1/*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "SkIntersections.h"
9#include "SkPathOpsCubic.h"
10#include "SkPathOpsLine.h"
11#include "SkPathOpsPoint.h"
12#include "SkPathOpsQuad.h"
13#include "SkPathOpsRect.h"
14#include "SkReduceOrder.h"
15#include "SkTSort.h"
16
17#if ONE_OFF_DEBUG
18static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}};
19static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}};
20#endif
21
22#define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1
23#define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0
24#define SWAP_TOP_DEBUG 0
25
26static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision
27
28static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) {
29    SkDCubic part = cubic.subDivide(tStart, tEnd);
30    SkDQuad quad = part.toQuad();
31    // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
32    // extremely shallow quadratic?
33    int order = reducer->reduce(quad);
34#if DEBUG_QUAD_PART
35    SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
36            " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY,
37            cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY,
38            cubic[3].fX, cubic[3].fY, tStart, tEnd);
39    SkDebugf("  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n"
40             "  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
41            part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY,
42            part[3].fX, part[3].fY, quad[0].fX, quad[0].fY,
43            quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY);
44#if DEBUG_QUAD_PART_SHOW_SIMPLE
45    SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY);
46    if (order > 1) {
47        SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY);
48    }
49    if (order > 2) {
50        SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY);
51    }
52    SkDebugf(")\n");
53    SkASSERT(order < 4 && order > 0);
54#endif
55#endif
56    return order;
57}
58
59static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2,
60        int order2, SkIntersections& i) {
61    if (order1 == 3 && order2 == 3) {
62        i.intersect(simple1, simple2);
63    } else if (order1 <= 2 && order2 <= 2) {
64        i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2);
65    } else if (order1 == 3 && order2 <= 2) {
66        i.intersect(simple1, (const SkDLine&) simple2);
67    } else {
68        SkASSERT(order1 <= 2 && order2 == 3);
69        i.intersect(simple2, (const SkDLine&) simple1);
70        i.swapPts();
71    }
72}
73
74// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
75// chase intersections near quadratic ends, requiring odd hacks to find them.
76static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2,
77        double t2s, double t2e, double precisionScale, SkIntersections& i) {
78    i.upDepth();
79    SkDCubic c1 = cubic1.subDivide(t1s, t1e);
80    SkDCubic c2 = cubic2.subDivide(t2s, t2e);
81    SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1;
82    // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
83    c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1);
84    SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2;
85    c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2);
86    double t1Start = t1s;
87    int ts1Count = ts1.count();
88    for (int i1 = 0; i1 <= ts1Count; ++i1) {
89        const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
90        const double t1 = t1s + (t1e - t1s) * tEnd1;
91        SkReduceOrder s1;
92        int o1 = quadPart(cubic1, t1Start, t1, &s1);
93        double t2Start = t2s;
94        int ts2Count = ts2.count();
95        for (int i2 = 0; i2 <= ts2Count; ++i2) {
96            const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
97            const double t2 = t2s + (t2e - t2s) * tEnd2;
98            if (&cubic1 == &cubic2 && t1Start >= t2Start) {
99                t2Start = t2;
100                continue;
101            }
102            SkReduceOrder s2;
103            int o2 = quadPart(cubic2, t2Start, t2, &s2);
104        #if ONE_OFF_DEBUG
105            char tab[] = "                  ";
106            if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
107                    && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
108                SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab,
109                        __FUNCTION__, t1Start, t1, t2Start, t2);
110                SkIntersections xlocals;
111                xlocals.allowNear(false);
112                intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals);
113                SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
114            }
115        #endif
116            SkIntersections locals;
117            locals.allowNear(false);
118            intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals);
119            int tCount = locals.used();
120            for (int tIdx = 0; tIdx < tCount; ++tIdx) {
121                double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx];
122                double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx];
123    // if the computed t is not sufficiently precise, iterate
124                SkDPoint p1 = cubic1.ptAtT(to1);
125                SkDPoint p2 = cubic2.ptAtT(to2);
126                if (p1.approximatelyEqual(p2)) {
127    // FIXME: local edge may be coincident -- experiment with not propagating coincidence to caller
128//                    SkASSERT(!locals.isCoincident(tIdx));
129                    if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) {
130                        if (i.swapped()) {  //  FIXME: insert should respect swap
131                            i.insert(to2, to1, p1);
132                        } else {
133                            i.insert(to1, to2, p1);
134                        }
135                    }
136                } else {
137/*for random cubics, 16 below catches 99.997% of the intersections. To test for the remaining 0.003%
138  look for nearly coincident curves. and check each 1/16th section.
139*/
140                    double offset = precisionScale / 16;  // FIXME: const is arbitrary: test, refine
141                    double c1Bottom = tIdx == 0 ? 0 :
142                            (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2;
143                    double c1Min = SkTMax(c1Bottom, to1 - offset);
144                    double c1Top = tIdx == tCount - 1 ? 1 :
145                            (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2;
146                    double c1Max = SkTMin(c1Top, to1 + offset);
147                    double c2Min = SkTMax(0., to2 - offset);
148                    double c2Max = SkTMin(1., to2 + offset);
149                #if ONE_OFF_DEBUG
150                    SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
151                            __FUNCTION__,
152                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
153                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
154                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
155                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
156                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
157                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
158                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
159                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
160                    SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
161                            " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
162                            i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
163                            to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
164                    SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
165                            " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
166                            c1Max, c2Min, c2Max);
167                #endif
168                    intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
169                #if ONE_OFF_DEBUG
170                    SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
171                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
172                #endif
173                    if (tCount > 1) {
174                        c1Min = SkTMax(0., to1 - offset);
175                        c1Max = SkTMin(1., to1 + offset);
176                        double c2Bottom = tIdx == 0 ? to2 :
177                                (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2;
178                        double c2Top = tIdx == tCount - 1 ? to2 :
179                                (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2;
180                        if (c2Bottom > c2Top) {
181                            SkTSwap(c2Bottom, c2Top);
182                        }
183                        if (c2Bottom == to2) {
184                            c2Bottom = 0;
185                        }
186                        if (c2Top == to2) {
187                            c2Top = 1;
188                        }
189                        c2Min = SkTMax(c2Bottom, to2 - offset);
190                        c2Max = SkTMin(c2Top, to2 + offset);
191                    #if ONE_OFF_DEBUG
192                        SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
193                            __FUNCTION__,
194                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
195                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
196                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
197                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
198                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
199                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
200                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
201                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
202                        SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
203                                " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
204                                i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
205                                to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
206                        SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
207                                " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
208                                c1Max, c2Min, c2Max);
209                    #endif
210                        intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
211                #if ONE_OFF_DEBUG
212                    SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
213                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
214                #endif
215                        c1Min = SkTMax(c1Bottom, to1 - offset);
216                        c1Max = SkTMin(c1Top, to1 + offset);
217                    #if ONE_OFF_DEBUG
218                        SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
219                        __FUNCTION__,
220                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
221                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
222                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
223                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
224                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
225                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
226                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
227                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
228                        SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
229                                " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
230                                i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
231                                to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
232                        SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
233                                " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
234                                c1Max, c2Min, c2Max);
235                    #endif
236                        intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
237                #if ONE_OFF_DEBUG
238                    SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
239                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
240                #endif
241                    }
242          //          intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
243                    // FIXME: if no intersection is found, either quadratics intersected where
244                    // cubics did not, or the intersection was missed. In the former case, expect
245                    // the quadratics to be nearly parallel at the point of intersection, and check
246                    // for that.
247                }
248            }
249            t2Start = t2;
250        }
251        t1Start = t1;
252    }
253    i.downDepth();
254}
255
256    // if two ends intersect, check middle for coincidence
257bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic& c2) {
258    if (fUsed < 2) {
259        return false;
260    }
261    int last = fUsed - 1;
262    double tRange1 = fT[0][last] - fT[0][0];
263    double tRange2 = fT[1][last] - fT[1][0];
264    for (int index = 1; index < 5; ++index) {
265        double testT1 = fT[0][0] + tRange1 * index / 5;
266        double testT2 = fT[1][0] + tRange2 * index / 5;
267        SkDPoint testPt1 = c1.ptAtT(testT1);
268        SkDPoint testPt2 = c2.ptAtT(testT2);
269        if (!testPt1.approximatelyEqual(testPt2)) {
270            return false;
271        }
272    }
273    if (fUsed > 2) {
274        fPt[1] = fPt[last];
275        fT[0][1] = fT[0][last];
276        fT[1][1] = fT[1][last];
277        fUsed = 2;
278    }
279    fIsCoincident[0] = fIsCoincident[1] = 0x03;
280    return true;
281}
282
283#define LINE_FRACTION 0.1
284
285// intersect the end of the cubic with the other. Try lines from the end to control and opposite
286// end to determine range of t on opposite cubic.
287bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2) {
288    int t1Index = start ? 0 : 3;
289    double testT = (double) !start;
290    bool swap = swapped();
291    // quad/quad at this point checks to see if exact matches have already been found
292    // cubic/cubic can't reject so easily since cubics can intersect same point more than once
293    SkDLine tmpLine;
294    tmpLine[0] = tmpLine[1] = cubic2[t1Index];
295    tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY;
296    tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX;
297    SkIntersections impTs;
298    impTs.allowNear(false);
299    impTs.intersectRay(cubic1, tmpLine);
300    for (int index = 0; index < impTs.used(); ++index) {
301        SkDPoint realPt = impTs.pt(index);
302        if (!tmpLine[0].approximatelyEqual(realPt)) {
303            continue;
304        }
305        if (swap) {
306            cubicInsert(testT, impTs[0][index], tmpLine[0], cubic2, cubic1);
307        } else {
308            cubicInsert(impTs[0][index], testT, tmpLine[0], cubic1, cubic2);
309        }
310        return true;
311    }
312    return false;
313}
314
315
316void SkIntersections::cubicInsert(double one, double two, const SkDPoint& pt,
317        const SkDCubic& cubic1, const SkDCubic& cubic2) {
318    for (int index = 0; index < fUsed; ++index) {
319        if (fT[0][index] == one) {
320            double oldTwo = fT[1][index];
321            if (oldTwo == two) {
322                return;
323            }
324            SkDPoint mid = cubic2.ptAtT((oldTwo + two) / 2);
325            if (mid.approximatelyEqual(fPt[index])) {
326                return;
327            }
328        }
329        if (fT[1][index] == two) {
330            SkDPoint mid = cubic1.ptAtT((fT[0][index] + two) / 2);
331            if (mid.approximatelyEqual(fPt[index])) {
332                return;
333            }
334        }
335    }
336    insert(one, two, pt);
337}
338
339void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2,
340                         const SkDRect& bounds2) {
341    SkDLine line;
342    int t1Index = start ? 0 : 3;
343    double testT = (double) !start;
344   // don't bother if the two cubics are connnected
345    static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this
346    static const int kMaxLineCubicIntersections = 3;
347    SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals;
348    line[0] = cubic1[t1Index];
349    // this variant looks for intersections with the end point and lines parallel to other points
350    for (int index = 0; index < kPointsInCubic; ++index) {
351        if (index == t1Index) {
352            continue;
353        }
354        SkDVector dxy1 = cubic1[index] - line[0];
355        dxy1 /= SkDCubic::gPrecisionUnit;
356        line[1] = line[0] + dxy1;
357        SkDRect lineBounds;
358        lineBounds.setBounds(line);
359        if (!bounds2.intersects(&lineBounds)) {
360            continue;
361        }
362        SkIntersections local;
363        if (!local.intersect(cubic2, line)) {
364            continue;
365        }
366        for (int idx2 = 0; idx2 < local.used(); ++idx2) {
367            double foundT = local[0][idx2];
368            if (approximately_less_than_zero(foundT)
369                    || approximately_greater_than_one(foundT)) {
370                continue;
371            }
372            if (local.pt(idx2).approximatelyEqual(line[0])) {
373                if (swapped()) {  // FIXME: insert should respect swap
374                    insert(foundT, testT, line[0]);
375                } else {
376                    insert(testT, foundT, line[0]);
377                }
378            } else {
379                tVals.push_back(foundT);
380            }
381        }
382    }
383    if (tVals.count() == 0) {
384        return;
385    }
386    SkTQSort<double>(tVals.begin(), tVals.end() - 1);
387    double tMin1 = start ? 0 : 1 - LINE_FRACTION;
388    double tMax1 = start ? LINE_FRACTION : 1;
389    int tIdx = 0;
390    do {
391        int tLast = tIdx;
392        while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
393            ++tLast;
394        }
395        double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0);
396        double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0);
397        int lastUsed = used();
398        if (start ? tMax1 < tMin2 : tMax2 < tMin1) {
399            ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this);
400        }
401        if (lastUsed == used()) {
402            tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0);
403            tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0);
404            if (start ? tMax1 < tMin2 : tMax2 < tMin1) {
405                ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this);
406            }
407        }
408        tIdx = tLast + 1;
409    } while (tIdx < tVals.count());
410    return;
411}
412
413const double CLOSE_ENOUGH = 0.001;
414
415static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
416    if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) {
417        return false;
418    }
419    pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2);
420    return true;
421}
422
423static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
424    int last = i.used() - 1;
425    if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
426        return false;
427    }
428    pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2);
429    return true;
430}
431
432static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) {
433// the idea here is to see at minimum do a quick reject by rotating all points
434// to either side of the line formed by connecting the endpoints
435// if the opposite curves points are on the line or on the other side, the
436// curves at most intersect at the endpoints
437    for (int oddMan = 0; oddMan < 4; ++oddMan) {
438        const SkDPoint* endPt[3];
439        for (int opp = 1; opp < 4; ++opp) {
440            int end = oddMan ^ opp;  // choose a value not equal to oddMan
441            endPt[opp - 1] = &c1[end];
442        }
443        for (int triTest = 0; triTest < 3; ++triTest) {
444            double origX = endPt[triTest]->fX;
445            double origY = endPt[triTest]->fY;
446            int oppTest = triTest + 1;
447            if (3 == oppTest) {
448                oppTest = 0;
449            }
450            double adj = endPt[oppTest]->fX - origX;
451            double opp = endPt[oppTest]->fY - origY;
452            if (adj == 0 && opp == 0) {  // if the other point equals the test point, ignore it
453                continue;
454            }
455            double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX) * opp;
456            if (approximately_zero(sign)) {
457                goto tryNextHalfPlane;
458            }
459            for (int n = 0; n < 4; ++n) {
460                double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp;
461                if (test * sign > 0 && !precisely_zero(test)) {
462                    goto tryNextHalfPlane;
463                }
464            }
465        }
466        return true;
467tryNextHalfPlane:
468        ;
469    }
470    return false;
471}
472
473int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) {
474    if (fMax == 0) {
475        fMax = 9;
476    }
477    bool selfIntersect = &c1 == &c2;
478    if (selfIntersect) {
479        if (c1[0].approximatelyEqual(c1[3])) {
480            insert(0, 1, c1[0]);
481            return fUsed;
482        }
483    } else {
484        // OPTIMIZATION: set exact end bits here to avoid cubic exact end later
485        for (int i1 = 0; i1 < 4; i1 += 3) {
486            for (int i2 = 0; i2 < 4; i2 += 3) {
487                if (c1[i1].approximatelyEqual(c2[i2])) {
488                    insert(i1 >> 1, i2 >> 1, c1[i1]);
489                }
490            }
491        }
492    }
493    SkASSERT(fUsed < 4);
494    if (!selfIntersect) {
495        if (only_end_pts_in_common(c1, c2)) {
496            return fUsed;
497        }
498        if (only_end_pts_in_common(c2, c1)) {
499            return fUsed;
500        }
501    }
502    // quad/quad does linear test here -- cubic does not
503    // cubics which are really lines should have been detected in reduce step earlier
504    int exactEndBits = 0;
505    if (selfIntersect) {
506        if (fUsed) {
507            return fUsed;
508        }
509    } else {
510        exactEndBits |= cubicExactEnd(c1, false, c2) << 0;
511        exactEndBits |= cubicExactEnd(c1, true, c2) << 1;
512        swap();
513        exactEndBits |= cubicExactEnd(c2, false, c1) << 2;
514        exactEndBits |= cubicExactEnd(c2, true, c1) << 3;
515        swap();
516    }
517    if (cubicCheckCoincidence(c1, c2)) {
518        SkASSERT(!selfIntersect);
519        return fUsed;
520    }
521    // FIXME: pass in cached bounds from caller
522    SkDRect c2Bounds;
523    c2Bounds.setBounds(c2);
524    if (!(exactEndBits & 4)) {
525        cubicNearEnd(c1, false, c2, c2Bounds);
526    }
527    if (!(exactEndBits & 8)) {
528        if (selfIntersect && fUsed) {
529            return fUsed;
530        }
531        cubicNearEnd(c1, true, c2, c2Bounds);
532        if (selfIntersect && fUsed && ((approximately_less_than_zero(fT[0][0])
533                    && approximately_less_than_zero(fT[1][0]))
534                    || (approximately_greater_than_one(fT[0][0])
535                    && approximately_greater_than_one(fT[1][0])))) {
536            SkASSERT(fUsed == 1);
537            fUsed = 0;
538            return fUsed;
539        }
540    }
541    if (!selfIntersect) {
542        SkDRect c1Bounds;
543        c1Bounds.setBounds(c1);  // OPTIMIZE use setRawBounds ?
544        swap();
545        if (!(exactEndBits & 1)) {
546            cubicNearEnd(c2, false, c1, c1Bounds);
547        }
548        if (!(exactEndBits & 2)) {
549            cubicNearEnd(c2, true, c1, c1Bounds);
550        }
551        swap();
552    }
553    if (cubicCheckCoincidence(c1, c2)) {
554        SkASSERT(!selfIntersect);
555        return fUsed;
556    }
557    SkIntersections i;
558    i.fAllowNear = false;
559    i.fMax = 9;
560    ::intersect(c1, 0, 1, c2, 0, 1, 1, i);
561    int compCount = i.used();
562    if (compCount) {
563        int exactCount = used();
564        if (exactCount == 0) {
565            *this = i;
566        } else {
567            // at least one is exact or near, and at least one was computed. Eliminate duplicates
568            for (int exIdx = 0; exIdx < exactCount; ++exIdx) {
569                for (int cpIdx = 0; cpIdx < compCount; ) {
570                    if (fT[0][0] == i[0][0] && fT[1][0] == i[1][0]) {
571                        i.removeOne(cpIdx);
572                        --compCount;
573                        continue;
574                    }
575                    double tAvg = (fT[0][exIdx] + i[0][cpIdx]) / 2;
576                    SkDPoint pt = c1.ptAtT(tAvg);
577                    if (!pt.approximatelyEqual(fPt[exIdx])) {
578                        ++cpIdx;
579                        continue;
580                    }
581                    tAvg = (fT[1][exIdx] + i[1][cpIdx]) / 2;
582                    pt = c2.ptAtT(tAvg);
583                    if (!pt.approximatelyEqual(fPt[exIdx])) {
584                        ++cpIdx;
585                        continue;
586                    }
587                    i.removeOne(cpIdx);
588                    --compCount;
589                }
590            }
591            // if mid t evaluates to nearly the same point, skip the t
592            for (int cpIdx = 0; cpIdx < compCount - 1; ) {
593                double tAvg = (fT[0][cpIdx] + i[0][cpIdx + 1]) / 2;
594                SkDPoint pt = c1.ptAtT(tAvg);
595                if (!pt.approximatelyEqual(fPt[cpIdx])) {
596                    ++cpIdx;
597                    continue;
598                }
599                tAvg = (fT[1][cpIdx] + i[1][cpIdx + 1]) / 2;
600                pt = c2.ptAtT(tAvg);
601                if (!pt.approximatelyEqual(fPt[cpIdx])) {
602                    ++cpIdx;
603                    continue;
604                }
605                i.removeOne(cpIdx);
606                --compCount;
607            }
608            // in addition to adding below missing function, think about how to say
609            append(i);
610        }
611    }
612    // If an end point and a second point very close to the end is returned, the second
613    // point may have been detected because the approximate quads
614    // intersected at the end and close to it. Verify that the second point is valid.
615    if (fUsed <= 1) {
616        return fUsed;
617    }
618    SkDPoint pt[2];
619    if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1])
620            && pt[0].approximatelyEqual(pt[1])) {
621        removeOne(1);
622    }
623    if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1])
624            && pt[0].approximatelyEqual(pt[1])) {
625        removeOne(used() - 2);
626    }
627    // vet the pairs of t values to see if the mid value is also on the curve. If so, mark
628    // the span as coincident
629    if (fUsed >= 2 && !coincidentUsed()) {
630        int last = fUsed - 1;
631        int match = 0;
632        for (int index = 0; index < last; ++index) {
633            double mid1 = (fT[0][index] + fT[0][index + 1]) / 2;
634            double mid2 = (fT[1][index] + fT[1][index + 1]) / 2;
635            pt[0] = c1.ptAtT(mid1);
636            pt[1] = c2.ptAtT(mid2);
637            if (pt[0].approximatelyEqual(pt[1])) {
638                match |= 1 << index;
639            }
640        }
641        if (match) {
642#if DEBUG_CONCIDENT
643            if (((match + 1) & match) != 0) {
644                SkDebugf("%s coincident hole\n", __FUNCTION__);
645            }
646#endif
647            // for now, assume that everything from start to finish is coincident
648            if (fUsed > 2) {
649                  fPt[1] = fPt[last];
650                  fT[0][1] = fT[0][last];
651                  fT[1][1] = fT[1][last];
652                  fIsCoincident[0] = 0x03;
653                  fIsCoincident[1] = 0x03;
654                  fUsed = 2;
655            }
656        }
657    }
658    return fUsed;
659}
660
661// Up promote the quad to a cubic.
662// OPTIMIZATION If this is a common use case, optimize by duplicating
663// the intersect 3 loop to avoid the promotion  / demotion code
664int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) {
665    fMax = 6;
666    SkDCubic up = quad.toCubic();
667    (void) intersect(cubic, up);
668    return used();
669}
670
671/* http://www.ag.jku.at/compass/compasssample.pdf
672( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen
673Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no
674SINTEF Applied Mathematics http://www.sintef.no )
675describes a method to find the self intersection of a cubic by taking the gradient of the implicit
676form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/
677
678int SkIntersections::intersect(const SkDCubic& c) {
679    fMax = 1;
680    // check to see if x or y end points are the extrema. Are other quick rejects possible?
681    if (c.endsAreExtremaInXOrY()) {
682        return false;
683    }
684    // OPTIMIZATION: could quick reject if neither end point tangent ray intersected the line
685    // segment formed by the opposite end point to the control point
686    (void) intersect(c, c);
687    if (used() > 0) {
688        if (approximately_equal_double(fT[0][0], fT[1][0])) {
689            fUsed = 0;
690        } else {
691            SkASSERT(used() == 1);
692            if (fT[0][0] > fT[1][0]) {
693                swapPts();
694            }
695        }
696    }
697    return used();
698}
699