustomStage* stage,
925                                            const StageDesc& desc,
926                                            StageUniforms* uniforms,
927                                            const char* fsInColor, // NULL means no incoming color
928                                            const char* fsOutColor,
929                                            const char* vsInCoord,
930                                            GrGLShaderBuilder* builder) {
931
932    GrGLProgramStage* glStage = stage->getFactory().createGLInstance(*stage);
933
934    GrAssert((desc.fInConfigFlags & StageDesc::kInConfigBitMask) == desc.fInConfigFlags);
935
936    /// Vertex Shader Stuff
937
938    // decide whether we need a matrix to transform texture coords and whether the varying needs a
939    // perspective coord.
940    const char* matName = NULL;
941    GrSLType texCoordVaryingType;
942    if (desc.fOptFlags & StageDesc::kIdentityMatrix_OptFlagBit) {
943        texCoordVaryingType = kVec2f_GrSLType;
944    } else {
945        uniforms->fTextureMatrixUni = builder->addUniform(GrGLShaderBuilder::kVertex_ShaderType,
946                                                         kMat33f_GrSLType, "TexM", &matName);
947        builder->getUniformVariable(uniforms->fTextureMatrixUni);
948
949        if (desc.fOptFlags & StageDesc::kNoPerspective_OptFlagBit) {
950            texCoordVaryingType = kVec2f_GrSLType;
951        } else {
952            texCoordVaryingType = kVec3f_GrSLType;
953        }
954    }
955    const char *varyingVSName, *varyingFSName;
956    builder->addVarying(texCoordVaryingType,
957                        "Stage",
958                        &varyingVSName,
959                        &varyingFSName);
960    builder->setupTextureAccess(varyingFSName, texCoordVaryingType);
961
962    // Must setup variables after calling setupTextureAccess
963    glStage->setupVariables(builder);
964
965    int numTextures = stage->numTextures();
966    SkSTArray<8, GrGLShaderBuilder::TextureSampler> textureSamplers;
967    // temporary until we force custom stages to provide their own texture access
968    SkSTArray<8, bool, true> deleteTextureAccess;
969
970    textureSamplers.push_back_n(numTextures);
971    deleteTextureAccess.push_back_n(numTextures);
972
973    for (int i = 0; i < numTextures; ++i) {
974        // Right now we don't require a texture access for every texture. This will change soon.
975        const GrTextureAccess* access = stage->textureAccess(i);
976        GrAssert(NULL != stage->texture(i));
977        if (NULL == access) {
978            SkString swizzle;
979            if (desc.fInConfigFlags & StageDesc::kSmearAlpha_InConfigFlag) {
980                swizzle.printf("aaaa");
981            } else {
982                swizzle.printf("rgba");
983            }
984            access = SkNEW_ARGS(GrTextureAccess, (stage->texture(i), swizzle));
985            deleteTextureAccess[i] = true;
986        } else {
987            GrAssert(access->getTexture() == stage->texture(i));
988            deleteTextureAccess[i] = false;
989        }
990        textureSamplers[i].init(builder, access);
991        uniforms->fSamplerUniforms.push_back(textureSamplers[i].fSamplerUniform);
992    }
993
994    if (!matName) {
995        GrAssert(kVec2f_GrSLType == texCoordVaryingType);
996        builder->fVSCode.appendf("\t%s = %s;\n", varyingVSName, vsInCoord);
997    } else {
998        // varying = texMatrix * texCoord
999        builder->fVSCode.appendf("\t%s = (%s * vec3(%s, 1))%s;\n",
1000                                  varyingVSName, matName, vsInCoord,
1001                                  vector_all_coords(GrSLTypeToVecLength(texCoordVaryingType)));
1002    }
1003
1004    builder->fVSCode.appendf("\t{ // %s\n", glStage->name());
1005    glStage->emitVS(builder, varyingVSName);
1006    builder->fVSCode.appendf("\t}\n");
1007
1008    // Enclose custom code in a block to avoid namespace conflicts
1009    builder->fFSCode.appendf("\t{ // %s \n", glStage->name());
1010    glStage->emitFS(builder, fsOutColor, fsInColor, textureSamplers);
1011    builder->fFSCode.appendf("\t}\n");
1012
1013    for (int i = 0; i < numTextures; ++i) {
1014        if (deleteTextureAccess[i]) {
1015            SkDELETE(textureSamplers[i].textureAccess());
1016        }
1017    }
1018    return glStage;
1019}
1020