GrGLProgram.cpp revision f271cc7183fe48ac64d2d9a454eb013c91b42d53
1/*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrGLProgram.h"
9
10#include "GrAllocator.h"
11#include "GrEffect.h"
12#include "GrGLProgramStage.h"
13#include "gl/GrGLShaderBuilder.h"
14#include "GrGLShaderVar.h"
15#include "GrProgramStageFactory.h"
16#include "SkTrace.h"
17#include "SkXfermode.h"
18
19SK_DEFINE_INST_COUNT(GrGLProgram)
20
21#define GL_CALL(X) GR_GL_CALL(fContextInfo.interface(), X)
22#define GL_CALL_RET(R, X) GR_GL_CALL_RET(fContextInfo.interface(), R, X)
23
24#define PRINT_SHADERS 0
25
26typedef GrGLProgram::Desc::StageDesc StageDesc;
27
28#define POS_ATTR_NAME "aPosition"
29#define COL_ATTR_NAME "aColor"
30#define COV_ATTR_NAME "aCoverage"
31#define EDGE_ATTR_NAME "aEdge"
32
33namespace {
34inline void tex_attr_name(int coordIdx, SkString* s) {
35    *s = "aTexCoord";
36    s->appendS32(coordIdx);
37}
38
39inline const char* float_vector_type_str(int count) {
40    return GrGLShaderVar::TypeString(GrSLFloatVectorType(count));
41}
42
43inline const char* vector_all_coords(int count) {
44    static const char* ALL[] = {"ERROR", "", ".xy", ".xyz", ".xyzw"};
45    GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ALL));
46    return ALL[count];
47}
48
49inline const char* declared_color_output_name() { return "fsColorOut"; }
50inline const char* dual_source_output_name() { return "dualSourceOut"; }
51
52}
53
54GrGLProgram* GrGLProgram::Create(const GrGLContextInfo& gl,
55                                 const Desc& desc,
56                                 const GrEffect** effects) {
57    GrGLProgram* program = SkNEW_ARGS(GrGLProgram, (gl, desc, effects));
58    if (!program->succeeded()) {
59        delete program;
60        program = NULL;
61    }
62    return program;
63}
64
65GrGLProgram::GrGLProgram(const GrGLContextInfo& gl,
66                         const Desc& desc,
67                         const GrEffect** effects)
68: fContextInfo(gl)
69, fUniformManager(gl) {
70    fDesc = desc;
71    fVShaderID = 0;
72    fGShaderID = 0;
73    fFShaderID = 0;
74    fProgramID = 0;
75
76    fViewMatrix = GrMatrix::InvalidMatrix();
77    fViewportSize.set(-1, -1);
78    fColor = GrColor_ILLEGAL;
79    fColorFilterColor = GrColor_ILLEGAL;
80    fRTHeight = -1;
81
82    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
83        fProgramStage[s] = NULL;
84        fTextureMatrices[s] = GrMatrix::InvalidMatrix();
85        // this is arbitrary, just initialize to something
86        fTextureOrientation[s] = GrGLTexture::kBottomUp_Orientation;
87    }
88
89    this->genProgram(effects);
90}
91
92GrGLProgram::~GrGLProgram() {
93    if (fVShaderID) {
94        GL_CALL(DeleteShader(fVShaderID));
95    }
96    if (fGShaderID) {
97        GL_CALL(DeleteShader(fGShaderID));
98    }
99    if (fFShaderID) {
100        GL_CALL(DeleteShader(fFShaderID));
101    }
102    if (fProgramID) {
103        GL_CALL(DeleteProgram(fProgramID));
104    }
105
106    for (int i = 0; i < GrDrawState::kNumStages; ++i) {
107        delete fProgramStage[i];
108    }
109}
110
111void GrGLProgram::abandon() {
112    fVShaderID = 0;
113    fGShaderID = 0;
114    fFShaderID = 0;
115    fProgramID = 0;
116}
117
118void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff,
119                                GrBlendCoeff* dstCoeff) const {
120    switch (fDesc.fDualSrcOutput) {
121        case Desc::kNone_DualSrcOutput:
122            break;
123        // the prog will write a coverage value to the secondary
124        // output and the dst is blended by one minus that value.
125        case Desc::kCoverage_DualSrcOutput:
126        case Desc::kCoverageISA_DualSrcOutput:
127        case Desc::kCoverageISC_DualSrcOutput:
128        *dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
129        break;
130        default:
131            GrCrash("Unexpected dual source blend output");
132            break;
133    }
134}
135
136// given two blend coeffecients determine whether the src
137// and/or dst computation can be omitted.
138static inline void needBlendInputs(SkXfermode::Coeff srcCoeff,
139                                   SkXfermode::Coeff dstCoeff,
140                                   bool* needSrcValue,
141                                   bool* needDstValue) {
142    if (SkXfermode::kZero_Coeff == srcCoeff) {
143        switch (dstCoeff) {
144            // these all read the src
145            case SkXfermode::kSC_Coeff:
146            case SkXfermode::kISC_Coeff:
147            case SkXfermode::kSA_Coeff:
148            case SkXfermode::kISA_Coeff:
149                *needSrcValue = true;
150                break;
151            default:
152                *needSrcValue = false;
153                break;
154        }
155    } else {
156        *needSrcValue = true;
157    }
158    if (SkXfermode::kZero_Coeff == dstCoeff) {
159        switch (srcCoeff) {
160            // these all read the dst
161            case SkXfermode::kDC_Coeff:
162            case SkXfermode::kIDC_Coeff:
163            case SkXfermode::kDA_Coeff:
164            case SkXfermode::kIDA_Coeff:
165                *needDstValue = true;
166                break;
167            default:
168                *needDstValue = false;
169                break;
170        }
171    } else {
172        *needDstValue = true;
173    }
174}
175
176/**
177 * Create a blend_coeff * value string to be used in shader code. Sets empty
178 * string if result is trivially zero.
179 */
180static void blendTermString(SkString* str, SkXfermode::Coeff coeff,
181                             const char* src, const char* dst,
182                             const char* value) {
183    switch (coeff) {
184    case SkXfermode::kZero_Coeff:    /** 0 */
185        *str = "";
186        break;
187    case SkXfermode::kOne_Coeff:     /** 1 */
188        *str = value;
189        break;
190    case SkXfermode::kSC_Coeff:
191        str->printf("(%s * %s)", src, value);
192        break;
193    case SkXfermode::kISC_Coeff:
194        str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), src, value);
195        break;
196    case SkXfermode::kDC_Coeff:
197        str->printf("(%s * %s)", dst, value);
198        break;
199    case SkXfermode::kIDC_Coeff:
200        str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), dst, value);
201        break;
202    case SkXfermode::kSA_Coeff:      /** src alpha */
203        str->printf("(%s.a * %s)", src, value);
204        break;
205    case SkXfermode::kISA_Coeff:     /** inverse src alpha (i.e. 1 - sa) */
206        str->printf("((1.0 - %s.a) * %s)", src, value);
207        break;
208    case SkXfermode::kDA_Coeff:      /** dst alpha */
209        str->printf("(%s.a * %s)", dst, value);
210        break;
211    case SkXfermode::kIDA_Coeff:     /** inverse dst alpha (i.e. 1 - da) */
212        str->printf("((1.0 - %s.a) * %s)", dst, value);
213        break;
214    default:
215        GrCrash("Unexpected xfer coeff.");
216        break;
217    }
218}
219/**
220 * Adds a line to the fragment shader code which modifies the color by
221 * the specified color filter.
222 */
223static void addColorFilter(SkString* fsCode, const char * outputVar,
224                           SkXfermode::Coeff uniformCoeff,
225                           SkXfermode::Coeff colorCoeff,
226                           const char* filterColor,
227                           const char* inColor) {
228    SkString colorStr, constStr;
229    blendTermString(&colorStr, colorCoeff, filterColor, inColor, inColor);
230    blendTermString(&constStr, uniformCoeff, filterColor, inColor, filterColor);
231
232    fsCode->appendf("\t%s = ", outputVar);
233    GrGLSLAdd4f(fsCode, colorStr.c_str(), constStr.c_str());
234    fsCode->append(";\n");
235}
236
237bool GrGLProgram::genEdgeCoverage(SkString* coverageVar,
238                                  GrGLShaderBuilder* builder) const {
239    if (fDesc.fVertexLayout & GrDrawTarget::kEdge_VertexLayoutBit) {
240        const char *vsName, *fsName;
241        builder->addVarying(kVec4f_GrSLType, "Edge", &vsName, &fsName);
242        builder->fVSAttrs.push_back().set(kVec4f_GrSLType,
243                                          GrGLShaderVar::kAttribute_TypeModifier,
244                                          EDGE_ATTR_NAME);
245        builder->fVSCode.appendf("\t%s = " EDGE_ATTR_NAME ";\n", vsName);
246        switch (fDesc.fVertexEdgeType) {
247        case GrDrawState::kHairLine_EdgeType:
248            builder->fFSCode.appendf("\tfloat edgeAlpha = abs(dot(vec3(%s.xy,1), %s.xyz));\n", builder->fragmentPosition(), fsName);
249            builder->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
250            break;
251        case GrDrawState::kQuad_EdgeType:
252            builder->fFSCode.append("\tfloat edgeAlpha;\n");
253            // keep the derivative instructions outside the conditional
254            builder->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
255            builder->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
256            builder->fFSCode.appendf("\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName);
257            // today we know z and w are in device space. We could use derivatives
258            builder->fFSCode.appendf("\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, fsName);
259            builder->fFSCode.append ("\t} else {\n");
260            builder->fFSCode.appendf("\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
261                                     "\t\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
262                                     fsName, fsName);
263            builder->fFSCode.appendf("\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
264            builder->fFSCode.append("\t\tedgeAlpha = clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n"
265                                    "\t}\n");
266            if (kES2_GrGLBinding == fContextInfo.binding()) {
267                builder->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
268            }
269            break;
270        case GrDrawState::kHairQuad_EdgeType:
271            builder->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
272            builder->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
273            builder->fFSCode.appendf("\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
274                                     "\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
275                                     fsName, fsName);
276            builder->fFSCode.appendf("\tfloat edgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
277            builder->fFSCode.append("\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / dot(gF, gF));\n");
278            builder->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
279            if (kES2_GrGLBinding == fContextInfo.binding()) {
280                builder->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
281            }
282            break;
283        case GrDrawState::kCircle_EdgeType:
284            builder->fFSCode.append("\tfloat edgeAlpha;\n");
285            builder->fFSCode.appendf("\tfloat d = distance(%s.xy, %s.xy);\n", builder->fragmentPosition(), fsName);
286            builder->fFSCode.appendf("\tfloat outerAlpha = smoothstep(d - 0.5, d + 0.5, %s.z);\n", fsName);
287            builder->fFSCode.appendf("\tfloat innerAlpha = %s.w == 0.0 ? 1.0 : smoothstep(%s.w - 0.5, %s.w + 0.5, d);\n", fsName, fsName, fsName);
288            builder->fFSCode.append("\tedgeAlpha = outerAlpha * innerAlpha;\n");
289            break;
290        default:
291            GrCrash("Unknown Edge Type!");
292            break;
293        }
294        *coverageVar = "edgeAlpha";
295        return true;
296    } else {
297        coverageVar->reset();
298        return false;
299    }
300}
301
302void GrGLProgram::genInputColor(GrGLShaderBuilder* builder, SkString* inColor) {
303    switch (fDesc.fColorInput) {
304        case GrGLProgram::Desc::kAttribute_ColorInput: {
305            builder->fVSAttrs.push_back().set(kVec4f_GrSLType,
306                GrGLShaderVar::kAttribute_TypeModifier,
307                COL_ATTR_NAME);
308            const char *vsName, *fsName;
309            builder->addVarying(kVec4f_GrSLType, "Color", &vsName, &fsName);
310            builder->fVSCode.appendf("\t%s = " COL_ATTR_NAME ";\n", vsName);
311            *inColor = fsName;
312            } break;
313        case GrGLProgram::Desc::kUniform_ColorInput: {
314            const char* name;
315            fUniforms.fColorUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
316                                                      kVec4f_GrSLType, "Color", &name);
317            *inColor = name;
318            break;
319        }
320        case GrGLProgram::Desc::kTransBlack_ColorInput:
321            GrAssert(!"needComputedColor should be false.");
322            break;
323        case GrGLProgram::Desc::kSolidWhite_ColorInput:
324            break;
325        default:
326            GrCrash("Unknown color type.");
327            break;
328    }
329}
330
331void GrGLProgram::genUniformCoverage(GrGLShaderBuilder* builder, SkString* inOutCoverage) {
332    const char* covUniName;
333    fUniforms.fCoverageUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
334                                                 kVec4f_GrSLType, "Coverage", &covUniName);
335    if (inOutCoverage->size()) {
336        builder->fFSCode.appendf("\tvec4 uniCoverage = %s * %s;\n",
337                                  covUniName, inOutCoverage->c_str());
338        *inOutCoverage = "uniCoverage";
339    } else {
340        *inOutCoverage = covUniName;
341    }
342}
343
344namespace {
345void gen_attribute_coverage(GrGLShaderBuilder* segments,
346                            SkString* inOutCoverage) {
347    segments->fVSAttrs.push_back().set(kVec4f_GrSLType,
348                                       GrGLShaderVar::kAttribute_TypeModifier,
349                                       COV_ATTR_NAME);
350    const char *vsName, *fsName;
351    segments->addVarying(kVec4f_GrSLType, "Coverage", &vsName, &fsName);
352    segments->fVSCode.appendf("\t%s = " COV_ATTR_NAME ";\n", vsName);
353    if (inOutCoverage->size()) {
354        segments->fFSCode.appendf("\tvec4 attrCoverage = %s * %s;\n",
355                                  fsName, inOutCoverage->c_str());
356        *inOutCoverage = "attrCoverage";
357    } else {
358        *inOutCoverage = fsName;
359    }
360}
361}
362
363void GrGLProgram::genGeometryShader(GrGLShaderBuilder* segments) const {
364#if GR_GL_EXPERIMENTAL_GS
365    if (fDesc.fExperimentalGS) {
366        GrAssert(fContextInfo.glslGeneration() >= k150_GrGLSLGeneration);
367        segments->fGSHeader.append("layout(triangles) in;\n"
368                                   "layout(triangle_strip, max_vertices = 6) out;\n");
369        segments->fGSCode.append("\tfor (int i = 0; i < 3; ++i) {\n"
370                                 "\t\tgl_Position = gl_in[i].gl_Position;\n");
371        if (fDesc.fEmitsPointSize) {
372            segments->fGSCode.append("\t\tgl_PointSize = 1.0;\n");
373        }
374        GrAssert(segments->fGSInputs.count() == segments->fGSOutputs.count());
375        int count = segments->fGSInputs.count();
376        for (int i = 0; i < count; ++i) {
377            segments->fGSCode.appendf("\t\t%s = %s[i];\n",
378                                      segments->fGSOutputs[i].getName().c_str(),
379                                      segments->fGSInputs[i].getName().c_str());
380        }
381        segments->fGSCode.append("\t\tEmitVertex();\n"
382                                 "\t}\n"
383                                 "\tEndPrimitive();\n");
384    }
385#endif
386}
387
388const char* GrGLProgram::adjustInColor(const SkString& inColor) const {
389    if (inColor.size()) {
390          return inColor.c_str();
391    } else {
392        if (Desc::kSolidWhite_ColorInput == fDesc.fColorInput) {
393            return GrGLSLOnesVecf(4);
394        } else {
395            return GrGLSLZerosVecf(4);
396        }
397    }
398}
399
400namespace {
401// prints a shader using params similar to glShaderSource
402void print_shader(GrGLint stringCnt,
403                  const GrGLchar** strings,
404                  GrGLint* stringLengths) {
405    for (int i = 0; i < stringCnt; ++i) {
406        if (NULL == stringLengths || stringLengths[i] < 0) {
407            GrPrintf(strings[i]);
408        } else {
409            GrPrintf("%.*s", stringLengths[i], strings[i]);
410        }
411    }
412}
413
414// Compiles a GL shader, returns shader ID or 0 if failed params have same meaning as glShaderSource
415GrGLuint compile_shader(const GrGLContextInfo& gl,
416                        GrGLenum type,
417                        int stringCnt,
418                        const char** strings,
419                        int* stringLengths) {
420    SK_TRACE_EVENT1("GrGLProgram::CompileShader",
421                    "stringCount", SkStringPrintf("%i", stringCnt).c_str());
422
423    GrGLuint shader;
424    GR_GL_CALL_RET(gl.interface(), shader, CreateShader(type));
425    if (0 == shader) {
426        return 0;
427    }
428
429    const GrGLInterface* gli = gl.interface();
430    GrGLint compiled = GR_GL_INIT_ZERO;
431    GR_GL_CALL(gli, ShaderSource(shader, stringCnt, strings, stringLengths));
432    GR_GL_CALL(gli, CompileShader(shader));
433    GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled));
434
435    if (!compiled) {
436        GrGLint infoLen = GR_GL_INIT_ZERO;
437        GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen));
438        SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
439        if (infoLen > 0) {
440            // retrieve length even though we don't need it to workaround bug in chrome cmd buffer
441            // param validation.
442            GrGLsizei length = GR_GL_INIT_ZERO;
443            GR_GL_CALL(gli, GetShaderInfoLog(shader, infoLen+1,
444                                             &length, (char*)log.get()));
445            print_shader(stringCnt, strings, stringLengths);
446            GrPrintf("\n%s", log.get());
447        }
448        GrAssert(!"Shader compilation failed!");
449        GR_GL_CALL(gli, DeleteShader(shader));
450        return 0;
451    }
452    return shader;
453}
454
455// helper version of above for when shader is already flattened into a single SkString
456GrGLuint compile_shader(const GrGLContextInfo& gl, GrGLenum type, const SkString& shader) {
457    const GrGLchar* str = shader.c_str();
458    int length = shader.size();
459    return compile_shader(gl, type, 1, &str, &length);
460}
461
462}
463
464// compiles all the shaders from builder and stores the shader IDs
465bool GrGLProgram::compileShaders(const GrGLShaderBuilder& builder) {
466
467    SkString shader;
468
469    builder.getShader(GrGLShaderBuilder::kVertex_ShaderType, &shader);
470#if PRINT_SHADERS
471    GrPrintf(shader.c_str());
472    GrPrintf("\n");
473#endif
474    if (!(fVShaderID = compile_shader(fContextInfo, GR_GL_VERTEX_SHADER, shader))) {
475        return false;
476    }
477
478    if (builder.fUsesGS) {
479        builder.getShader(GrGLShaderBuilder::kGeometry_ShaderType, &shader);
480#if PRINT_SHADERS
481        GrPrintf(shader.c_str());
482        GrPrintf("\n");
483#endif
484        if (!(fGShaderID = compile_shader(fContextInfo, GR_GL_GEOMETRY_SHADER, shader))) {
485            return false;
486        }
487    } else {
488        fGShaderID = 0;
489    }
490
491    builder.getShader(GrGLShaderBuilder::kFragment_ShaderType, &shader);
492#if PRINT_SHADERS
493    GrPrintf(shader.c_str());
494    GrPrintf("\n");
495#endif
496    if (!(fFShaderID = compile_shader(fContextInfo, GR_GL_FRAGMENT_SHADER, shader))) {
497        return false;
498    }
499
500    return true;
501}
502
503bool GrGLProgram::genProgram(const GrEffect** effects) {
504    GrAssert(0 == fProgramID);
505
506    GrGLShaderBuilder builder(fContextInfo, fUniformManager);
507    const uint32_t& layout = fDesc.fVertexLayout;
508
509#if GR_GL_EXPERIMENTAL_GS
510    builder.fUsesGS = fDesc.fExperimentalGS;
511#endif
512
513    SkXfermode::Coeff colorCoeff, uniformCoeff;
514    // The rest of transfer mode color filters have not been implemented
515    if (fDesc.fColorFilterXfermode < SkXfermode::kCoeffModesCnt) {
516        GR_DEBUGCODE(bool success =)
517            SkXfermode::ModeAsCoeff(static_cast<SkXfermode::Mode>
518                                    (fDesc.fColorFilterXfermode),
519                                    &uniformCoeff, &colorCoeff);
520        GR_DEBUGASSERT(success);
521    } else {
522        colorCoeff = SkXfermode::kOne_Coeff;
523        uniformCoeff = SkXfermode::kZero_Coeff;
524    }
525
526    // no need to do the color filter if coverage is 0. The output color is scaled by the coverage.
527    // All the dual source outputs are scaled by the coverage as well.
528    if (Desc::kTransBlack_ColorInput == fDesc.fCoverageInput) {
529        colorCoeff = SkXfermode::kZero_Coeff;
530        uniformCoeff = SkXfermode::kZero_Coeff;
531    }
532
533    // If we know the final color is going to be all zeros then we can
534    // simplify the color filter coefficients. needComputedColor will then
535    // come out false below.
536    if (Desc::kTransBlack_ColorInput == fDesc.fColorInput) {
537        colorCoeff = SkXfermode::kZero_Coeff;
538        if (SkXfermode::kDC_Coeff == uniformCoeff ||
539            SkXfermode::kDA_Coeff == uniformCoeff) {
540            uniformCoeff = SkXfermode::kZero_Coeff;
541        } else if (SkXfermode::kIDC_Coeff == uniformCoeff ||
542                   SkXfermode::kIDA_Coeff == uniformCoeff) {
543            uniformCoeff = SkXfermode::kOne_Coeff;
544        }
545    }
546
547    bool needColorFilterUniform;
548    bool needComputedColor;
549    needBlendInputs(uniformCoeff, colorCoeff,
550                    &needColorFilterUniform, &needComputedColor);
551
552    // the dual source output has no canonical var name, have to
553    // declare an output, which is incompatible with gl_FragColor/gl_FragData.
554    bool dualSourceOutputWritten = false;
555    builder.fHeader.append(GrGetGLSLVersionDecl(fContextInfo.binding(),
556                                                fContextInfo.glslGeneration()));
557
558    GrGLShaderVar colorOutput;
559    bool isColorDeclared = GrGLSLSetupFSColorOuput(fContextInfo.glslGeneration(),
560                                                   declared_color_output_name(),
561                                                   &colorOutput);
562    if (isColorDeclared) {
563        builder.fFSOutputs.push_back(colorOutput);
564    }
565
566    const char* viewMName;
567    fUniforms.fViewMatrixUni = builder.addUniform(GrGLShaderBuilder::kVertex_ShaderType,
568                                                  kMat33f_GrSLType, "ViewM", &viewMName);
569
570    builder.fVSAttrs.push_back().set(kVec2f_GrSLType,
571                                     GrGLShaderVar::kAttribute_TypeModifier,
572                                     POS_ATTR_NAME);
573
574    builder.fVSCode.appendf("\tvec3 pos3 = %s * vec3("POS_ATTR_NAME", 1);\n"
575                            "\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n",
576                            viewMName);
577
578    // incoming color to current stage being processed.
579    SkString inColor;
580
581    if (needComputedColor) {
582        this->genInputColor(&builder, &inColor);
583    }
584
585    // we output point size in the GS if present
586    if (fDesc.fEmitsPointSize && !builder.fUsesGS){
587        builder.fVSCode.append("\tgl_PointSize = 1.0;\n");
588    }
589
590    // add texture coordinates that are used to the list of vertex attr decls
591    SkString texCoordAttrs[GrDrawState::kMaxTexCoords];
592    for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
593        if (GrDrawTarget::VertexUsesTexCoordIdx(t, layout)) {
594            tex_attr_name(t, texCoordAttrs + t);
595            builder.fVSAttrs.push_back().set(kVec2f_GrSLType,
596                GrGLShaderVar::kAttribute_TypeModifier,
597                texCoordAttrs[t].c_str());
598        }
599    }
600
601    ///////////////////////////////////////////////////////////////////////////
602    // compute the final color
603
604    // if we have color stages string them together, feeding the output color
605    // of each to the next and generating code for each stage.
606    if (needComputedColor) {
607        SkString outColor;
608        for (int s = 0; s < fDesc.fFirstCoverageStage; ++s) {
609            if (fDesc.fStages[s].isEnabled()) {
610                // create var to hold stage result
611                outColor = "color";
612                outColor.appendS32(s);
613                builder.fFSCode.appendf("\tvec4 %s;\n", outColor.c_str());
614
615                const char* inCoords;
616                // figure out what our input coords are
617                int tcIdx = GrDrawTarget::VertexTexCoordsForStage(s, layout);
618                if (tcIdx < 0) {
619                    inCoords = POS_ATTR_NAME;
620                } else {
621                    // must have input tex coordinates if stage is enabled.
622                    GrAssert(texCoordAttrs[tcIdx].size());
623                    inCoords = texCoordAttrs[tcIdx].c_str();
624                }
625
626                builder.setCurrentStage(s);
627                fProgramStage[s] = GenStageCode(effects[s],
628                                                fDesc.fStages[s],
629                                                &fUniforms.fStages[s],
630                                                inColor.size() ? inColor.c_str() : NULL,
631                                                outColor.c_str(),
632                                                inCoords,
633                                                &builder);
634                builder.setNonStage();
635                inColor = outColor;
636            }
637        }
638    }
639
640    // if have all ones or zeros for the "dst" input to the color filter then we
641    // may be able to make additional optimizations.
642    if (needColorFilterUniform && needComputedColor && !inColor.size()) {
643        GrAssert(Desc::kSolidWhite_ColorInput == fDesc.fColorInput);
644        bool uniformCoeffIsZero = SkXfermode::kIDC_Coeff == uniformCoeff ||
645                                  SkXfermode::kIDA_Coeff == uniformCoeff;
646        if (uniformCoeffIsZero) {
647            uniformCoeff = SkXfermode::kZero_Coeff;
648            bool bogus;
649            needBlendInputs(SkXfermode::kZero_Coeff, colorCoeff,
650                            &needColorFilterUniform, &bogus);
651        }
652    }
653    const char* colorFilterColorUniName = NULL;
654    if (needColorFilterUniform) {
655        fUniforms.fColorFilterUni = builder.addUniform(GrGLShaderBuilder::kFragment_ShaderType,
656                                                       kVec4f_GrSLType, "FilterColor",
657                                                       &colorFilterColorUniName);
658    }
659    bool wroteFragColorZero = false;
660    if (SkXfermode::kZero_Coeff == uniformCoeff &&
661        SkXfermode::kZero_Coeff == colorCoeff) {
662        builder.fFSCode.appendf("\t%s = %s;\n",
663                                colorOutput.getName().c_str(),
664                                GrGLSLZerosVecf(4));
665        wroteFragColorZero = true;
666    } else if (SkXfermode::kDst_Mode != fDesc.fColorFilterXfermode) {
667        builder.fFSCode.append("\tvec4 filteredColor;\n");
668        const char* color = adjustInColor(inColor);
669        addColorFilter(&builder.fFSCode, "filteredColor", uniformCoeff,
670                       colorCoeff, colorFilterColorUniName, color);
671        inColor = "filteredColor";
672    }
673
674    ///////////////////////////////////////////////////////////////////////////
675    // compute the partial coverage (coverage stages and edge aa)
676
677    SkString inCoverage;
678    bool coverageIsZero = Desc::kTransBlack_ColorInput == fDesc.fCoverageInput;
679    // we don't need to compute coverage at all if we know the final shader
680    // output will be zero and we don't have a dual src blend output.
681    if (!wroteFragColorZero || Desc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) {
682
683        if (!coverageIsZero) {
684            bool inCoverageIsScalar  = this->genEdgeCoverage(&inCoverage, &builder);
685
686            switch (fDesc.fCoverageInput) {
687                case Desc::kSolidWhite_ColorInput:
688                    // empty string implies solid white
689                    break;
690                case Desc::kAttribute_ColorInput:
691                    gen_attribute_coverage(&builder, &inCoverage);
692                    inCoverageIsScalar = false;
693                    break;
694                case Desc::kUniform_ColorInput:
695                    this->genUniformCoverage(&builder, &inCoverage);
696                    inCoverageIsScalar = false;
697                    break;
698                default:
699                    GrCrash("Unexpected input coverage.");
700            }
701
702            SkString outCoverage;
703            const int& startStage = fDesc.fFirstCoverageStage;
704            for (int s = startStage; s < GrDrawState::kNumStages; ++s) {
705                if (fDesc.fStages[s].isEnabled()) {
706                    // create var to hold stage output
707                    outCoverage = "coverage";
708                    outCoverage.appendS32(s);
709                    builder.fFSCode.appendf("\tvec4 %s;\n", outCoverage.c_str());
710
711                    const char* inCoords;
712                    // figure out what our input coords are
713                    int tcIdx =
714                        GrDrawTarget::VertexTexCoordsForStage(s, layout);
715                    if (tcIdx < 0) {
716                        inCoords = POS_ATTR_NAME;
717                    } else {
718                        // must have input tex coordinates if stage is
719                        // enabled.
720                        GrAssert(texCoordAttrs[tcIdx].size());
721                        inCoords = texCoordAttrs[tcIdx].c_str();
722                    }
723
724                    // stages don't know how to deal with a scalar input. (Maybe they should. We
725                    // could pass a GrGLShaderVar)
726                    if (inCoverageIsScalar) {
727                        builder.fFSCode.appendf("\tvec4 %s4 = vec4(%s);\n",
728                                                inCoverage.c_str(), inCoverage.c_str());
729                        inCoverage.append("4");
730                    }
731                    builder.setCurrentStage(s);
732                    fProgramStage[s] = GenStageCode(effects[s],
733                                                    fDesc.fStages[s],
734                                                    &fUniforms.fStages[s],
735                                                    inCoverage.size() ? inCoverage.c_str() : NULL,
736                                                    outCoverage.c_str(),
737                                                    inCoords,
738                                                    &builder);
739                    builder.setNonStage();
740                    inCoverage = outCoverage;
741                }
742            }
743        }
744
745        if (Desc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) {
746            builder.fFSOutputs.push_back().set(kVec4f_GrSLType,
747                                               GrGLShaderVar::kOut_TypeModifier,
748                                               dual_source_output_name());
749            bool outputIsZero = coverageIsZero;
750            SkString coeff;
751            if (!outputIsZero &&
752                Desc::kCoverage_DualSrcOutput != fDesc.fDualSrcOutput && !wroteFragColorZero) {
753                if (!inColor.size()) {
754                    outputIsZero = true;
755                } else {
756                    if (Desc::kCoverageISA_DualSrcOutput == fDesc.fDualSrcOutput) {
757                        coeff.printf("(1 - %s.a)", inColor.c_str());
758                    } else {
759                        coeff.printf("(vec4(1,1,1,1) - %s)", inColor.c_str());
760                    }
761                }
762            }
763            if (outputIsZero) {
764                builder.fFSCode.appendf("\t%s = %s;\n",
765                                        dual_source_output_name(),
766                                        GrGLSLZerosVecf(4));
767            } else {
768                builder.fFSCode.appendf("\t%s =", dual_source_output_name());
769                GrGLSLModulate4f(&builder.fFSCode, coeff.c_str(), inCoverage.c_str());
770                builder.fFSCode.append(";\n");
771            }
772            dualSourceOutputWritten = true;
773        }
774    }
775
776    ///////////////////////////////////////////////////////////////////////////
777    // combine color and coverage as frag color
778
779    if (!wroteFragColorZero) {
780        if (coverageIsZero) {
781            builder.fFSCode.appendf("\t%s = %s;\n",
782                                    colorOutput.getName().c_str(),
783                                    GrGLSLZerosVecf(4));
784        } else {
785            builder.fFSCode.appendf("\t%s = ", colorOutput.getName().c_str());
786            GrGLSLModulate4f(&builder.fFSCode, inColor.c_str(), inCoverage.c_str());
787            builder.fFSCode.append(";\n");
788        }
789    }
790
791    ///////////////////////////////////////////////////////////////////////////
792    // insert GS
793#if GR_DEBUG
794    this->genGeometryShader(&builder);
795#endif
796
797    ///////////////////////////////////////////////////////////////////////////
798    // compile and setup attribs and unis
799
800    if (!this->compileShaders(builder)) {
801        return false;
802    }
803
804    if (!this->bindOutputsAttribsAndLinkProgram(texCoordAttrs,
805                                                isColorDeclared,
806                                                dualSourceOutputWritten)) {
807        return false;
808    }
809
810    builder.finished(fProgramID);
811    this->initSamplerUniforms();
812    fUniforms.fRTHeight = builder.getRTHeightUniform();
813
814    return true;
815}
816
817bool GrGLProgram::bindOutputsAttribsAndLinkProgram(SkString texCoordAttrNames[],
818                                                   bool bindColorOut,
819                                                   bool bindDualSrcOut) {
820    GL_CALL_RET(fProgramID, CreateProgram());
821    if (!fProgramID) {
822        return false;
823    }
824
825    GL_CALL(AttachShader(fProgramID, fVShaderID));
826    if (fGShaderID) {
827        GL_CALL(AttachShader(fProgramID, fGShaderID));
828    }
829    GL_CALL(AttachShader(fProgramID, fFShaderID));
830
831    if (bindColorOut) {
832        GL_CALL(BindFragDataLocation(fProgramID, 0, declared_color_output_name()));
833    }
834    if (bindDualSrcOut) {
835        GL_CALL(BindFragDataLocationIndexed(fProgramID, 0, 1, dual_source_output_name()));
836    }
837
838    // Bind the attrib locations to same values for all shaders
839    GL_CALL(BindAttribLocation(fProgramID, PositionAttributeIdx(), POS_ATTR_NAME));
840    for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
841        if (texCoordAttrNames[t].size()) {
842            GL_CALL(BindAttribLocation(fProgramID,
843                                       TexCoordAttributeIdx(t),
844                                       texCoordAttrNames[t].c_str()));
845        }
846    }
847
848    GL_CALL(BindAttribLocation(fProgramID, ColorAttributeIdx(), COL_ATTR_NAME));
849    GL_CALL(BindAttribLocation(fProgramID, CoverageAttributeIdx(), COV_ATTR_NAME));
850    GL_CALL(BindAttribLocation(fProgramID, EdgeAttributeIdx(), EDGE_ATTR_NAME));
851
852    GL_CALL(LinkProgram(fProgramID));
853
854    GrGLint linked = GR_GL_INIT_ZERO;
855    GL_CALL(GetProgramiv(fProgramID, GR_GL_LINK_STATUS, &linked));
856    if (!linked) {
857        GrGLint infoLen = GR_GL_INIT_ZERO;
858        GL_CALL(GetProgramiv(fProgramID, GR_GL_INFO_LOG_LENGTH, &infoLen));
859        SkAutoMalloc log(sizeof(char)*(infoLen+1));  // outside if for debugger
860        if (infoLen > 0) {
861            // retrieve length even though we don't need it to workaround
862            // bug in chrome cmd buffer param validation.
863            GrGLsizei length = GR_GL_INIT_ZERO;
864            GL_CALL(GetProgramInfoLog(fProgramID,
865                                      infoLen+1,
866                                      &length,
867                                      (char*)log.get()));
868            GrPrintf((char*)log.get());
869        }
870        GrAssert(!"Error linking program");
871        GL_CALL(DeleteProgram(fProgramID));
872        fProgramID = 0;
873        return false;
874    }
875    return true;
876}
877
878void GrGLProgram::initSamplerUniforms() {
879    GL_CALL(UseProgram(fProgramID));
880    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
881        int count = fUniforms.fStages[s].fSamplerUniforms.count();
882        // FIXME: We're still always reserving one texture per stage. After GrTextureParams are
883        // expressed by the effect rather than the GrSamplerState we can move texture binding
884        // into GrGLProgram and it should be easier to fix this.
885        GrAssert(count <= 1);
886        for (int t = 0; t < count; ++t) {
887            UniformHandle uh = fUniforms.fStages[s].fSamplerUniforms[t];
888            if (GrGLUniformManager::kInvalidUniformHandle != uh) {
889                fUniformManager.setSampler(uh, s);
890            }
891        }
892    }
893}
894
895///////////////////////////////////////////////////////////////////////////////
896// Stage code generation
897
898// TODO: Move this function to GrGLShaderBuilder
899GrGLProgramStage* GrGLProgram::GenStageCode(const GrEffect* stage,
900                                            const StageDesc& desc,
901                                            StageUniforms* uniforms,
902                                            const char* fsInColor, // NULL means no incoming color
903                                            const char* fsOutColor,
904                                            const char* vsInCoord,
905                                            GrGLShaderBuilder* builder) {
906
907    GrGLProgramStage* glStage = stage->getFactory().createGLInstance(*stage);
908
909    /// Vertex Shader Stuff
910
911    // decide whether we need a matrix to transform texture coords and whether the varying needs a
912    // perspective coord.
913    const char* matName = NULL;
914    GrSLType texCoordVaryingType;
915    if (desc.fOptFlags & StageDesc::kIdentityMatrix_OptFlagBit) {
916        texCoordVaryingType = kVec2f_GrSLType;
917    } else {
918        uniforms->fTextureMatrixUni = builder->addUniform(GrGLShaderBuilder::kVertex_ShaderType,
919                                                         kMat33f_GrSLType, "TexM", &matName);
920        builder->getUniformVariable(uniforms->fTextureMatrixUni);
921
922        if (desc.fOptFlags & StageDesc::kNoPerspective_OptFlagBit) {
923            texCoordVaryingType = kVec2f_GrSLType;
924        } else {
925            texCoordVaryingType = kVec3f_GrSLType;
926        }
927    }
928    const char *varyingVSName, *varyingFSName;
929    builder->addVarying(texCoordVaryingType,
930                        "Stage",
931                        &varyingVSName,
932                        &varyingFSName);
933    builder->setupTextureAccess(varyingFSName, texCoordVaryingType);
934
935    int numTextures = stage->numTextures();
936    SkSTArray<8, GrGLShaderBuilder::TextureSampler> textureSamplers;
937
938    textureSamplers.push_back_n(numTextures);
939
940    for (int i = 0; i < numTextures; ++i) {
941        textureSamplers[i].init(builder, &stage->textureAccess(i));
942        uniforms->fSamplerUniforms.push_back(textureSamplers[i].fSamplerUniform);
943    }
944
945    if (!matName) {
946        GrAssert(kVec2f_GrSLType == texCoordVaryingType);
947        builder->fVSCode.appendf("\t%s = %s;\n", varyingVSName, vsInCoord);
948    } else {
949        // varying = texMatrix * texCoord
950        builder->fVSCode.appendf("\t%s = (%s * vec3(%s, 1))%s;\n",
951                                  varyingVSName, matName, vsInCoord,
952                                  vector_all_coords(GrSLTypeToVecLength(texCoordVaryingType)));
953    }
954
955    // Enclose custom code in a block to avoid namespace conflicts
956    builder->fVSCode.appendf("\t{ // %s\n", glStage->name());
957    builder->fFSCode.appendf("\t{ // %s \n", glStage->name());
958    glStage->emitCode(builder,
959                      *stage,
960                      desc.fCustomStageKey,
961                      varyingVSName,
962                      fsOutColor,
963                      fsInColor,
964                      textureSamplers);
965    builder->fVSCode.appendf("\t}\n");
966    builder->fFSCode.appendf("\t}\n");
967
968    return glStage;
969}
970
971void GrGLProgram::setData(const GrDrawState& drawState) {
972    int rtHeight = drawState.getRenderTarget()->height();
973    if (GrGLUniformManager::kInvalidUniformHandle != fUniforms.fRTHeight && fRTHeight != rtHeight) {
974        fUniformManager.set1f(fUniforms.fRTHeight, GrIntToScalar(rtHeight));
975        fRTHeight = rtHeight;
976    }
977    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
978        if (NULL != fProgramStage[s]) {
979            const GrSamplerState& sampler = drawState.getSampler(s);
980            GrAssert(NULL != sampler.getEffect());
981            fProgramStage[s]->setData(fUniformManager, *sampler.getEffect());
982        }
983    }
984}
985