GrGLProgram.cpp revision ff6ea2663f76aa85ec55ddd0f00ca7906f1bc4e3
1/*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrGLProgram.h"
9
10#include "GrAllocator.h"
11#include "GrEffect.h"
12#include "GrGLEffect.h"
13#include "GrGpuGL.h"
14#include "GrGLShaderVar.h"
15#include "GrBackendEffectFactory.h"
16#include "SkTrace.h"
17#include "SkXfermode.h"
18
19#include "SkRTConf.h"
20
21SK_DEFINE_INST_COUNT(GrGLProgram)
22
23#define GL_CALL(X) GR_GL_CALL(fContext.interface(), X)
24#define GL_CALL_RET(R, X) GR_GL_CALL_RET(fContext.interface(), R, X)
25
26SK_CONF_DECLARE(bool, c_PrintShaders, "gpu.printShaders", false, "Print the source code for all shaders generated.");
27
28#define TEX_ATTR_NAME "aTexCoord"
29#define COL_ATTR_NAME "aColor"
30#define COV_ATTR_NAME "aCoverage"
31#define EDGE_ATTR_NAME "aEdge"
32
33namespace {
34inline const char* declared_color_output_name() { return "fsColorOut"; }
35inline const char* dual_source_output_name() { return "dualSourceOut"; }
36}
37
38const GrGLProgram::AttribLayout GrGLProgram::kAttribLayouts[kGrVertexAttribTypeCount] = {
39    {1, GR_GL_FLOAT, false},         // kFloat_GrVertexAttribType
40    {2, GR_GL_FLOAT, false},         // kVec2f_GrVertexAttribType
41    {3, GR_GL_FLOAT, false},         // kVec3f_GrVertexAttribType
42    {4, GR_GL_FLOAT, false},         // kVec4f_GrVertexAttribType
43    {4, GR_GL_UNSIGNED_BYTE, true},  // kVec4ub_GrVertexAttribType
44};
45
46void GrGLProgram::BuildDesc(const GrDrawState& drawState,
47                            bool isPoints,
48                            GrDrawState::BlendOptFlags blendOpts,
49                            GrBlendCoeff srcCoeff,
50                            GrBlendCoeff dstCoeff,
51                            const GrGpuGL* gpu,
52                            Desc* desc) {
53
54    // This should already have been caught
55    GrAssert(!(GrDrawState::kSkipDraw_BlendOptFlag & blendOpts));
56
57    bool skipCoverage = SkToBool(blendOpts & GrDrawState::kEmitTransBlack_BlendOptFlag);
58
59    bool skipColor = SkToBool(blendOpts & (GrDrawState::kEmitTransBlack_BlendOptFlag |
60                                           GrDrawState::kEmitCoverage_BlendOptFlag));
61
62    // The descriptor is used as a cache key. Thus when a field of the
63    // descriptor will not affect program generation (because of the attribute
64    // bindings in use or other descriptor field settings) it should be set
65    // to a canonical value to avoid duplicate programs with different keys.
66
67    // Must initialize all fields or cache will have false negatives!
68    desc->fAttribBindings = drawState.getAttribBindings();
69
70    desc->fEmitsPointSize = isPoints;
71
72    bool requiresAttributeColors = !skipColor &&
73                                   SkToBool(desc->fAttribBindings & GrDrawState::kColor_AttribBindingsBit);
74    bool requiresAttributeCoverage = !skipCoverage &&
75                                     SkToBool(desc->fAttribBindings & GrDrawState::kCoverage_AttribBindingsBit);
76
77    // fColorInput/fCoverageInput records how colors are specified for the program So we strip the
78    // bits from the bindings to avoid false negatives when searching for an existing program in the
79    // cache.
80    desc->fAttribBindings &= ~(GrDrawState::kColor_AttribBindingsBit | GrDrawState::kCoverage_AttribBindingsBit);
81
82    desc->fColorFilterXfermode = skipColor ?
83                                SkXfermode::kDst_Mode :
84                                drawState.getColorFilterMode();
85
86    // no reason to do edge aa or look at per-vertex coverage if coverage is ignored
87    if (skipCoverage) {
88        desc->fAttribBindings &= ~(GrDrawState::kEdge_AttribBindingsBit |
89                                   GrDrawState::kCoverage_AttribBindingsBit);
90    }
91
92    bool colorIsTransBlack = SkToBool(blendOpts & GrDrawState::kEmitTransBlack_BlendOptFlag);
93    bool colorIsSolidWhite = (blendOpts & GrDrawState::kEmitCoverage_BlendOptFlag) ||
94                             (!requiresAttributeColors && 0xffffffff == drawState.getColor());
95    if (colorIsTransBlack) {
96        desc->fColorInput = Desc::kTransBlack_ColorInput;
97    } else if (colorIsSolidWhite) {
98        desc->fColorInput = Desc::kSolidWhite_ColorInput;
99    } else if (GR_GL_NO_CONSTANT_ATTRIBUTES && !requiresAttributeColors) {
100        desc->fColorInput = Desc::kUniform_ColorInput;
101    } else {
102        desc->fColorInput = Desc::kAttribute_ColorInput;
103    }
104
105    bool covIsSolidWhite = !requiresAttributeCoverage && 0xffffffff == drawState.getCoverage();
106
107    if (skipCoverage) {
108        desc->fCoverageInput = Desc::kTransBlack_ColorInput;
109    } else if (covIsSolidWhite) {
110        desc->fCoverageInput = Desc::kSolidWhite_ColorInput;
111    } else if (GR_GL_NO_CONSTANT_ATTRIBUTES && !requiresAttributeCoverage) {
112        desc->fCoverageInput = Desc::kUniform_ColorInput;
113    } else {
114        desc->fCoverageInput = Desc::kAttribute_ColorInput;
115    }
116
117    int lastEnabledStage = -1;
118
119    if (!skipCoverage && (desc->fAttribBindings & GrDrawState::kEdge_AttribBindingsBit)) {
120        desc->fVertexEdgeType = drawState.getVertexEdgeType();
121        desc->fDiscardIfOutsideEdge = drawState.getStencil().doesWrite();
122    } else {
123        // Use canonical values when edge-aa is not enabled to avoid program cache misses.
124        desc->fVertexEdgeType = GrDrawState::kHairLine_EdgeType;
125        desc->fDiscardIfOutsideEdge = false;
126    }
127
128    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
129
130        bool skip = s < drawState.getFirstCoverageStage() ? skipColor : skipCoverage;
131        if (!skip && drawState.isStageEnabled(s)) {
132            lastEnabledStage = s;
133            const GrEffectRef& effect = *drawState.getStage(s).getEffect();
134            const GrBackendEffectFactory& factory = effect->getFactory();
135            desc->fEffectKeys[s] = factory.glEffectKey(drawState.getStage(s), gpu->glCaps());
136        } else {
137            desc->fEffectKeys[s] = 0;
138        }
139    }
140
141    desc->fDualSrcOutput = Desc::kNone_DualSrcOutput;
142
143    // Currently the experimental GS will only work with triangle prims (and it doesn't do anything
144    // other than pass through values from the VS to the FS anyway).
145#if GR_GL_EXPERIMENTAL_GS
146#if 0
147    desc->fExperimentalGS = gpu->getCaps().geometryShaderSupport();
148#else
149    desc->fExperimentalGS = false;
150#endif
151#endif
152
153    // We want to avoid generating programs with different "first cov stage" values when they would
154    // compute the same result. We set field in the desc to kNumStages when either there are no
155    // coverage stages or the distinction between coverage and color is immaterial.
156    int firstCoverageStage = GrDrawState::kNumStages;
157    desc->fFirstCoverageStage = GrDrawState::kNumStages;
158    bool hasCoverage = drawState.getFirstCoverageStage() <= lastEnabledStage;
159    if (hasCoverage) {
160        firstCoverageStage = drawState.getFirstCoverageStage();
161    }
162
163    // other coverage inputs
164    if (!hasCoverage) {
165        hasCoverage = requiresAttributeCoverage ||
166                      (desc->fAttribBindings & GrDrawState::kEdge_AttribBindingsBit);
167    }
168
169    if (hasCoverage) {
170        // color filter is applied between color/coverage computation
171        if (SkXfermode::kDst_Mode != desc->fColorFilterXfermode) {
172            desc->fFirstCoverageStage = firstCoverageStage;
173        }
174
175        if (gpu->getCaps().dualSourceBlendingSupport() &&
176            !(blendOpts & (GrDrawState::kEmitCoverage_BlendOptFlag |
177                           GrDrawState::kCoverageAsAlpha_BlendOptFlag))) {
178            if (kZero_GrBlendCoeff == dstCoeff) {
179                // write the coverage value to second color
180                desc->fDualSrcOutput =  Desc::kCoverage_DualSrcOutput;
181                desc->fFirstCoverageStage = firstCoverageStage;
182            } else if (kSA_GrBlendCoeff == dstCoeff) {
183                // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
184                desc->fDualSrcOutput = Desc::kCoverageISA_DualSrcOutput;
185                desc->fFirstCoverageStage = firstCoverageStage;
186            } else if (kSC_GrBlendCoeff == dstCoeff) {
187                // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
188                desc->fDualSrcOutput = Desc::kCoverageISC_DualSrcOutput;
189                desc->fFirstCoverageStage = firstCoverageStage;
190            }
191        }
192    }
193
194    desc->fPositionAttributeIndex = drawState.getAttribIndex(GrDrawState::kPosition_AttribIndex);
195    if (requiresAttributeColors) {
196        desc->fColorAttributeIndex = drawState.getAttribIndex(GrDrawState::kColor_AttribIndex);
197    } else {
198        desc->fColorAttributeIndex = GrDrawState::kColorOverrideAttribIndexValue;
199    }
200    if (requiresAttributeCoverage) {
201        desc->fCoverageAttributeIndex = drawState.getAttribIndex(GrDrawState::kCoverage_AttribIndex);
202    } else {
203        desc->fCoverageAttributeIndex = GrDrawState::kCoverageOverrideAttribIndexValue;
204    }
205    if (desc->fAttribBindings & GrDrawState::kEdge_AttribBindingsBit) {
206        desc->fEdgeAttributeIndex = drawState.getAttribIndex(GrDrawState::kEdge_AttribIndex);
207    }
208    if (GrDrawState::AttributesBindExplicitTexCoords(desc->fAttribBindings)) {
209        desc->fTexCoordAttributeIndex = drawState.getAttribIndex(GrDrawState::kTexCoord_AttribIndex);
210    }
211
212#if GR_DEBUG
213    // verify valid vertex attribute state
214    const GrVertexAttrib* vertexAttribs = drawState.getVertexAttribs();
215    GrAssert(desc->fPositionAttributeIndex < GrDrawState::kVertexAttribCnt);
216    GrAssert(kAttribLayouts[vertexAttribs[desc->fPositionAttributeIndex].fType].fCount == 2);
217    if (requiresAttributeColors) {
218        GrAssert(desc->fColorAttributeIndex < GrDrawState::kVertexAttribCnt);
219        GrAssert(kAttribLayouts[vertexAttribs[desc->fColorAttributeIndex].fType].fCount == 4);
220    }
221    if (requiresAttributeCoverage) {
222        GrAssert(desc->fCoverageAttributeIndex < GrDrawState::kVertexAttribCnt);
223        GrAssert(kAttribLayouts[vertexAttribs[desc->fCoverageAttributeIndex].fType].fCount == 4);
224    }
225    if (desc->fAttribBindings & GrDrawState::kEdge_AttribBindingsBit) {
226        GrAssert(desc->fEdgeAttributeIndex < GrDrawState::kVertexAttribCnt);
227        GrAssert(kAttribLayouts[vertexAttribs[desc->fEdgeAttributeIndex].fType].fCount == 4);
228     }
229    if (GrDrawState::AttributesBindExplicitTexCoords(desc->fAttribBindings)) {
230        GrAssert(desc->fTexCoordAttributeIndex < GrDrawState::kVertexAttribCnt);
231        GrAssert(kAttribLayouts[vertexAttribs[desc->fTexCoordAttributeIndex].fType].fCount == 2);
232    }
233#endif
234}
235
236GrGLProgram* GrGLProgram::Create(const GrGLContext& gl,
237                                 const Desc& desc,
238                                 const GrEffectStage* stages[]) {
239    GrGLProgram* program = SkNEW_ARGS(GrGLProgram, (gl, desc, stages));
240    if (!program->succeeded()) {
241        delete program;
242        program = NULL;
243    }
244    return program;
245}
246
247GrGLProgram::GrGLProgram(const GrGLContext& gl,
248                         const Desc& desc,
249                         const GrEffectStage* stages[])
250: fContext(gl)
251, fUniformManager(gl) {
252    fDesc = desc;
253    fVShaderID = 0;
254    fGShaderID = 0;
255    fFShaderID = 0;
256    fProgramID = 0;
257
258    fColor = GrColor_ILLEGAL;
259    fColorFilterColor = GrColor_ILLEGAL;
260
261    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
262        fEffects[s] = NULL;
263    }
264
265    this->genProgram(stages);
266}
267
268GrGLProgram::~GrGLProgram() {
269    if (fVShaderID) {
270        GL_CALL(DeleteShader(fVShaderID));
271    }
272    if (fGShaderID) {
273        GL_CALL(DeleteShader(fGShaderID));
274    }
275    if (fFShaderID) {
276        GL_CALL(DeleteShader(fFShaderID));
277    }
278    if (fProgramID) {
279        GL_CALL(DeleteProgram(fProgramID));
280    }
281
282    for (int i = 0; i < GrDrawState::kNumStages; ++i) {
283        delete fEffects[i];
284    }
285}
286
287void GrGLProgram::abandon() {
288    fVShaderID = 0;
289    fGShaderID = 0;
290    fFShaderID = 0;
291    fProgramID = 0;
292}
293
294void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff,
295                                GrBlendCoeff* dstCoeff) const {
296    switch (fDesc.fDualSrcOutput) {
297        case Desc::kNone_DualSrcOutput:
298            break;
299        // the prog will write a coverage value to the secondary
300        // output and the dst is blended by one minus that value.
301        case Desc::kCoverage_DualSrcOutput:
302        case Desc::kCoverageISA_DualSrcOutput:
303        case Desc::kCoverageISC_DualSrcOutput:
304        *dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
305        break;
306        default:
307            GrCrash("Unexpected dual source blend output");
308            break;
309    }
310}
311
312namespace {
313
314// given two blend coeffecients determine whether the src
315// and/or dst computation can be omitted.
316inline void need_blend_inputs(SkXfermode::Coeff srcCoeff,
317                              SkXfermode::Coeff dstCoeff,
318                              bool* needSrcValue,
319                              bool* needDstValue) {
320    if (SkXfermode::kZero_Coeff == srcCoeff) {
321        switch (dstCoeff) {
322            // these all read the src
323            case SkXfermode::kSC_Coeff:
324            case SkXfermode::kISC_Coeff:
325            case SkXfermode::kSA_Coeff:
326            case SkXfermode::kISA_Coeff:
327                *needSrcValue = true;
328                break;
329            default:
330                *needSrcValue = false;
331                break;
332        }
333    } else {
334        *needSrcValue = true;
335    }
336    if (SkXfermode::kZero_Coeff == dstCoeff) {
337        switch (srcCoeff) {
338            // these all read the dst
339            case SkXfermode::kDC_Coeff:
340            case SkXfermode::kIDC_Coeff:
341            case SkXfermode::kDA_Coeff:
342            case SkXfermode::kIDA_Coeff:
343                *needDstValue = true;
344                break;
345            default:
346                *needDstValue = false;
347                break;
348        }
349    } else {
350        *needDstValue = true;
351    }
352}
353
354/**
355 * Create a blend_coeff * value string to be used in shader code. Sets empty
356 * string if result is trivially zero.
357 */
358inline void blend_term_string(SkString* str, SkXfermode::Coeff coeff,
359                       const char* src, const char* dst,
360                       const char* value) {
361    switch (coeff) {
362    case SkXfermode::kZero_Coeff:    /** 0 */
363        *str = "";
364        break;
365    case SkXfermode::kOne_Coeff:     /** 1 */
366        *str = value;
367        break;
368    case SkXfermode::kSC_Coeff:
369        str->printf("(%s * %s)", src, value);
370        break;
371    case SkXfermode::kISC_Coeff:
372        str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), src, value);
373        break;
374    case SkXfermode::kDC_Coeff:
375        str->printf("(%s * %s)", dst, value);
376        break;
377    case SkXfermode::kIDC_Coeff:
378        str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), dst, value);
379        break;
380    case SkXfermode::kSA_Coeff:      /** src alpha */
381        str->printf("(%s.a * %s)", src, value);
382        break;
383    case SkXfermode::kISA_Coeff:     /** inverse src alpha (i.e. 1 - sa) */
384        str->printf("((1.0 - %s.a) * %s)", src, value);
385        break;
386    case SkXfermode::kDA_Coeff:      /** dst alpha */
387        str->printf("(%s.a * %s)", dst, value);
388        break;
389    case SkXfermode::kIDA_Coeff:     /** inverse dst alpha (i.e. 1 - da) */
390        str->printf("((1.0 - %s.a) * %s)", dst, value);
391        break;
392    default:
393        GrCrash("Unexpected xfer coeff.");
394        break;
395    }
396}
397/**
398 * Adds a line to the fragment shader code which modifies the color by
399 * the specified color filter.
400 */
401void add_color_filter(GrGLShaderBuilder* builder,
402                      const char * outputVar,
403                      SkXfermode::Coeff uniformCoeff,
404                      SkXfermode::Coeff colorCoeff,
405                      const char* filterColor,
406                      const char* inColor) {
407    SkString colorStr, constStr;
408    blend_term_string(&colorStr, colorCoeff, filterColor, inColor, inColor);
409    blend_term_string(&constStr, uniformCoeff, filterColor, inColor, filterColor);
410
411    SkString sum;
412    GrGLSLAdd4f(&sum, colorStr.c_str(), constStr.c_str());
413    builder->fsCodeAppendf("\t%s = %s;\n", outputVar, sum.c_str());
414}
415}
416
417bool GrGLProgram::genEdgeCoverage(SkString* coverageVar,
418                                  GrGLShaderBuilder* builder) const {
419    if (fDesc.fAttribBindings & GrDrawState::kEdge_AttribBindingsBit) {
420        const char *vsName, *fsName;
421        builder->addVarying(kVec4f_GrSLType, "Edge", &vsName, &fsName);
422        builder->addAttribute(kVec4f_GrSLType, EDGE_ATTR_NAME);
423        builder->vsCodeAppendf("\t%s = " EDGE_ATTR_NAME ";\n", vsName);
424        switch (fDesc.fVertexEdgeType) {
425        case GrDrawState::kHairLine_EdgeType:
426            builder->fsCodeAppendf("\tfloat edgeAlpha = abs(dot(vec3(%s.xy,1), %s.xyz));\n", builder->fragmentPosition(), fsName);
427            builder->fsCodeAppendf("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
428            break;
429        case GrDrawState::kQuad_EdgeType:
430            builder->fsCodeAppendf("\tfloat edgeAlpha;\n");
431            // keep the derivative instructions outside the conditional
432            builder->fsCodeAppendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
433            builder->fsCodeAppendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
434            builder->fsCodeAppendf("\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName);
435            // today we know z and w are in device space. We could use derivatives
436            builder->fsCodeAppendf("\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, fsName);
437            builder->fsCodeAppendf ("\t} else {\n");
438            builder->fsCodeAppendf("\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
439                                   "\t\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
440                                    fsName, fsName);
441            builder->fsCodeAppendf("\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
442            builder->fsCodeAppendf("\t\tedgeAlpha = clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n"
443                                   "\t}\n");
444            if (kES2_GrGLBinding == fContext.info().binding()) {
445                builder->fHeader.append("#extension GL_OES_standard_derivatives: enable\n");
446            }
447            break;
448        case GrDrawState::kHairQuad_EdgeType:
449            builder->fsCodeAppendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
450            builder->fsCodeAppendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
451            builder->fsCodeAppendf("\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
452                                   "\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
453                                   fsName, fsName);
454            builder->fsCodeAppendf("\tfloat edgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
455            builder->fsCodeAppend("\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / dot(gF, gF));\n");
456            builder->fsCodeAppend("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
457            if (kES2_GrGLBinding == fContext.info().binding()) {
458                builder->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
459            }
460            break;
461        case GrDrawState::kCircle_EdgeType:
462            builder->fsCodeAppend("\tfloat edgeAlpha;\n");
463            builder->fsCodeAppendf("\tfloat d = distance(%s.xy, %s.xy);\n", builder->fragmentPosition(), fsName);
464            builder->fsCodeAppendf("\tfloat outerAlpha = smoothstep(d - 0.5, d + 0.5, %s.z);\n", fsName);
465            builder->fsCodeAppendf("\tfloat innerAlpha = %s.w == 0.0 ? 1.0 : smoothstep(%s.w - 0.5, %s.w + 0.5, d);\n", fsName, fsName, fsName);
466            builder->fsCodeAppend("\tedgeAlpha = outerAlpha * innerAlpha;\n");
467            break;
468        default:
469            GrCrash("Unknown Edge Type!");
470            break;
471        }
472        if (fDesc.fDiscardIfOutsideEdge) {
473            builder->fsCodeAppend("\tif (edgeAlpha <= 0.0) {\n\t\tdiscard;\n\t}\n");
474        }
475        *coverageVar = "edgeAlpha";
476        return true;
477    } else {
478        coverageVar->reset();
479        return false;
480    }
481}
482
483void GrGLProgram::genInputColor(GrGLShaderBuilder* builder, SkString* inColor) {
484    switch (fDesc.fColorInput) {
485        case GrGLProgram::Desc::kAttribute_ColorInput: {
486            builder->addAttribute(kVec4f_GrSLType, COL_ATTR_NAME);
487            const char *vsName, *fsName;
488            builder->addVarying(kVec4f_GrSLType, "Color", &vsName, &fsName);
489            builder->vsCodeAppendf("\t%s = " COL_ATTR_NAME ";\n", vsName);
490            *inColor = fsName;
491            } break;
492        case GrGLProgram::Desc::kUniform_ColorInput: {
493            const char* name;
494            fUniformHandles.fColorUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
495                                                            kVec4f_GrSLType, "Color", &name);
496            *inColor = name;
497            break;
498        }
499        case GrGLProgram::Desc::kTransBlack_ColorInput:
500            GrAssert(!"needComputedColor should be false.");
501            break;
502        case GrGLProgram::Desc::kSolidWhite_ColorInput:
503            break;
504        default:
505            GrCrash("Unknown color type.");
506            break;
507    }
508}
509
510void GrGLProgram::genUniformCoverage(GrGLShaderBuilder* builder, SkString* inOutCoverage) {
511    const char* covUniName;
512    fUniformHandles.fCoverageUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
513                                                       kVec4f_GrSLType, "Coverage", &covUniName);
514    if (inOutCoverage->size()) {
515        builder->fsCodeAppendf("\tvec4 uniCoverage = %s * %s;\n",
516                               covUniName, inOutCoverage->c_str());
517        *inOutCoverage = "uniCoverage";
518    } else {
519        *inOutCoverage = covUniName;
520    }
521}
522
523namespace {
524void gen_attribute_coverage(GrGLShaderBuilder* builder,
525                            SkString* inOutCoverage) {
526    builder->addAttribute(kVec4f_GrSLType, COV_ATTR_NAME);
527    const char *vsName, *fsName;
528    builder->addVarying(kVec4f_GrSLType, "Coverage", &vsName, &fsName);
529    builder->vsCodeAppendf("\t%s = " COV_ATTR_NAME ";\n", vsName);
530    if (inOutCoverage->size()) {
531        builder->fsCodeAppendf("\tvec4 attrCoverage = %s * %s;\n", fsName, inOutCoverage->c_str());
532        *inOutCoverage = "attrCoverage";
533    } else {
534        *inOutCoverage = fsName;
535    }
536}
537}
538
539void GrGLProgram::genGeometryShader(GrGLShaderBuilder* builder) const {
540#if GR_GL_EXPERIMENTAL_GS
541    // TODO: The builder should add all this glue code.
542    if (fDesc.fExperimentalGS) {
543        GrAssert(fContext.info().glslGeneration() >= k150_GrGLSLGeneration);
544        builder->fGSHeader.append("layout(triangles) in;\n"
545                                   "layout(triangle_strip, max_vertices = 6) out;\n");
546        builder->gsCodeAppend("\tfor (int i = 0; i < 3; ++i) {\n"
547                              "\t\tgl_Position = gl_in[i].gl_Position;\n");
548        if (fDesc.fEmitsPointSize) {
549            builder->gsCodeAppend("\t\tgl_PointSize = 1.0;\n");
550        }
551        GrAssert(builder->fGSInputs.count() == builder->fGSOutputs.count());
552        int count = builder->fGSInputs.count();
553        for (int i = 0; i < count; ++i) {
554            builder->gsCodeAppendf("\t\t%s = %s[i];\n",
555                                   builder->fGSOutputs[i].getName().c_str(),
556                                   builder->fGSInputs[i].getName().c_str());
557        }
558        builder->gsCodeAppend("\t\tEmitVertex();\n"
559                              "\t}\n"
560                              "\tEndPrimitive();\n");
561    }
562#endif
563}
564
565const char* GrGLProgram::adjustInColor(const SkString& inColor) const {
566    if (inColor.size()) {
567          return inColor.c_str();
568    } else {
569        if (Desc::kSolidWhite_ColorInput == fDesc.fColorInput) {
570            return GrGLSLOnesVecf(4);
571        } else {
572            return GrGLSLZerosVecf(4);
573        }
574    }
575}
576
577namespace {
578// prints a shader using params similar to glShaderSource
579void print_shader(GrGLint stringCnt,
580                  const GrGLchar** strings,
581                  GrGLint* stringLengths) {
582    for (int i = 0; i < stringCnt; ++i) {
583        if (NULL == stringLengths || stringLengths[i] < 0) {
584            GrPrintf(strings[i]);
585        } else {
586            GrPrintf("%.*s", stringLengths[i], strings[i]);
587        }
588    }
589}
590
591// Compiles a GL shader, returns shader ID or 0 if failed params have same meaning as glShaderSource
592GrGLuint compile_shader(const GrGLContext& gl,
593                        GrGLenum type,
594                        int stringCnt,
595                        const char** strings,
596                        int* stringLengths) {
597    SK_TRACE_EVENT1("GrGLProgram::CompileShader",
598                    "stringCount", SkStringPrintf("%i", stringCnt).c_str());
599
600    GrGLuint shader;
601    GR_GL_CALL_RET(gl.interface(), shader, CreateShader(type));
602    if (0 == shader) {
603        return 0;
604    }
605
606    const GrGLInterface* gli = gl.interface();
607    GrGLint compiled = GR_GL_INIT_ZERO;
608    GR_GL_CALL(gli, ShaderSource(shader, stringCnt, strings, stringLengths));
609    GR_GL_CALL(gli, CompileShader(shader));
610    GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled));
611
612    if (!compiled) {
613        GrGLint infoLen = GR_GL_INIT_ZERO;
614        GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen));
615        SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
616        if (infoLen > 0) {
617            // retrieve length even though we don't need it to workaround bug in chrome cmd buffer
618            // param validation.
619            GrGLsizei length = GR_GL_INIT_ZERO;
620            GR_GL_CALL(gli, GetShaderInfoLog(shader, infoLen+1,
621                                             &length, (char*)log.get()));
622            print_shader(stringCnt, strings, stringLengths);
623            GrPrintf("\n%s", log.get());
624        }
625        GrAssert(!"Shader compilation failed!");
626        GR_GL_CALL(gli, DeleteShader(shader));
627        return 0;
628    }
629    return shader;
630}
631
632// helper version of above for when shader is already flattened into a single SkString
633GrGLuint compile_shader(const GrGLContext& gl, GrGLenum type, const SkString& shader) {
634    const GrGLchar* str = shader.c_str();
635    int length = shader.size();
636    return compile_shader(gl, type, 1, &str, &length);
637}
638
639}
640
641// compiles all the shaders from builder and stores the shader IDs
642bool GrGLProgram::compileShaders(const GrGLShaderBuilder& builder) {
643
644    SkString shader;
645
646    builder.getShader(GrGLShaderBuilder::kVertex_ShaderType, &shader);
647    if (c_PrintShaders) {
648        GrPrintf(shader.c_str());
649        GrPrintf("\n");
650    }
651
652    if (!(fVShaderID = compile_shader(fContext, GR_GL_VERTEX_SHADER, shader))) {
653        return false;
654    }
655
656    if (builder.fUsesGS) {
657        builder.getShader(GrGLShaderBuilder::kGeometry_ShaderType, &shader);
658        if (c_PrintShaders) {
659            GrPrintf(shader.c_str());
660            GrPrintf("\n");
661        }
662        if (!(fGShaderID = compile_shader(fContext, GR_GL_GEOMETRY_SHADER, shader))) {
663            return false;
664        }
665    } else {
666        fGShaderID = 0;
667    }
668
669    builder.getShader(GrGLShaderBuilder::kFragment_ShaderType, &shader);
670    if (c_PrintShaders) {
671        GrPrintf(shader.c_str());
672        GrPrintf("\n");
673    }
674    if (!(fFShaderID = compile_shader(fContext, GR_GL_FRAGMENT_SHADER, shader))) {
675        return false;
676    }
677
678    return true;
679}
680
681bool GrGLProgram::genProgram(const GrEffectStage* stages[]) {
682    GrAssert(0 == fProgramID);
683
684    GrGLShaderBuilder builder(fContext.info(), fUniformManager);
685    const GrAttribBindings& attribBindings = fDesc.fAttribBindings;
686
687#if GR_GL_EXPERIMENTAL_GS
688    builder.fUsesGS = fDesc.fExperimentalGS;
689#endif
690
691    SkXfermode::Coeff colorCoeff, uniformCoeff;
692    // The rest of transfer mode color filters have not been implemented
693    if (fDesc.fColorFilterXfermode < SkXfermode::kCoeffModesCnt) {
694        GR_DEBUGCODE(bool success =)
695            SkXfermode::ModeAsCoeff(static_cast<SkXfermode::Mode>
696                                    (fDesc.fColorFilterXfermode),
697                                    &uniformCoeff, &colorCoeff);
698        GR_DEBUGASSERT(success);
699    } else {
700        colorCoeff = SkXfermode::kOne_Coeff;
701        uniformCoeff = SkXfermode::kZero_Coeff;
702    }
703
704    // no need to do the color filter if coverage is 0. The output color is scaled by the coverage.
705    // All the dual source outputs are scaled by the coverage as well.
706    if (Desc::kTransBlack_ColorInput == fDesc.fCoverageInput) {
707        colorCoeff = SkXfermode::kZero_Coeff;
708        uniformCoeff = SkXfermode::kZero_Coeff;
709    }
710
711    // If we know the final color is going to be all zeros then we can
712    // simplify the color filter coefficients. needComputedColor will then
713    // come out false below.
714    if (Desc::kTransBlack_ColorInput == fDesc.fColorInput) {
715        colorCoeff = SkXfermode::kZero_Coeff;
716        if (SkXfermode::kDC_Coeff == uniformCoeff ||
717            SkXfermode::kDA_Coeff == uniformCoeff) {
718            uniformCoeff = SkXfermode::kZero_Coeff;
719        } else if (SkXfermode::kIDC_Coeff == uniformCoeff ||
720                   SkXfermode::kIDA_Coeff == uniformCoeff) {
721            uniformCoeff = SkXfermode::kOne_Coeff;
722        }
723    }
724
725    bool needColorFilterUniform;
726    bool needComputedColor;
727    need_blend_inputs(uniformCoeff, colorCoeff,
728                      &needColorFilterUniform, &needComputedColor);
729
730    // the dual source output has no canonical var name, have to
731    // declare an output, which is incompatible with gl_FragColor/gl_FragData.
732    bool dualSourceOutputWritten = false;
733    builder.fHeader.append(GrGetGLSLVersionDecl(fContext.info().binding(),
734                                                fContext.info().glslGeneration()));
735
736    GrGLShaderVar colorOutput;
737    bool isColorDeclared = GrGLSLSetupFSColorOuput(fContext.info().glslGeneration(),
738                                                   declared_color_output_name(),
739                                                   &colorOutput);
740    if (isColorDeclared) {
741        builder.fFSOutputs.push_back(colorOutput);
742    }
743
744    const char* viewMName;
745    fUniformHandles.fViewMatrixUni = builder.addUniform(GrGLShaderBuilder::kVertex_ShaderType,
746                                                        kMat33f_GrSLType, "ViewM", &viewMName);
747
748
749    builder.vsCodeAppendf("\tvec3 pos3 = %s * vec3(%s, 1);\n"
750                          "\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n",
751                          viewMName, builder.positionAttribute().getName().c_str());
752
753    // incoming color to current stage being processed.
754    SkString inColor;
755
756    if (needComputedColor) {
757        this->genInputColor(&builder, &inColor);
758    }
759
760    // we output point size in the GS if present
761    if (fDesc.fEmitsPointSize && !builder.fUsesGS){
762        builder.vsCodeAppend("\tgl_PointSize = 1.0;\n");
763    }
764
765    // add texture coordinates that are used to the list of vertex attr decls
766    if (GrDrawState::AttributesBindExplicitTexCoords(attribBindings)) {
767        builder.addAttribute(kVec2f_GrSLType, TEX_ATTR_NAME);
768    }
769
770    ///////////////////////////////////////////////////////////////////////////
771    // compute the final color
772
773    // if we have color stages string them together, feeding the output color
774    // of each to the next and generating code for each stage.
775    if (needComputedColor) {
776        SkString outColor;
777        for (int s = 0; s < fDesc.fFirstCoverageStage; ++s) {
778            if (GrGLEffect::kNoEffectKey != fDesc.fEffectKeys[s]) {
779                // create var to hold stage result
780                outColor = "color";
781                outColor.appendS32(s);
782                builder.fsCodeAppendf("\tvec4 %s;\n", outColor.c_str());
783
784                const char* inCoords;
785                // figure out what our input coords are
786                if (!GrDrawState::StageBindsExplicitTexCoords(attribBindings, s)) {
787                    inCoords = builder.positionAttribute().c_str();
788                } else {
789                    // must have input tex coordinates if stage is enabled.
790                    inCoords = TEX_ATTR_NAME;
791                }
792
793                builder.setCurrentStage(s);
794                fEffects[s] = builder.createAndEmitGLEffect(*stages[s],
795                                                            fDesc.fEffectKeys[s],
796                                                            inColor.size() ? inColor.c_str() : NULL,
797                                                            outColor.c_str(),
798                                                            inCoords,
799                                                            &fUniformHandles.fSamplerUnis[s]);
800                builder.setNonStage();
801                inColor = outColor;
802            }
803        }
804    }
805
806    // if have all ones or zeros for the "dst" input to the color filter then we
807    // may be able to make additional optimizations.
808    if (needColorFilterUniform && needComputedColor && !inColor.size()) {
809        GrAssert(Desc::kSolidWhite_ColorInput == fDesc.fColorInput);
810        bool uniformCoeffIsZero = SkXfermode::kIDC_Coeff == uniformCoeff ||
811                                  SkXfermode::kIDA_Coeff == uniformCoeff;
812        if (uniformCoeffIsZero) {
813            uniformCoeff = SkXfermode::kZero_Coeff;
814            bool bogus;
815            need_blend_inputs(SkXfermode::kZero_Coeff, colorCoeff,
816                              &needColorFilterUniform, &bogus);
817        }
818    }
819    const char* colorFilterColorUniName = NULL;
820    if (needColorFilterUniform) {
821        fUniformHandles.fColorFilterUni = builder.addUniform(
822                                                        GrGLShaderBuilder::kFragment_ShaderType,
823                                                        kVec4f_GrSLType, "FilterColor",
824                                                        &colorFilterColorUniName);
825    }
826    bool wroteFragColorZero = false;
827    if (SkXfermode::kZero_Coeff == uniformCoeff &&
828        SkXfermode::kZero_Coeff == colorCoeff) {
829        builder.fsCodeAppendf("\t%s = %s;\n", colorOutput.getName().c_str(), GrGLSLZerosVecf(4));
830        wroteFragColorZero = true;
831    } else if (SkXfermode::kDst_Mode != fDesc.fColorFilterXfermode) {
832        builder.fsCodeAppend("\tvec4 filteredColor;\n");
833        const char* color = adjustInColor(inColor);
834        add_color_filter(&builder, "filteredColor", uniformCoeff,
835                         colorCoeff, colorFilterColorUniName, color);
836        inColor = "filteredColor";
837    }
838
839    ///////////////////////////////////////////////////////////////////////////
840    // compute the partial coverage (coverage stages and edge aa)
841
842    SkString inCoverage;
843    bool coverageIsZero = Desc::kTransBlack_ColorInput == fDesc.fCoverageInput;
844    // we don't need to compute coverage at all if we know the final shader
845    // output will be zero and we don't have a dual src blend output.
846    if (!wroteFragColorZero || Desc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) {
847
848        if (!coverageIsZero) {
849            bool inCoverageIsScalar  = this->genEdgeCoverage(&inCoverage, &builder);
850
851            switch (fDesc.fCoverageInput) {
852                case Desc::kSolidWhite_ColorInput:
853                    // empty string implies solid white
854                    break;
855                case Desc::kAttribute_ColorInput:
856                    gen_attribute_coverage(&builder, &inCoverage);
857                    inCoverageIsScalar = false;
858                    break;
859                case Desc::kUniform_ColorInput:
860                    this->genUniformCoverage(&builder, &inCoverage);
861                    inCoverageIsScalar = false;
862                    break;
863                default:
864                    GrCrash("Unexpected input coverage.");
865            }
866
867            SkString outCoverage;
868            const int& startStage = fDesc.fFirstCoverageStage;
869            for (int s = startStage; s < GrDrawState::kNumStages; ++s) {
870                if (fDesc.fEffectKeys[s]) {
871                    // create var to hold stage output
872                    outCoverage = "coverage";
873                    outCoverage.appendS32(s);
874                    builder.fsCodeAppendf("\tvec4 %s;\n", outCoverage.c_str());
875
876                    const char* inCoords;
877                    // figure out what our input coords are
878                    if (!GrDrawState::StageBindsExplicitTexCoords(attribBindings, s)) {
879                        inCoords = builder.positionAttribute().c_str();
880                    } else {
881                        // must have input tex coordinates if stage is
882                        // enabled.
883                        inCoords = TEX_ATTR_NAME;
884                    }
885
886                    // stages don't know how to deal with a scalar input. (Maybe they should. We
887                    // could pass a GrGLShaderVar)
888                    if (inCoverageIsScalar) {
889                        builder.fsCodeAppendf("\tvec4 %s4 = vec4(%s);\n",
890                                              inCoverage.c_str(), inCoverage.c_str());
891                        inCoverage.append("4");
892                    }
893                    builder.setCurrentStage(s);
894                    fEffects[s] = builder.createAndEmitGLEffect(
895                                                    *stages[s],
896                                                    fDesc.fEffectKeys[s],
897                                                    inCoverage.size() ? inCoverage.c_str() : NULL,
898                                                    outCoverage.c_str(),
899                                                    inCoords,
900                                                    &fUniformHandles.fSamplerUnis[s]);
901                    builder.setNonStage();
902                    inCoverage = outCoverage;
903                }
904            }
905
906            // discard if coverage is zero
907            if (fDesc.fDiscardIfOutsideEdge && !outCoverage.isEmpty()) {
908                builder.fsCodeAppendf("\tif (all(lessThanEqual(%s, vec4(0.0)))) {\n\t\tdiscard;\n\t}\n", outCoverage.c_str());
909            }
910        }
911
912        if (Desc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) {
913            builder.fFSOutputs.push_back().set(kVec4f_GrSLType,
914                                               GrGLShaderVar::kOut_TypeModifier,
915                                               dual_source_output_name());
916            bool outputIsZero = coverageIsZero;
917            SkString coeff;
918            if (!outputIsZero &&
919                Desc::kCoverage_DualSrcOutput != fDesc.fDualSrcOutput && !wroteFragColorZero) {
920                if (!inColor.size()) {
921                    outputIsZero = true;
922                } else {
923                    if (Desc::kCoverageISA_DualSrcOutput == fDesc.fDualSrcOutput) {
924                        coeff.printf("(1 - %s.a)", inColor.c_str());
925                    } else {
926                        coeff.printf("(vec4(1,1,1,1) - %s)", inColor.c_str());
927                    }
928                }
929            }
930            if (outputIsZero) {
931                builder.fsCodeAppendf("\t%s = %s;\n", dual_source_output_name(), GrGLSLZerosVecf(4));
932            } else {
933                SkString modulate;
934                GrGLSLModulate4f(&modulate, coeff.c_str(), inCoverage.c_str());
935                builder.fsCodeAppendf("\t%s = %s;\n", dual_source_output_name(), modulate.c_str());
936            }
937            dualSourceOutputWritten = true;
938        }
939    }
940
941    ///////////////////////////////////////////////////////////////////////////
942    // combine color and coverage as frag color
943
944    if (!wroteFragColorZero) {
945        if (coverageIsZero) {
946            builder.fsCodeAppendf("\t%s = %s;\n", colorOutput.getName().c_str(), GrGLSLZerosVecf(4));
947        } else {
948            SkString modulate;
949            GrGLSLModulate4f(&modulate, inColor.c_str(), inCoverage.c_str());
950            builder.fsCodeAppendf("\t%s = %s;\n", colorOutput.getName().c_str(), modulate.c_str());
951        }
952    }
953
954    ///////////////////////////////////////////////////////////////////////////
955    // insert GS
956#if GR_DEBUG
957    this->genGeometryShader(&builder);
958#endif
959
960    ///////////////////////////////////////////////////////////////////////////
961    // compile and setup attribs and unis
962
963    if (!this->compileShaders(builder)) {
964        return false;
965    }
966
967    if (!this->bindOutputsAttribsAndLinkProgram(builder,
968                                                isColorDeclared,
969                                                dualSourceOutputWritten)) {
970        return false;
971    }
972
973    builder.finished(fProgramID);
974    this->initSamplerUniforms();
975    fUniformHandles.fRTHeightUni = builder.getRTHeightUniform();
976
977    return true;
978}
979
980bool GrGLProgram::bindOutputsAttribsAndLinkProgram(const GrGLShaderBuilder& builder,
981                                                   bool bindColorOut,
982                                                   bool bindDualSrcOut) {
983    GL_CALL_RET(fProgramID, CreateProgram());
984    if (!fProgramID) {
985        return false;
986    }
987
988    GL_CALL(AttachShader(fProgramID, fVShaderID));
989    if (fGShaderID) {
990        GL_CALL(AttachShader(fProgramID, fGShaderID));
991    }
992    GL_CALL(AttachShader(fProgramID, fFShaderID));
993
994    if (bindColorOut) {
995        GL_CALL(BindFragDataLocation(fProgramID, 0, declared_color_output_name()));
996    }
997    if (bindDualSrcOut) {
998        GL_CALL(BindFragDataLocationIndexed(fProgramID, 0, 1, dual_source_output_name()));
999    }
1000
1001    // Bind the attrib locations to same values for all shaders
1002    GL_CALL(BindAttribLocation(fProgramID,
1003                               fDesc.fPositionAttributeIndex,
1004                               builder.positionAttribute().c_str()));
1005    GL_CALL(BindAttribLocation(fProgramID, fDesc.fColorAttributeIndex, COL_ATTR_NAME));
1006    GL_CALL(BindAttribLocation(fProgramID, fDesc.fCoverageAttributeIndex, COV_ATTR_NAME));
1007
1008    if (fDesc.fAttribBindings & GrDrawState::kEdge_AttribBindingsBit) {
1009        GL_CALL(BindAttribLocation(fProgramID, fDesc.fEdgeAttributeIndex, EDGE_ATTR_NAME));
1010    }
1011    if (GrDrawState::AttributesBindExplicitTexCoords(fDesc.fAttribBindings)) {
1012        GL_CALL(BindAttribLocation(fProgramID, fDesc.fTexCoordAttributeIndex, TEX_ATTR_NAME));
1013    }
1014
1015    const GrGLShaderBuilder::AttributePair* attribEnd = builder.getEffectAttributes().end();
1016    for (const GrGLShaderBuilder::AttributePair* attrib = builder.getEffectAttributes().begin();
1017         attrib != attribEnd;
1018         ++attrib) {
1019         GL_CALL(BindAttribLocation(fProgramID, attrib->fIndex, attrib->fName.c_str()));
1020    }
1021
1022    GL_CALL(LinkProgram(fProgramID));
1023
1024    GrGLint linked = GR_GL_INIT_ZERO;
1025    GL_CALL(GetProgramiv(fProgramID, GR_GL_LINK_STATUS, &linked));
1026    if (!linked) {
1027        GrGLint infoLen = GR_GL_INIT_ZERO;
1028        GL_CALL(GetProgramiv(fProgramID, GR_GL_INFO_LOG_LENGTH, &infoLen));
1029        SkAutoMalloc log(sizeof(char)*(infoLen+1));  // outside if for debugger
1030        if (infoLen > 0) {
1031            // retrieve length even though we don't need it to workaround
1032            // bug in chrome cmd buffer param validation.
1033            GrGLsizei length = GR_GL_INIT_ZERO;
1034            GL_CALL(GetProgramInfoLog(fProgramID,
1035                                      infoLen+1,
1036                                      &length,
1037                                      (char*)log.get()));
1038            GrPrintf((char*)log.get());
1039        }
1040        GrAssert(!"Error linking program");
1041        GL_CALL(DeleteProgram(fProgramID));
1042        fProgramID = 0;
1043        return false;
1044    }
1045    return true;
1046}
1047
1048void GrGLProgram::initSamplerUniforms() {
1049    GL_CALL(UseProgram(fProgramID));
1050    // We simply bind the uniforms to successive texture units beginning at 0. setData() assumes this
1051    // behavior.
1052    GrGLint texUnitIdx = 0;
1053    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
1054        int numSamplers = fUniformHandles.fSamplerUnis[s].count();
1055        for (int u = 0; u < numSamplers; ++u) {
1056            UniformHandle handle = fUniformHandles.fSamplerUnis[s][u];
1057            if (GrGLUniformManager::kInvalidUniformHandle != handle) {
1058                fUniformManager.setSampler(handle, texUnitIdx);
1059                ++texUnitIdx;
1060            }
1061        }
1062    }
1063}
1064
1065///////////////////////////////////////////////////////////////////////////////
1066
1067void GrGLProgram::setData(GrGpuGL* gpu,
1068                          GrColor color,
1069                          GrColor coverage,
1070                          SharedGLState* sharedState) {
1071    const GrDrawState& drawState = gpu->getDrawState();
1072
1073    this->setColor(drawState, color, sharedState);
1074    this->setCoverage(drawState, coverage, sharedState);
1075    this->setMatrixAndRenderTargetHeight(drawState);
1076
1077    // Setup the SkXfermode::Mode-based colorfilter uniform if necessary
1078    if (GrGLUniformManager::kInvalidUniformHandle != fUniformHandles.fColorFilterUni &&
1079        fColorFilterColor != drawState.getColorFilterColor()) {
1080        GrGLfloat c[4];
1081        GrColorToRGBAFloat(drawState.getColorFilterColor(), c);
1082        fUniformManager.set4fv(fUniformHandles.fColorFilterUni, 0, 1, c);
1083        fColorFilterColor = drawState.getColorFilterColor();
1084    }
1085
1086    GrGLint texUnitIdx = 0;
1087    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
1088        if (NULL != fEffects[s]) {
1089            const GrEffectStage& stage = drawState.getStage(s);
1090            GrAssert(NULL != stage.getEffect());
1091            fEffects[s]->setData(fUniformManager, stage);
1092            int numSamplers = fUniformHandles.fSamplerUnis[s].count();
1093            for (int u = 0; u < numSamplers; ++u) {
1094                UniformHandle handle = fUniformHandles.fSamplerUnis[s][u];
1095                if (GrGLUniformManager::kInvalidUniformHandle != handle) {
1096                    const GrTextureAccess& access = (*stage.getEffect())->textureAccess(u);
1097                    GrGLTexture* texture = static_cast<GrGLTexture*>(access.getTexture());
1098                    gpu->bindTexture(texUnitIdx, access.getParams(), texture);
1099                    ++texUnitIdx;
1100                }
1101            }
1102        }
1103    }
1104}
1105
1106void GrGLProgram::setColor(const GrDrawState& drawState,
1107                           GrColor color,
1108                           SharedGLState* sharedState) {
1109    if (!(drawState.getAttribBindings() & GrDrawState::kColor_AttribBindingsBit)) {
1110        switch (fDesc.fColorInput) {
1111            case GrGLProgram::Desc::kAttribute_ColorInput:
1112                if (sharedState->fConstAttribColor != color) {
1113                    // OpenGL ES only supports the float varieties of glVertexAttrib
1114                    GrGLfloat c[4];
1115                    GrColorToRGBAFloat(color, c);
1116                    GL_CALL(VertexAttrib4fv(fDesc.fColorAttributeIndex, c));
1117                    sharedState->fConstAttribColor = color;
1118                }
1119                break;
1120            case GrGLProgram::Desc::kUniform_ColorInput:
1121                if (fColor != color) {
1122                    // OpenGL ES doesn't support unsigned byte varieties of glUniform
1123                    GrGLfloat c[4];
1124                    GrColorToRGBAFloat(color, c);
1125                    GrAssert(GrGLUniformManager::kInvalidUniformHandle !=
1126                             fUniformHandles.fColorUni);
1127                    fUniformManager.set4fv(fUniformHandles.fColorUni, 0, 1, c);
1128                    fColor = color;
1129                }
1130                break;
1131            case GrGLProgram::Desc::kSolidWhite_ColorInput:
1132            case GrGLProgram::Desc::kTransBlack_ColorInput:
1133                break;
1134            default:
1135                GrCrash("Unknown color type.");
1136        }
1137    }
1138}
1139
1140void GrGLProgram::setCoverage(const GrDrawState& drawState,
1141                              GrColor coverage,
1142                              SharedGLState* sharedState) {
1143    if (!(drawState.getAttribBindings() & GrDrawState::kCoverage_AttribBindingsBit)) {
1144        switch (fDesc.fCoverageInput) {
1145            case Desc::kAttribute_ColorInput:
1146                if (sharedState->fConstAttribCoverage != coverage) {
1147                    // OpenGL ES only supports the float varieties of  glVertexAttrib
1148                    GrGLfloat c[4];
1149                    GrColorToRGBAFloat(coverage, c);
1150                    GL_CALL(VertexAttrib4fv(fDesc.fCoverageAttributeIndex, c));
1151                    sharedState->fConstAttribCoverage = coverage;
1152                }
1153                break;
1154            case Desc::kUniform_ColorInput:
1155                if (fCoverage != coverage) {
1156                    // OpenGL ES doesn't support unsigned byte varieties of glUniform
1157                    GrGLfloat c[4];
1158                    GrColorToRGBAFloat(coverage, c);
1159                    GrAssert(GrGLUniformManager::kInvalidUniformHandle !=
1160                             fUniformHandles.fCoverageUni);
1161                    fUniformManager.set4fv(fUniformHandles.fCoverageUni, 0, 1, c);
1162                    fCoverage = coverage;
1163                }
1164                break;
1165            case Desc::kSolidWhite_ColorInput:
1166            case Desc::kTransBlack_ColorInput:
1167                break;
1168            default:
1169                GrCrash("Unknown coverage type.");
1170        }
1171    }
1172}
1173
1174void GrGLProgram::setMatrixAndRenderTargetHeight(const GrDrawState& drawState) {
1175    const GrRenderTarget* rt = drawState.getRenderTarget();
1176    SkISize size;
1177    size.set(rt->width(), rt->height());
1178
1179    // Load the RT height uniform if it is needed to y-flip gl_FragCoord.
1180    if (GrGLUniformManager::kInvalidUniformHandle != fUniformHandles.fRTHeightUni &&
1181        fMatrixState.fRenderTargetSize.fHeight != size.fHeight) {
1182        fUniformManager.set1f(fUniformHandles.fRTHeightUni, SkIntToScalar(size.fHeight));
1183    }
1184
1185    if (fMatrixState.fRenderTargetOrigin != rt->origin() ||
1186        !fMatrixState.fViewMatrix.cheapEqualTo(drawState.getViewMatrix()) ||
1187        fMatrixState.fRenderTargetSize != size) {
1188        SkMatrix m;
1189        if (kBottomLeft_GrSurfaceOrigin == rt->origin()) {
1190            m.setAll(
1191                SkIntToScalar(2) / size.fWidth, 0, -SK_Scalar1,
1192                0,-SkIntToScalar(2) / size.fHeight, SK_Scalar1,
1193            0, 0, SkMatrix::I()[8]);
1194        } else {
1195            m.setAll(
1196                SkIntToScalar(2) / size.fWidth, 0, -SK_Scalar1,
1197                0, SkIntToScalar(2) / size.fHeight,-SK_Scalar1,
1198            0, 0, SkMatrix::I()[8]);
1199        }
1200        m.setConcat(m, drawState.getViewMatrix());
1201
1202        // ES doesn't allow you to pass true to the transpose param so we do our own transpose.
1203        GrGLfloat mt[]  = {
1204            SkScalarToFloat(m[SkMatrix::kMScaleX]),
1205            SkScalarToFloat(m[SkMatrix::kMSkewY]),
1206            SkScalarToFloat(m[SkMatrix::kMPersp0]),
1207            SkScalarToFloat(m[SkMatrix::kMSkewX]),
1208            SkScalarToFloat(m[SkMatrix::kMScaleY]),
1209            SkScalarToFloat(m[SkMatrix::kMPersp1]),
1210            SkScalarToFloat(m[SkMatrix::kMTransX]),
1211            SkScalarToFloat(m[SkMatrix::kMTransY]),
1212            SkScalarToFloat(m[SkMatrix::kMPersp2])
1213        };
1214        fUniformManager.setMatrix3f(fUniformHandles.fViewMatrixUni, mt);
1215        fMatrixState.fViewMatrix = drawState.getViewMatrix();
1216        fMatrixState.fRenderTargetSize = size;
1217        fMatrixState.fRenderTargetOrigin = rt->origin();
1218    }
1219}
1220