eas_chorus.c revision e442bb7cd6a085b33a4dd52c0e20a157ada7feb1
1/*----------------------------------------------------------------------------
2 *
3 * File:
4 * eas_chorus.c
5 *
6 * Contents and purpose:
7 * Contains the implementation of the Chorus effect.
8 *
9 *
10 * Copyright Sonic Network Inc. 2006
11
12 * Licensed under the Apache License, Version 2.0 (the "License");
13 * you may not use this file except in compliance with the License.
14 * You may obtain a copy of the License at
15 *
16 *      http://www.apache.org/licenses/LICENSE-2.0
17 *
18 * Unless required by applicable law or agreed to in writing, software
19 * distributed under the License is distributed on an "AS IS" BASIS,
20 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21 * See the License for the specific language governing permissions and
22 * limitations under the License.
23 *
24 *----------------------------------------------------------------------------
25 * Revision Control:
26 *   $Revision: 499 $
27 *   $Date: 2006-12-11 16:07:20 -0800 (Mon, 11 Dec 2006) $
28 *----------------------------------------------------------------------------
29*/
30
31#include "eas_data.h"
32#include "eas_effects.h"
33#include "eas_math.h"
34#include "eas_chorusdata.h"
35#include "eas_chorus.h"
36#include "eas_config.h"
37#include "eas_host.h"
38#include "eas_report.h"
39
40/* prototypes for effects interface */
41static EAS_RESULT ChorusInit (EAS_DATA_HANDLE pEASData, EAS_VOID_PTR *pInstData);
42static void ChorusProcess (EAS_VOID_PTR pInstData, EAS_PCM *pSrc, EAS_PCM *pDst, EAS_I32 numSamples);
43static EAS_RESULT ChorusShutdown (EAS_DATA_HANDLE pEASData, EAS_VOID_PTR pInstData);
44static EAS_RESULT ChorusGetParam (EAS_VOID_PTR pInstData, EAS_I32 param, EAS_I32 *pValue);
45static EAS_RESULT ChorusSetParam (EAS_VOID_PTR pInstData, EAS_I32 param, EAS_I32 value);
46
47/* common effects interface for configuration module */
48const S_EFFECTS_INTERFACE EAS_Chorus =
49{
50	ChorusInit,
51	ChorusProcess,
52	ChorusShutdown,
53	ChorusGetParam,
54	ChorusSetParam
55};
56
57
58
59//LFO shape table used by the chorus, larger table would sound better
60//this is a sine wave, where 32767 = 1.0
61static const EAS_I16 EAS_chorusShape[CHORUS_SHAPE_SIZE] = {
62	0, 1608, 3212, 4808, 6393, 7962, 9512, 11309, 12539, 14010, 15446, 16846, 18204, 19519, 20787, 22005, 23170,
63	24279, 25329, 26319, 27245, 28105, 28898, 29621, 30273, 30852, 31356, 31785, 32137, 32412, 32609, 32728,
64	32767, 32728, 32609, 32412, 32137, 31785, 31356, 30852, 30273, 29621, 28898, 28105, 27245, 26319, 25329,
65	24279, 23170, 22005, 20787, 19519, 18204, 16846, 15446, 14010, 12539, 11039, 9512, 7962, 6393, 4808, 3212,
66	1608, 0, -1608, -3212, -4808, -6393, -7962, -9512, -11309, -12539, -14010, -15446, -16846, -18204, -19519,
67	-20787, -22005, -23170, -24279, -25329, -26319, -27245, -28105, -28898, -29621, -30273, -30852, -31356, -31785,
68	-32137, -32412, -32609, -32728, -32767, -32728, -32609, -32412, -32137, -31785, -31356, -30852, -30273, -29621,
69	-28898, -28105, -27245, -26319, -25329, -24279, -23170, -22005, -20787, -19519, -18204, -16846, -15446, -14010,
70	-12539, -11039, -9512, -7962, -6393, -4808, -3212, -1608
71};
72
73/*----------------------------------------------------------------------------
74 * InitializeChorus()
75 *----------------------------------------------------------------------------
76 * Purpose: Initializes chorus parameters
77 *
78 *
79 * Inputs:
80 *
81 * Outputs:
82 *
83 *----------------------------------------------------------------------------
84*/
85static EAS_RESULT ChorusInit (EAS_DATA_HANDLE pEASData, EAS_VOID_PTR *pInstData)
86{
87	S_CHORUS_OBJECT *pChorusData;
88	S_CHORUS_PRESET *pPreset;
89	EAS_I32 index;
90
91	/* check Configuration Module for data allocation */
92	if (pEASData->staticMemoryModel)
93		pChorusData = EAS_CMEnumFXData(EAS_MODULE_CHORUS);
94
95	/* allocate dynamic memory */
96	else
97		pChorusData = EAS_HWMalloc(pEASData->hwInstData, sizeof(S_CHORUS_OBJECT));
98
99	if (pChorusData == NULL)
100	{
101		{ /* dpp: EAS_ReportEx(_EAS_SEVERITY_FATAL, "Failed to allocate Chorus memory\n"); */ }
102		return EAS_ERROR_MALLOC_FAILED;
103	}
104
105	/* clear the structure */
106	EAS_HWMemSet(pChorusData, 0, sizeof(S_CHORUS_OBJECT));
107
108	ChorusReadInPresets(pChorusData);
109
110	/* set some default values */
111	pChorusData->bypass =		EAS_CHORUS_BYPASS_DEFAULT;
112	pChorusData->preset =		EAS_CHORUS_PRESET_DEFAULT;
113	pChorusData->m_nLevel =		EAS_CHORUS_LEVEL_DEFAULT;
114	pChorusData->m_nRate =		EAS_CHORUS_RATE_DEFAULT;
115	pChorusData->m_nDepth =		EAS_CHORUS_DEPTH_DEFAULT;
116
117	//chorus rate and depth need some massaging from preset value (which is sample rate independent)
118
119	//convert rate from steps of .05 Hz to value which can be used as phase increment,
120	//with current CHORUS_SHAPE_SIZE and rate limits, this fits into 16 bits
121	//want to compute ((shapeSize * 65536) * (storedRate/20))/sampleRate;
122	//computing it as below allows rate steps to be evenly spaced
123	//uses 32 bit divide, but only once when new value is selected
124	pChorusData->m_nRate = (EAS_I16)
125		((((EAS_I32)CHORUS_SHAPE_SIZE<<16)/(20*(EAS_I32)_OUTPUT_SAMPLE_RATE)) * pChorusData->m_nRate);
126
127	//convert depth from steps of .05 ms, to samples, with 16 bit whole part, discard fraction
128	//want to compute ((depth * sampleRate)/20000)
129	//use the following approximation since 105/32 is roughly 65536/20000
130	/*lint -e{704} use shift for performance */
131	pChorusData->m_nDepth = (EAS_I16)
132		(((((EAS_I32)pChorusData->m_nDepth * _OUTPUT_SAMPLE_RATE)>>5) * 105) >> 16);
133
134	pChorusData->m_nLevel = pChorusData->m_nLevel;
135
136	//zero delay memory for chorus
137	for (index = CHORUS_L_SIZE - 1; index >= 0; index--)
138	{
139		pChorusData->chorusDelayL[index] = 0;
140	}
141	for (index = CHORUS_R_SIZE - 1; index >= 0; index--)
142	{
143		pChorusData->chorusDelayR[index] = 0;
144	}
145
146	//init delay line index, these are used to implement circular delay buffer
147	pChorusData->chorusIndexL = 0;
148	pChorusData->chorusIndexR = 0;
149
150	//init LFO phase
151	//16 bit whole part, 16 bit fraction
152	pChorusData->lfoLPhase = 0;
153	pChorusData->lfoRPhase = (CHORUS_SHAPE_SIZE << 16) >> 2; // 1/4 of total, i.e. 90 degrees out of phase;
154
155	//init chorus delay position
156	//right now chorus delay is a compile-time value, as is sample rate
157	pChorusData->chorusTapPosition = (EAS_I16)((CHORUS_DELAY_MS * _OUTPUT_SAMPLE_RATE)/1000);
158
159	//now copy from the new preset into Chorus
160	pPreset = &pChorusData->m_sPreset.m_sPreset[pChorusData->m_nNextChorus];
161
162	pChorusData->m_nLevel = pPreset->m_nLevel;
163	pChorusData->m_nRate =  pPreset->m_nRate;
164	pChorusData->m_nDepth = pPreset->m_nDepth;
165
166	pChorusData->m_nRate = (EAS_I16)
167		((((EAS_I32)CHORUS_SHAPE_SIZE<<16)/(20*(EAS_I32)_OUTPUT_SAMPLE_RATE)) * pChorusData->m_nRate);
168
169	/*lint -e{704} use shift for performance */
170	pChorusData->m_nDepth = (EAS_I16)
171		(((((EAS_I32)pChorusData->m_nDepth * _OUTPUT_SAMPLE_RATE)>>5) * 105) >> 16);
172
173	*pInstData = pChorusData;
174
175	return EAS_SUCCESS;
176} /* end ChorusInit */
177
178/*----------------------------------------------------------------------------
179 * WeightedTap()
180 *----------------------------------------------------------------------------
181 * Purpose: Does fractional array look-up using linear interpolation
182 *
183 * first convert indexDesired to actual desired index by taking into account indexReference
184 * then do linear interpolation between two actual samples using fractional part
185 *
186 * Inputs:
187 * array: pointer to array of signed 16 bit values, typically either PCM data or control data
188 * indexReference: the circular buffer relative offset
189 * indexDesired: the fractional index we are looking up (16 bits index + 16 bits fraction)
190 * indexLimit: the total size of the array, used to compute buffer wrap
191 *
192 * Outputs:
193 * Value from the input array, linearly interpolated between two actual data values
194 *
195 *----------------------------------------------------------------------------
196*/
197static EAS_I16 WeightedTap(const EAS_I16 *array, EAS_I16 indexReference, EAS_I32 indexDesired, EAS_I16 indexLimit)
198{
199	EAS_I16 index;
200	EAS_I16 fraction;
201	EAS_I16 val1;
202	EAS_I16 val2;
203
204	//separate indexDesired into whole and fractional parts
205	/*lint -e{704} use shift for performance */
206	index = (EAS_I16)(indexDesired >> 16);
207	/*lint -e{704} use shift for performance */
208	fraction = (EAS_I16)((indexDesired>>1) & 0x07FFF); //just use 15 bits of fractional part
209
210	//adjust whole part by indexReference
211	index = indexReference - index;
212	//make sure we stay within array bounds, this implements circular buffer
213	while (index < 0)
214	{
215		index += indexLimit;
216	}
217
218	//get two adjacent values from the array
219	val1 = array[index];
220
221	//handle special case when index == 0, else typical case
222	if (index == 0)
223	{
224		val2 = array[indexLimit-1]; //get last value from array
225	}
226	else
227	{
228		val2 = array[index-1]; //get previous value from array
229	}
230
231	//compute linear interpolation as (val1 + ((val2-val1)*fraction))
232	return(val1 + (EAS_I16)MULT_EG1_EG1(val2-val1,fraction));
233}
234
235/*----------------------------------------------------------------------------
236 * ChorusProcess()
237 *----------------------------------------------------------------------------
238 * Purpose: compute the chorus on the input buffer, and mix into output buffer
239 *
240 *
241 * Inputs:
242 * src: pointer to input buffer of PCM values to be processed
243 * dst: pointer to output buffer of PCM values we are to sume the result with
244 * bufSize: the number of sample frames (i.e. stereo samples) in the buffer
245 *
246 * Outputs:
247 * None
248 *
249 *----------------------------------------------------------------------------
250*/
251//compute the chorus, and mix into output buffer
252static void ChorusProcess (EAS_VOID_PTR pInstData, EAS_PCM *pSrc, EAS_PCM *pDst, EAS_I32 numSamples)
253{
254	EAS_I32 ix;
255	EAS_I32 nChannelNumber;
256	EAS_I16 lfoValueLeft;
257	EAS_I16 lfoValueRight;
258	EAS_I32 positionOffsetL;
259	EAS_I32 positionOffsetR;
260	EAS_PCM tapL;
261	EAS_PCM tapR;
262	EAS_I32 tempValue;
263	EAS_PCM nInputSample;
264	EAS_I32 nOutputSample;
265	EAS_PCM *pIn;
266	EAS_PCM *pOut;
267
268	S_CHORUS_OBJECT *pChorusData;
269
270	pChorusData = (S_CHORUS_OBJECT*) pInstData;
271
272	//if the chorus is disabled or turned all the way down
273	if (pChorusData->bypass == EAS_TRUE || pChorusData->m_nLevel == 0)
274	{
275		if (pSrc != pDst)
276			EAS_HWMemCpy(pSrc, pDst, numSamples * NUM_OUTPUT_CHANNELS * (EAS_I32) sizeof(EAS_PCM));
277		return;
278	}
279
280	if (pChorusData->m_nNextChorus != pChorusData->m_nCurrentChorus)
281	{
282		ChorusUpdate(pChorusData);
283	}
284
285	for (nChannelNumber = 0; nChannelNumber < NUM_OUTPUT_CHANNELS; nChannelNumber++)
286	{
287
288		pIn = pSrc + nChannelNumber;
289		pOut = pDst + nChannelNumber;
290
291		if(nChannelNumber==0)
292		{
293			for (ix = 0; ix < numSamples; ix++)
294			{
295				nInputSample = *pIn;
296				pIn += NUM_OUTPUT_CHANNELS;
297
298				//feed input into chorus delay line
299				pChorusData->chorusDelayL[pChorusData->chorusIndexL] = nInputSample;
300
301				//compute chorus lfo value using phase as fractional index into chorus shape table
302				//resulting value is between -1.0 and 1.0, expressed as signed 16 bit number
303				lfoValueLeft = WeightedTap(EAS_chorusShape, 0, pChorusData->lfoLPhase, CHORUS_SHAPE_SIZE);
304
305				//scale chorus depth by lfo value to get relative fractional sample index
306				//index is expressed as 32 bit number with 16 bit fractional part
307				/*lint -e{703} use shift for performance */
308				positionOffsetL = pChorusData->m_nDepth * (((EAS_I32)lfoValueLeft) << 1);
309
310				//add fixed chorus delay to get actual fractional sample index
311				positionOffsetL += ((EAS_I32)pChorusData->chorusTapPosition) << 16;
312
313				//get tap value from chorus delay using fractional sample index
314				tapL = WeightedTap(pChorusData->chorusDelayL, pChorusData->chorusIndexL, positionOffsetL, CHORUS_L_SIZE);
315
316				//scale by chorus level, then sum with input buffer contents and saturate
317				tempValue = MULT_EG1_EG1(tapL, pChorusData->m_nLevel);
318				nOutputSample = SATURATE(tempValue + nInputSample);
319
320				*pOut = (EAS_I16)SATURATE(nOutputSample);
321				pOut += NUM_OUTPUT_CHANNELS;
322
323
324				//increment chorus delay index and make it wrap as needed
325				//this implements circular buffer
326				if ((pChorusData->chorusIndexL+=1) >= CHORUS_L_SIZE)
327					pChorusData->chorusIndexL = 0;
328
329				//increment fractional lfo phase, and make it wrap as needed
330				pChorusData->lfoLPhase += pChorusData->m_nRate;
331				while (pChorusData->lfoLPhase >= (CHORUS_SHAPE_SIZE<<16))
332				{
333					pChorusData->lfoLPhase -= (CHORUS_SHAPE_SIZE<<16);
334				}
335			}
336		}
337		else
338		{
339			for (ix = 0; ix < numSamples; ix++)
340			{
341				nInputSample = *pIn;
342				pIn += NUM_OUTPUT_CHANNELS;
343
344				//feed input into chorus delay line
345				pChorusData->chorusDelayR[pChorusData->chorusIndexR] = nInputSample;
346
347				//compute chorus lfo value using phase as fractional index into chorus shape table
348				//resulting value is between -1.0 and 1.0, expressed as signed 16 bit number
349				lfoValueRight = WeightedTap(EAS_chorusShape, 0, pChorusData->lfoRPhase, CHORUS_SHAPE_SIZE);
350
351				//scale chorus depth by lfo value to get relative fractional sample index
352				//index is expressed as 32 bit number with 16 bit fractional part
353				/*lint -e{703} use shift for performance */
354				positionOffsetR = pChorusData->m_nDepth * (((EAS_I32)lfoValueRight) << 1);
355
356				//add fixed chorus delay to get actual fractional sample index
357				positionOffsetR += ((EAS_I32)pChorusData->chorusTapPosition) << 16;
358
359				//get tap value from chorus delay using fractional sample index
360				tapR = WeightedTap(pChorusData->chorusDelayR, pChorusData->chorusIndexR, positionOffsetR, CHORUS_R_SIZE);
361
362				//scale by chorus level, then sum with output buffer contents and saturate
363				tempValue = MULT_EG1_EG1(tapR, pChorusData->m_nLevel);
364				nOutputSample = SATURATE(tempValue + nInputSample);
365
366				*pOut = (EAS_I16)SATURATE(nOutputSample);
367				pOut += NUM_OUTPUT_CHANNELS;
368
369				//increment chorus delay index and make it wrap as needed
370				//this implements circular buffer
371				if ((pChorusData->chorusIndexR+=1) >= CHORUS_R_SIZE)
372					pChorusData->chorusIndexR = 0;
373
374				//increment fractional lfo phase, and make it wrap as needed
375				pChorusData->lfoRPhase += pChorusData->m_nRate;
376				while (pChorusData->lfoRPhase >= (CHORUS_SHAPE_SIZE<<16))
377				{
378					pChorusData->lfoRPhase -= (CHORUS_SHAPE_SIZE<<16);
379				}
380			}
381		}
382
383	}
384}  /* end ChorusProcess */
385
386
387
388/*----------------------------------------------------------------------------
389 * ChorusShutdown()
390 *----------------------------------------------------------------------------
391 * Purpose:
392 * Initializes the Chorus effect.
393 *
394 * Inputs:
395 * pInstData		- handle to instance data
396 *
397 * Outputs:
398 *
399 *
400 * Side Effects:
401 *
402 *----------------------------------------------------------------------------
403*/
404static EAS_RESULT ChorusShutdown (EAS_DATA_HANDLE pEASData, EAS_VOID_PTR pInstData)
405{
406	/* check Configuration Module for static memory allocation */
407	if (!pEASData->staticMemoryModel)
408		EAS_HWFree(pEASData->hwInstData, pInstData);
409	return EAS_SUCCESS;
410} /* end ChorusShutdown */
411
412/*----------------------------------------------------------------------------
413 * ChorusGetParam()
414 *----------------------------------------------------------------------------
415 * Purpose:
416 * Get a Chorus parameter
417 *
418 * Inputs:
419 * pInstData		- handle to instance data
420 * param			- parameter index
421 * *pValue			- pointer to variable to hold retrieved value
422 *
423 * Outputs:
424 *
425 *
426 * Side Effects:
427 *
428 *----------------------------------------------------------------------------
429*/
430static EAS_RESULT ChorusGetParam (EAS_VOID_PTR pInstData, EAS_I32 param, EAS_I32 *pValue)
431{
432	S_CHORUS_OBJECT *p;
433
434	p = (S_CHORUS_OBJECT*) pInstData;
435
436	switch (param)
437	{
438		case EAS_PARAM_CHORUS_BYPASS:
439			*pValue = (EAS_I32) p->bypass;
440			break;
441		case EAS_PARAM_CHORUS_PRESET:
442			*pValue = (EAS_I8) p->m_nCurrentChorus;
443			break;
444		case EAS_PARAM_CHORUS_RATE:
445			*pValue = (EAS_I32) p->m_nRate;
446			break;
447		case EAS_PARAM_CHORUS_DEPTH:
448			*pValue = (EAS_I32) p->m_nDepth;
449			break;
450		case EAS_PARAM_CHORUS_LEVEL:
451			*pValue = (EAS_I32) p->m_nLevel;
452			break;
453		default:
454			return EAS_ERROR_INVALID_PARAMETER;
455	}
456	return EAS_SUCCESS;
457} /* end ChorusGetParam */
458
459
460/*----------------------------------------------------------------------------
461 * ChorusSetParam()
462 *----------------------------------------------------------------------------
463 * Purpose:
464 * Set a Chorus parameter
465 *
466 * Inputs:
467 * pInstData		- handle to instance data
468 * param			- parameter index
469 * *pValue			- new paramter value
470 *
471 * Outputs:
472 *
473 *
474 * Side Effects:
475 *
476 *----------------------------------------------------------------------------
477*/
478static EAS_RESULT ChorusSetParam (EAS_VOID_PTR pInstData, EAS_I32 param, EAS_I32 value)
479{
480	S_CHORUS_OBJECT *p;
481
482	p = (S_CHORUS_OBJECT*) pInstData;
483
484	switch (param)
485	{
486		case EAS_PARAM_CHORUS_BYPASS:
487			p->bypass = (EAS_BOOL) value;
488			break;
489		case EAS_PARAM_CHORUS_PRESET:
490			if(value!=EAS_PARAM_CHORUS_PRESET1 && value!=EAS_PARAM_CHORUS_PRESET2 &&
491				value!=EAS_PARAM_CHORUS_PRESET3 && value!=EAS_PARAM_CHORUS_PRESET4)
492				return EAS_ERROR_INVALID_PARAMETER;
493			p->m_nNextChorus = (EAS_I8)value;
494			break;
495		case EAS_PARAM_CHORUS_RATE:
496			if(value<EAS_CHORUS_RATE_MIN || value>EAS_CHORUS_RATE_MAX)
497				return EAS_ERROR_INVALID_PARAMETER;
498			p->m_nRate = (EAS_I16) value;
499			break;
500		case EAS_PARAM_CHORUS_DEPTH:
501			if(value<EAS_CHORUS_DEPTH_MIN || value>EAS_CHORUS_DEPTH_MAX)
502				return EAS_ERROR_INVALID_PARAMETER;
503			p->m_nDepth = (EAS_I16) value;
504			break;
505		case EAS_PARAM_CHORUS_LEVEL:
506			if(value<EAS_CHORUS_LEVEL_MIN || value>EAS_CHORUS_LEVEL_MAX)
507				return EAS_ERROR_INVALID_PARAMETER;
508			p->m_nLevel = (EAS_I16) value;
509			break;
510
511		default:
512			return EAS_ERROR_INVALID_PARAMETER;
513	}
514	return EAS_SUCCESS;
515} /* end ChorusSetParam */
516
517
518/*----------------------------------------------------------------------------
519 * ChorusReadInPresets()
520 *----------------------------------------------------------------------------
521 * Purpose: sets global Chorus preset bank to defaults
522 *
523 * Inputs:
524 *
525 * Outputs:
526 *
527 *----------------------------------------------------------------------------
528*/
529static EAS_RESULT ChorusReadInPresets(S_CHORUS_OBJECT *pChorusData)
530{
531
532	int preset = 0;
533	int defaultPreset = 0;
534
535	//now init any remaining presets to defaults
536	for (defaultPreset = preset; defaultPreset < CHORUS_MAX_TYPE; defaultPreset++)
537	{
538		S_CHORUS_PRESET *pPreset = &pChorusData->m_sPreset.m_sPreset[defaultPreset];
539		if (defaultPreset == 0 || defaultPreset > CHORUS_MAX_TYPE-1)
540		{
541			pPreset->m_nDepth = 39;
542			pPreset->m_nRate = 30;
543			pPreset->m_nLevel = 32767;
544		}
545		else if (defaultPreset == 1)
546		{
547			pPreset->m_nDepth = 21;
548			pPreset->m_nRate = 45;
549			pPreset->m_nLevel = 25000;
550		}
551		else if (defaultPreset == 2)
552		{
553			pPreset->m_nDepth = 53;
554			pPreset->m_nRate = 25;
555			pPreset->m_nLevel = 32000;
556		}
557		else if (defaultPreset == 3)
558		{
559			pPreset->m_nDepth = 32;
560			pPreset->m_nRate = 37;
561			pPreset->m_nLevel = 29000;
562		}
563	}
564
565	return EAS_SUCCESS;
566}
567
568
569/*----------------------------------------------------------------------------
570 * ChorusUpdate
571 *----------------------------------------------------------------------------
572 * Purpose:
573 * Update the Chorus preset parameters as required
574 *
575 * Inputs:
576 *
577 * Outputs:
578 *
579 *
580 * Side Effects:
581 * - chorus paramters will be changed
582 * - m_nCurrentRoom := m_nNextRoom
583 *----------------------------------------------------------------------------
584*/
585static EAS_RESULT ChorusUpdate(S_CHORUS_OBJECT *pChorusData)
586{
587	S_CHORUS_PRESET *pPreset = &pChorusData->m_sPreset.m_sPreset[pChorusData->m_nNextChorus];
588
589	pChorusData->m_nLevel = pPreset->m_nLevel;
590	pChorusData->m_nRate =  pPreset->m_nRate;
591	pChorusData->m_nDepth = pPreset->m_nDepth;
592
593	pChorusData->m_nRate = (EAS_I16)
594		((((EAS_I32)CHORUS_SHAPE_SIZE<<16)/(20*(EAS_I32)_OUTPUT_SAMPLE_RATE)) * pChorusData->m_nRate);
595
596	/*lint -e{704} use shift for performance */
597	pChorusData->m_nDepth = (EAS_I16)
598		(((((EAS_I32)pChorusData->m_nDepth * _OUTPUT_SAMPLE_RATE)>>5) * 105) >> 16);
599
600	pChorusData->m_nCurrentChorus = pChorusData->m_nNextChorus;
601
602	return EAS_SUCCESS;
603
604}	/* end ChorusUpdate */
605