equivalent.h revision 8fc5a7f51e62cb4ae44a27bdf4176d04adc80ede
1// equivalent.h
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//      http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14//
15//
16// \file Functions and classes to determine the equivalence of two
17// FSTs.
18
19#ifndef FST_LIB_EQUIVALENT_H__
20#define FST_LIB_EQUIVALENT_H__
21
22#include <algorithm>
23
24#include <ext/hash_map>
25using __gnu_cxx::hash_map;
26
27#include "fst/lib/encode.h"
28#include "fst/lib/push.h"
29#include "fst/lib/union-find.h"
30#include "fst/lib/vector-fst.h"
31
32namespace fst {
33
34// Traits-like struct holding utility functions/typedefs/constants for
35// the equivalence algorithm.
36//
37// Encoding device: in order to make the statesets of the two acceptors
38// disjoint, we map Arc::StateId on the type MappedId. The states of
39// the first acceptor are mapped on odd numbers (s -> 2s + 1), and
40// those of the second one on even numbers (s -> 2s + 2). The number 0
41// is reserved for an implicit (non-final) 'dead state' (required for
42// the correct treatment of non-coaccessible states; kNoStateId is
43// mapped to kDeadState for both acceptors). The union-find algorithm
44// operates on the mapped IDs.
45template <class Arc>
46struct EquivalenceUtil {
47  typedef typename Arc::StateId StateId;
48  typedef typename Arc::Weight Weight;
49  typedef int32 MappedId;  // ID for an equivalence class.
50
51  // MappedId for an implicit dead state.
52  static const MappedId kDeadState = 0;
53
54  // MappedId for lookup failure.
55  static const MappedId kInvalidId = -1;
56
57  // Maps state ID to the representative of the corresponding
58  // equivalence class. The parameter 'which_fst' takes the values 1
59  // and 2, identifying the input FST.
60  static MappedId MapState(StateId s, int32 which_fst) {
61    return
62      (kNoStateId == s)
63      ?
64      kDeadState
65      :
66      (static_cast<MappedId>(s) << 1) + which_fst;
67  }
68  // Maps set ID to State ID.
69  static StateId UnMapState(MappedId id) {
70    return static_cast<StateId>((--id) >> 1);
71  }
72  // Convenience function: checks if state with MappedId 's' is final
73  // in acceptor 'fa'.
74  static bool IsFinal(const Fst<Arc> &fa, MappedId s) {
75    return
76      (kDeadState == s) ?
77      false : (fa.Final(UnMapState(s)) != Weight::Zero());
78  }
79  // Convenience function: returns the representative of 'id' in 'sets',
80  // creating a new set if needed.
81  static MappedId FindSet(UnionFind<MappedId> *sets, MappedId id) {
82    MappedId repr = sets->FindSet(id);
83    if (repr != kInvalidId) {
84      return repr;
85    } else {
86      sets->MakeSet(id);
87      return id;
88    }
89  }
90};
91
92// Equivalence checking algorithm: determines if the two FSTs
93// <code>fst1</code> and <code>fst2</code> are equivalent. The input
94// FSTs must be deterministic input-side epsilon-free acceptors,
95// unweighted or with weights over a left semiring. Two acceptors are
96// considered equivalent if they accept exactly the same set of
97// strings (with the same weights).
98//
99// The algorithm (cf. Aho, Hopcroft and Ullman, "The Design and
100// Analysis of Computer Programs") successively constructs sets of
101// states that can be reached by the same prefixes, starting with a
102// set containing the start states of both acceptors. A disjoint tree
103// forest (the union-find algorithm) is used to represent the sets of
104// states. The algorithm returns 'false' if one of the constructed
105// sets contains both final and non-final states.
106//
107// Complexity: quasi-linear, i.e. O(n G(n)), where
108//   n = |S1| + |S2| is the number of states in both acceptors
109//   G(n) is a very slowly growing function that can be approximated
110//        by 4 by all practical purposes.
111//
112template <class Arc>
113bool Equivalent(const Fst<Arc> &fst1, const Fst<Arc> &fst2) {
114  typedef typename Arc::Weight Weight;
115  // Check properties first:
116  uint64 props = kNoEpsilons | kIDeterministic | kAcceptor;
117  if (fst1.Properties(props, true) != props) {
118    LOG(FATAL) << "Equivalent: first argument not an"
119               << " epsilon-free deterministic acceptor";
120  }
121  if (fst2.Properties(props, true) != props) {
122    LOG(FATAL) << "Equivalent: second argument not an"
123               << " epsilon-free deterministic acceptor";
124  }
125
126  if ((fst1.Properties(kUnweighted , true) != kUnweighted)
127      || (fst2.Properties(kUnweighted , true) != kUnweighted)) {
128    VectorFst<Arc> efst1(fst1);
129    VectorFst<Arc> efst2(fst2);
130    Push(&efst1, REWEIGHT_TO_INITIAL);
131    Push(&efst2, REWEIGHT_TO_INITIAL);
132    Map(&efst1, QuantizeMapper<Arc>());
133    Map(&efst2, QuantizeMapper<Arc>());
134    EncodeMapper<Arc> mapper(kEncodeWeights|kEncodeLabels, ENCODE);
135    Map(&efst1, &mapper);
136    Map(&efst2, &mapper);
137    return Equivalent(efst1, efst2);
138  }
139
140  // Convenience typedefs:
141  typedef typename Arc::StateId StateId;
142  typedef EquivalenceUtil<Arc> Util;
143  typedef typename Util::MappedId MappedId;
144  enum { FST1 = 1, FST2 = 2 };  // Required by Util::MapState(...)
145
146  MappedId s1 = Util::MapState(fst1.Start(), FST1);
147  MappedId s2 = Util::MapState(fst2.Start(), FST2);
148
149  // The union-find structure.
150  UnionFind<MappedId> eq_classes(1000, Util::kInvalidId);
151
152  // Initialize the union-find structure.
153  eq_classes.MakeSet(s1);
154  eq_classes.MakeSet(s2);
155
156  // Early return if the start states differ w.r.t. being final.
157  if (Util::IsFinal(fst1, s1) != Util::IsFinal(fst2, s2)) {
158    return false;
159  }
160  // Data structure for the (partial) acceptor transition function of
161  // fst1 and fst2: input labels mapped to pairs of MappedId's
162  // representing destination states of the corresponding arcs in fst1
163  // and fst2, respectively.
164  typedef
165    hash_map<typename Arc::Label, pair<MappedId, MappedId> >
166    Label2StatePairMap;
167
168  Label2StatePairMap arc_pairs;
169
170  // Pairs of MappedId's to be processed, organized in a queue.
171  deque<pair<MappedId, MappedId> > q;
172
173  // Main loop: explores the two acceptors in a breadth-first manner,
174  // updating the equivalence relation on the statesets. Loop
175  // invariant: each block of states contains either final states only
176  // or non-final states only.
177  for (q.push_back(make_pair(s1, s2)); !q.empty(); q.pop_front()) {
178    s1 = q.front().first;
179    s2 = q.front().second;
180
181    // Representatives of the equivalence classes of s1/s2.
182    MappedId rep1 = Util::FindSet(&eq_classes, s1);
183    MappedId rep2 = Util::FindSet(&eq_classes, s2);
184
185    if (rep1 != rep2) {
186      eq_classes.Union(rep1, rep2);
187      arc_pairs.clear();
188
189      // Copy outgoing arcs starting at s1 into the hashtable.
190      if (Util::kDeadState != s1) {
191        ArcIterator<Fst<Arc> > arc_iter(fst1, Util::UnMapState(s1));
192        for (; !arc_iter.Done(); arc_iter.Next()) {
193          const Arc &arc = arc_iter.Value();
194          if (arc.weight != Weight::Zero()) {  // Zero-weight arcs
195                                                   // are treated as
196                                                   // non-exisitent.
197            arc_pairs[arc.ilabel].first = Util::MapState(arc.nextstate, FST1);
198          }
199        }
200      }
201      // Copy outgoing arcs starting at s2 into the hashtable.
202      if (Util::kDeadState != s2) {
203        ArcIterator<Fst<Arc> > arc_iter(fst2, Util::UnMapState(s2));
204        for (; !arc_iter.Done(); arc_iter.Next()) {
205          const Arc &arc = arc_iter.Value();
206          if (arc.weight != Weight::Zero()) {  // Zero-weight arcs
207                                                   // are treated as
208                                                   // non-existent.
209            arc_pairs[arc.ilabel].second = Util::MapState(arc.nextstate, FST2);
210          }
211        }
212      }
213      // Iterate through the hashtable and process pairs of target
214      // states.
215      for (typename Label2StatePairMap::const_iterator
216             arc_iter = arc_pairs.begin();
217           arc_iter != arc_pairs.end();
218           ++arc_iter) {
219        const pair<MappedId, MappedId> &p = arc_iter->second;
220        if (Util::IsFinal(fst1, p.first) != Util::IsFinal(fst2, p.second)) {
221          // Detected inconsistency: return false.
222          return false;
223        }
224        q.push_back(p);
225      }
226    }
227  }
228  return true;
229}
230
231}  // namespace fst
232
233#endif  // FST_LIB_EQUIVALENT_H__
234