1
2/*---------------------------------------------------------------*/
3/*--- begin                               guest_generic_x87.c ---*/
4/*---------------------------------------------------------------*/
5
6/*
7   This file is part of Valgrind, a dynamic binary instrumentation
8   framework.
9
10   Copyright (C) 2004-2013 OpenWorks LLP
11      info@open-works.net
12
13   This program is free software; you can redistribute it and/or
14   modify it under the terms of the GNU General Public License as
15   published by the Free Software Foundation; either version 2 of the
16   License, or (at your option) any later version.
17
18   This program is distributed in the hope that it will be useful, but
19   WITHOUT ANY WARRANTY; without even the implied warranty of
20   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21   General Public License for more details.
22
23   You should have received a copy of the GNU General Public License
24   along with this program; if not, write to the Free Software
25   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
26   02110-1301, USA.
27
28   The GNU General Public License is contained in the file COPYING.
29
30   Neither the names of the U.S. Department of Energy nor the
31   University of California nor the names of its contributors may be
32   used to endorse or promote products derived from this software
33   without prior written permission.
34*/
35
36/* This file contains functions for doing some x87-specific
37   operations.  Both the amd64 and x86 front ends (guests) indirectly
38   call these functions via guest helper calls.  By putting them here,
39   code duplication is avoided.  Some of these functions are tricky
40   and hard to verify, so there is much to be said for only having one
41   copy thereof.
42*/
43
44#include "libvex_basictypes.h"
45
46#include "main_util.h"
47#include "guest_generic_x87.h"
48
49
50/* 80 and 64-bit floating point formats:
51
52   80-bit:
53
54    S  0       0-------0      zero
55    S  0       0X------X      denormals
56    S  1-7FFE  1X------X      normals (all normals have leading 1)
57    S  7FFF    10------0      infinity
58    S  7FFF    10X-----X      snan
59    S  7FFF    11X-----X      qnan
60
61   S is the sign bit.  For runs X----X, at least one of the Xs must be
62   nonzero.  Exponent is 15 bits, fractional part is 63 bits, and
63   there is an explicitly represented leading 1, and a sign bit,
64   giving 80 in total.
65
66   64-bit avoids the confusion of an explicitly represented leading 1
67   and so is simpler:
68
69    S  0      0------0   zero
70    S  0      X------X   denormals
71    S  1-7FE  any        normals
72    S  7FF    0------0   infinity
73    S  7FF    0X-----X   snan
74    S  7FF    1X-----X   qnan
75
76   Exponent is 11 bits, fractional part is 52 bits, and there is a
77   sign bit, giving 64 in total.
78*/
79
80
81static inline UInt read_bit_array ( UChar* arr, UInt n )
82{
83   UChar c = arr[n >> 3];
84   c >>= (n&7);
85   return c & 1;
86}
87
88static inline void write_bit_array ( UChar* arr, UInt n, UInt b )
89{
90   UChar c = arr[n >> 3];
91   c = toUChar( c & ~(1 << (n&7)) );
92   c = toUChar( c | ((b&1) << (n&7)) );
93   arr[n >> 3] = c;
94}
95
96/* Convert an IEEE754 double (64-bit) into an x87 extended double
97   (80-bit), mimicing the hardware fairly closely.  Both numbers are
98   stored little-endian.  Limitations, all of which could be fixed,
99   given some level of hassle:
100
101   * Identity of NaNs is not preserved.
102
103   See comments in the code for more details.
104*/
105void convert_f64le_to_f80le ( /*IN*/UChar* f64, /*OUT*/UChar* f80 )
106{
107   Bool  mantissaIsZero;
108   Int   bexp, i, j, shift;
109   UChar sign;
110
111   sign = toUChar( (f64[7] >> 7) & 1 );
112   bexp = (f64[7] << 4) | ((f64[6] >> 4) & 0x0F);
113   bexp &= 0x7FF;
114
115   mantissaIsZero = False;
116   if (bexp == 0 || bexp == 0x7FF) {
117      /* We'll need to know whether or not the mantissa (bits 51:0) is
118         all zeroes in order to handle these cases.  So figure it
119         out. */
120      mantissaIsZero
121         = toBool(
122              (f64[6] & 0x0F) == 0
123              && f64[5] == 0 && f64[4] == 0 && f64[3] == 0
124              && f64[2] == 0 && f64[1] == 0 && f64[0] == 0
125           );
126   }
127
128   /* If the exponent is zero, either we have a zero or a denormal.
129      Produce a zero.  This is a hack in that it forces denormals to
130      zero.  Could do better. */
131   if (bexp == 0) {
132      f80[9] = toUChar( sign << 7 );
133      f80[8] = f80[7] = f80[6] = f80[5] = f80[4]
134             = f80[3] = f80[2] = f80[1] = f80[0] = 0;
135
136      if (mantissaIsZero)
137         /* It really is zero, so that's all we can do. */
138         return;
139
140      /* There is at least one 1-bit in the mantissa.  So it's a
141         potentially denormalised double -- but we can produce a
142         normalised long double.  Count the leading zeroes in the
143         mantissa so as to decide how much to bump the exponent down
144         by.  Note, this is SLOW. */
145      shift = 0;
146      for (i = 51; i >= 0; i--) {
147        if (read_bit_array(f64, i))
148           break;
149        shift++;
150      }
151
152      /* and copy into place as many bits as we can get our hands on. */
153      j = 63;
154      for (i = 51 - shift; i >= 0; i--) {
155         write_bit_array( f80, j,
156     	 read_bit_array( f64, i ) );
157         j--;
158      }
159
160      /* Set the exponent appropriately, and we're done. */
161      bexp -= shift;
162      bexp += (16383 - 1023);
163      f80[9] = toUChar( (sign << 7) | ((bexp >> 8) & 0xFF) );
164      f80[8] = toUChar( bexp & 0xFF );
165      return;
166   }
167
168   /* If the exponent is 7FF, this is either an Infinity, a SNaN or
169      QNaN, as determined by examining bits 51:0, thus:
170          0  ... 0    Inf
171          0X ... X    SNaN
172          1X ... X    QNaN
173      where at least one of the Xs is not zero.
174   */
175   if (bexp == 0x7FF) {
176      if (mantissaIsZero) {
177         /* Produce an appropriately signed infinity:
178            S 1--1 (15)  1  0--0 (63)
179         */
180         f80[9] = toUChar( (sign << 7) | 0x7F );
181         f80[8] = 0xFF;
182         f80[7] = 0x80;
183         f80[6] = f80[5] = f80[4] = f80[3]
184                = f80[2] = f80[1] = f80[0] = 0;
185         return;
186      }
187      /* So it's either a QNaN or SNaN.  Distinguish by considering
188         bit 51.  Note, this destroys all the trailing bits
189         (identity?) of the NaN.  IEEE754 doesn't require preserving
190         these (it only requires that there be one QNaN value and one
191         SNaN value), but x87 does seem to have some ability to
192         preserve them.  Anyway, here, the NaN's identity is
193         destroyed.  Could be improved. */
194      if (f64[6] & 8) {
195         /* QNaN.  Make a canonical QNaN:
196            S 1--1 (15)  1 1  0--0 (62)
197         */
198         f80[9] = toUChar( (sign << 7) | 0x7F );
199         f80[8] = 0xFF;
200         f80[7] = 0xC0;
201         f80[6] = f80[5] = f80[4] = f80[3]
202                = f80[2] = f80[1] = f80[0] = 0x00;
203      } else {
204         /* SNaN.  Make a SNaN:
205            S 1--1 (15)  1 0  1--1 (62)
206         */
207         f80[9] = toUChar( (sign << 7) | 0x7F );
208         f80[8] = 0xFF;
209         f80[7] = 0xBF;
210         f80[6] = f80[5] = f80[4] = f80[3]
211                = f80[2] = f80[1] = f80[0] = 0xFF;
212      }
213      return;
214   }
215
216   /* It's not a zero, denormal, infinity or nan.  So it must be a
217      normalised number.  Rebias the exponent and build the new
218      number.  */
219   bexp += (16383 - 1023);
220
221   f80[9] = toUChar( (sign << 7) | ((bexp >> 8) & 0xFF) );
222   f80[8] = toUChar( bexp & 0xFF );
223   f80[7] = toUChar( (1 << 7) | ((f64[6] << 3) & 0x78)
224                              | ((f64[5] >> 5) & 7) );
225   f80[6] = toUChar( ((f64[5] << 3) & 0xF8) | ((f64[4] >> 5) & 7) );
226   f80[5] = toUChar( ((f64[4] << 3) & 0xF8) | ((f64[3] >> 5) & 7) );
227   f80[4] = toUChar( ((f64[3] << 3) & 0xF8) | ((f64[2] >> 5) & 7) );
228   f80[3] = toUChar( ((f64[2] << 3) & 0xF8) | ((f64[1] >> 5) & 7) );
229   f80[2] = toUChar( ((f64[1] << 3) & 0xF8) | ((f64[0] >> 5) & 7) );
230   f80[1] = toUChar( ((f64[0] << 3) & 0xF8) );
231   f80[0] = toUChar( 0 );
232}
233
234
235/* Convert an x87 extended double (80-bit) into an IEEE 754 double
236   (64-bit), mimicking the hardware fairly closely.  Both numbers are
237   stored little-endian.  Limitations, both of which could be fixed,
238   given some level of hassle:
239
240   * Rounding following truncation could be a bit better.
241
242   * Identity of NaNs is not preserved.
243
244   See comments in the code for more details.
245*/
246void convert_f80le_to_f64le ( /*IN*/UChar* f80, /*OUT*/UChar* f64 )
247{
248   Bool  isInf;
249   Int   bexp, i, j;
250   UChar sign;
251
252   sign = toUChar((f80[9] >> 7) & 1);
253   bexp = (((UInt)f80[9]) << 8) | (UInt)f80[8];
254   bexp &= 0x7FFF;
255
256   /* If the exponent is zero, either we have a zero or a denormal.
257      But an extended precision denormal becomes a double precision
258      zero, so in either case, just produce the appropriately signed
259      zero. */
260   if (bexp == 0) {
261      f64[7] = toUChar(sign << 7);
262      f64[6] = f64[5] = f64[4] = f64[3] = f64[2] = f64[1] = f64[0] = 0;
263      return;
264   }
265
266   /* If the exponent is 7FFF, this is either an Infinity, a SNaN or
267      QNaN, as determined by examining bits 62:0, thus:
268          10  ... 0    Inf
269          10X ... X    SNaN
270          11X ... X    QNaN
271      where at least one of the Xs is not zero.
272   */
273   if (bexp == 0x7FFF) {
274      isInf = toBool(
275                 (f80[7] & 0x7F) == 0
276                 && f80[6] == 0 && f80[5] == 0 && f80[4] == 0
277                 && f80[3] == 0 && f80[2] == 0 && f80[1] == 0
278                 && f80[0] == 0
279              );
280      if (isInf) {
281         if (0 == (f80[7] & 0x80))
282            goto wierd_NaN;
283         /* Produce an appropriately signed infinity:
284            S 1--1 (11)  0--0 (52)
285         */
286         f64[7] = toUChar((sign << 7) | 0x7F);
287         f64[6] = 0xF0;
288         f64[5] = f64[4] = f64[3] = f64[2] = f64[1] = f64[0] = 0;
289         return;
290      }
291      /* So it's either a QNaN or SNaN.  Distinguish by considering
292         bit 61.  Note, this destroys all the trailing bits
293         (identity?) of the NaN.  IEEE754 doesn't require preserving
294         these (it only requires that there be one QNaN value and one
295         SNaN value), but x87 does seem to have some ability to
296         preserve them.  Anyway, here, the NaN's identity is
297         destroyed.  Could be improved. */
298      if (f80[7] & 0x40) {
299         /* QNaN.  Make a canonical QNaN:
300            S 1--1 (11)  1  0--0 (51)
301         */
302         f64[7] = toUChar((sign << 7) | 0x7F);
303         f64[6] = 0xF8;
304         f64[5] = f64[4] = f64[3] = f64[2] = f64[1] = f64[0] = 0x00;
305      } else {
306         /* SNaN.  Make a SNaN:
307            S 1--1 (11)  0  1--1 (51)
308         */
309         f64[7] = toUChar((sign << 7) | 0x7F);
310         f64[6] = 0xF7;
311         f64[5] = f64[4] = f64[3] = f64[2] = f64[1] = f64[0] = 0xFF;
312      }
313      return;
314   }
315
316   /* If it's not a Zero, NaN or Inf, and the integer part (bit 62) is
317      zero, the x87 FPU appears to consider the number denormalised
318      and converts it to a QNaN. */
319   if (0 == (f80[7] & 0x80)) {
320      wierd_NaN:
321      /* Strange hardware QNaN:
322         S 1--1 (11)  1  0--0 (51)
323      */
324      /* On a PIII, these QNaNs always appear with sign==1.  I have
325         no idea why. */
326      f64[7] = (1 /*sign*/ << 7) | 0x7F;
327      f64[6] = 0xF8;
328      f64[5] = f64[4] = f64[3] = f64[2] = f64[1] = f64[0] = 0;
329      return;
330   }
331
332   /* It's not a zero, denormal, infinity or nan.  So it must be a
333      normalised number.  Rebias the exponent and consider. */
334   bexp -= (16383 - 1023);
335   if (bexp >= 0x7FF) {
336      /* It's too big for a double.  Construct an infinity. */
337      f64[7] = toUChar((sign << 7) | 0x7F);
338      f64[6] = 0xF0;
339      f64[5] = f64[4] = f64[3] = f64[2] = f64[1] = f64[0] = 0;
340      return;
341   }
342
343   if (bexp <= 0) {
344      /* It's too small for a normalised double.  First construct a
345         zero and then see if it can be improved into a denormal.  */
346      f64[7] = toUChar(sign << 7);
347      f64[6] = f64[5] = f64[4] = f64[3] = f64[2] = f64[1] = f64[0] = 0;
348
349      if (bexp < -52)
350         /* Too small even for a denormal. */
351         return;
352
353      /* Ok, let's make a denormal.  Note, this is SLOW. */
354      /* Copy bits 63, 62, 61, etc of the src mantissa into the dst,
355         indexes 52+bexp, 51+bexp, etc, until k+bexp < 0. */
356      /* bexp is in range -52 .. 0 inclusive */
357      for (i = 63; i >= 0; i--) {
358         j = i - 12 + bexp;
359         if (j < 0) break;
360         /* We shouldn't really call vassert from generated code. */
361         vassert(j >= 0 && j < 52);
362         write_bit_array ( f64,
363                           j,
364                           read_bit_array ( f80, i ) );
365      }
366      /* and now we might have to round ... */
367      if (read_bit_array(f80, 10+1 - bexp) == 1)
368         goto do_rounding;
369
370      return;
371   }
372
373   /* Ok, it's a normalised number which is representable as a double.
374      Copy the exponent and mantissa into place. */
375   /*
376   for (i = 0; i < 52; i++)
377      write_bit_array ( f64,
378                        i,
379                        read_bit_array ( f80, i+11 ) );
380   */
381   f64[0] = toUChar( (f80[1] >> 3) | (f80[2] << 5) );
382   f64[1] = toUChar( (f80[2] >> 3) | (f80[3] << 5) );
383   f64[2] = toUChar( (f80[3] >> 3) | (f80[4] << 5) );
384   f64[3] = toUChar( (f80[4] >> 3) | (f80[5] << 5) );
385   f64[4] = toUChar( (f80[5] >> 3) | (f80[6] << 5) );
386   f64[5] = toUChar( (f80[6] >> 3) | (f80[7] << 5) );
387
388   f64[6] = toUChar( ((bexp << 4) & 0xF0) | ((f80[7] >> 3) & 0x0F) );
389
390   f64[7] = toUChar( (sign << 7) | ((bexp >> 4) & 0x7F) );
391
392   /* Now consider any rounding that needs to happen as a result of
393      truncating the mantissa. */
394   if (f80[1] & 4) /* read_bit_array(f80, 10) == 1) */ {
395
396      /* If the bottom bits of f80 are "100 0000 0000", then the
397         infinitely precise value is deemed to be mid-way between the
398         two closest representable values.  Since we're doing
399         round-to-nearest (the default mode), in that case it is the
400         bit immediately above which indicates whether we should round
401         upwards or not -- if 0, we don't.  All that is encapsulated
402         in the following simple test. */
403      if ((f80[1] & 0xF) == 4/*0100b*/ && f80[0] == 0)
404         return;
405
406      do_rounding:
407      /* Round upwards.  This is a kludge.  Once in every 2^24
408         roundings (statistically) the bottom three bytes are all 0xFF
409         and so we don't round at all.  Could be improved. */
410      if (f64[0] != 0xFF) {
411         f64[0]++;
412      }
413      else
414      if (f64[0] == 0xFF && f64[1] != 0xFF) {
415         f64[0] = 0;
416         f64[1]++;
417      }
418      else
419      if (f64[0] == 0xFF && f64[1] == 0xFF && f64[2] != 0xFF) {
420         f64[0] = 0;
421         f64[1] = 0;
422         f64[2]++;
423      }
424      /* else we don't round, but we should. */
425   }
426}
427
428
429/* CALLED FROM GENERATED CODE: CLEAN HELPER */
430/* Extract the signed significand or exponent component as per
431   fxtract.  Arg and result are doubles travelling under the guise of
432   ULongs.  Returns significand when getExp is zero and exponent
433   otherwise. */
434ULong x86amd64g_calculate_FXTRACT ( ULong arg, HWord getExp )
435{
436   ULong  uSig, uExp;
437   /* Long   sSig; */
438   Int    sExp, i;
439   UInt   sign, expExp;
440
441   /*
442    S  7FF    0------0   infinity
443    S  7FF    0X-----X   snan
444    S  7FF    1X-----X   qnan
445   */
446   const ULong posInf  = 0x7FF0000000000000ULL;
447   const ULong negInf  = 0xFFF0000000000000ULL;
448   const ULong nanMask = 0x7FF0000000000000ULL;
449   const ULong qNan    = 0x7FF8000000000000ULL;
450   const ULong posZero = 0x0000000000000000ULL;
451   const ULong negZero = 0x8000000000000000ULL;
452   const ULong bit51   = 1ULL << 51;
453   const ULong bit52   = 1ULL << 52;
454   const ULong sigMask = bit52 - 1;
455
456   /* Mimic Core i5 behaviour for special cases. */
457   if (arg == posInf)
458      return getExp ? posInf : posInf;
459   if (arg == negInf)
460      return getExp ? posInf : negInf;
461   if ((arg & nanMask) == nanMask)
462      return qNan | (arg & (1ULL << 63));
463   if (arg == posZero)
464      return getExp ? negInf : posZero;
465   if (arg == negZero)
466      return getExp ? negInf : negZero;
467
468   /* Split into sign, exponent and significand. */
469   sign = ((UInt)(arg >> 63)) & 1;
470
471   /* Mask off exponent & sign. uSig is in range 0 .. 2^52-1. */
472   uSig = arg & sigMask;
473
474   /* Get the exponent. */
475   sExp = ((Int)(arg >> 52)) & 0x7FF;
476
477   /* Deal with denormals: if the exponent is zero, then the
478      significand cannot possibly be zero (negZero/posZero are handled
479      above).  Shift the significand left until bit 51 of it becomes
480      1, and decrease the exponent accordingly.
481   */
482   if (sExp == 0) {
483      for (i = 0; i < 52; i++) {
484         if (uSig & bit51)
485            break;
486         uSig <<= 1;
487         sExp--;
488      }
489      uSig <<= 1;
490   } else {
491      /* Add the implied leading-1 in the significand. */
492      uSig |= bit52;
493   }
494
495   /* Roll in the sign. */
496   /* sSig = uSig; */
497   /* if (sign) sSig =- sSig; */
498
499   /* Convert sig into a double.  This should be an exact conversion.
500      Then divide by 2^52, which should give a value in the range 1.0
501      to 2.0-epsilon, at least for normalised args. */
502   /* dSig = (Double)sSig; */
503   /* dSig /= 67108864.0;  */ /* 2^26 */
504   /* dSig /= 67108864.0;  */ /* 2^26 */
505   uSig &= sigMask;
506   uSig |= 0x3FF0000000000000ULL;
507   if (sign)
508      uSig ^= negZero;
509
510   /* Convert exp into a double.  Also an exact conversion. */
511   /* dExp = (Double)(sExp - 1023); */
512   sExp -= 1023;
513   if (sExp == 0) {
514      uExp = 0;
515   } else {
516      uExp   = sExp < 0 ? -sExp : sExp;
517      expExp = 0x3FF +52;
518      /* 1 <= uExp <= 1074 */
519      /* Skip first 42 iterations of normalisation loop as we know they
520         will always happen */
521      uExp <<= 42;
522      expExp -= 42;
523      for (i = 0; i < 52-42; i++) {
524         if (uExp & bit52)
525            break;
526         uExp <<= 1;
527         expExp--;
528      }
529      uExp &= sigMask;
530      uExp |= ((ULong)expExp) << 52;
531      if (sExp < 0) uExp ^= negZero;
532   }
533
534   return getExp ? uExp : uSig;
535}
536
537
538
539/*---------------------------------------------------------*/
540/*--- SSE4.2 PCMP{E,I}STR{I,M} helpers                  ---*/
541/*---------------------------------------------------------*/
542
543/* We need the definitions for OSZACP eflags/rflags offsets.
544   #including guest_{amd64,x86}_defs.h causes chaos, so just copy the
545   required values directly.  They are not going to change in the
546   foreseeable future :-)
547*/
548
549#define SHIFT_O   11
550#define SHIFT_S   7
551#define SHIFT_Z   6
552#define SHIFT_A   4
553#define SHIFT_C   0
554#define SHIFT_P   2
555
556#define MASK_O    (1 << SHIFT_O)
557#define MASK_S    (1 << SHIFT_S)
558#define MASK_Z    (1 << SHIFT_Z)
559#define MASK_A    (1 << SHIFT_A)
560#define MASK_C    (1 << SHIFT_C)
561#define MASK_P    (1 << SHIFT_P)
562
563
564/* Count leading zeroes, w/ 0-produces-32 semantics, a la Hacker's
565   Delight. */
566static UInt clz32 ( UInt x )
567{
568   Int y, m, n;
569   y = -(x >> 16);
570   m = (y >> 16) & 16;
571   n = 16 - m;
572   x = x >> m;
573   y = x - 0x100;
574   m = (y >> 16) & 8;
575   n = n + m;
576   x = x << m;
577   y = x - 0x1000;
578   m = (y >> 16) & 4;
579   n = n + m;
580   x = x << m;
581   y = x - 0x4000;
582   m = (y >> 16) & 2;
583   n = n + m;
584   x = x << m;
585   y = x >> 14;
586   m = y & ~(y >> 1);
587   return n + 2 - m;
588}
589
590static UInt ctz32 ( UInt x )
591{
592   return 32 - clz32((~x) & (x-1));
593}
594
595/* Convert a 4-bit value to a 32-bit value by cloning each bit 8
596   times.  There's surely a better way to do this, but I don't know
597   what it is. */
598static UInt bits4_to_bytes4 ( UInt bits4 )
599{
600   UInt r = 0;
601   r |= (bits4 & 1) ? 0x000000FF : 0;
602   r |= (bits4 & 2) ? 0x0000FF00 : 0;
603   r |= (bits4 & 4) ? 0x00FF0000 : 0;
604   r |= (bits4 & 8) ? 0xFF000000 : 0;
605   return r;
606}
607
608
609/* Convert a 2-bit value to a 32-bit value by cloning each bit 16
610   times.  There's surely a better way to do this, but I don't know
611   what it is. */
612static UInt bits2_to_bytes4 ( UInt bits2 )
613{
614   UInt r = 0;
615   r |= (bits2 & 1) ? 0x0000FFFF : 0;
616   r |= (bits2 & 2) ? 0xFFFF0000 : 0;
617   return r;
618}
619
620
621/* Given partial results from a pcmpXstrX operation (intRes1,
622   basically), generate an I- or M-format output value, also the new
623   OSZACP flags.  */
624static
625void compute_PCMPxSTRx_gen_output (/*OUT*/V128* resV,
626                                   /*OUT*/UInt* resOSZACP,
627                                   UInt intRes1,
628                                   UInt zmaskL, UInt zmaskR,
629                                   UInt validL,
630                                   UInt pol, UInt idx,
631                                   Bool isxSTRM )
632{
633   vassert((pol >> 2) == 0);
634   vassert((idx >> 1) == 0);
635
636   UInt intRes2 = 0;
637   switch (pol) {
638      case 0: intRes2 = intRes1;          break; // pol +
639      case 1: intRes2 = ~intRes1;         break; // pol -
640      case 2: intRes2 = intRes1;          break; // pol m+
641      case 3: intRes2 = intRes1 ^ validL; break; // pol m-
642   }
643   intRes2 &= 0xFFFF;
644
645   if (isxSTRM) {
646
647      // generate M-format output (a bit or byte mask in XMM0)
648      if (idx) {
649         resV->w32[0] = bits4_to_bytes4( (intRes2 >>  0) & 0xF );
650         resV->w32[1] = bits4_to_bytes4( (intRes2 >>  4) & 0xF );
651         resV->w32[2] = bits4_to_bytes4( (intRes2 >>  8) & 0xF );
652         resV->w32[3] = bits4_to_bytes4( (intRes2 >> 12) & 0xF );
653      } else {
654         resV->w32[0] = intRes2 & 0xFFFF;
655         resV->w32[1] = 0;
656         resV->w32[2] = 0;
657         resV->w32[3] = 0;
658      }
659
660   } else {
661
662      // generate I-format output (an index in ECX)
663      // generate ecx value
664      UInt newECX = 0;
665      if (idx) {
666         // index of ms-1-bit
667         newECX = intRes2 == 0 ? 16 : (31 - clz32(intRes2));
668      } else {
669         // index of ls-1-bit
670         newECX = intRes2 == 0 ? 16 : ctz32(intRes2);
671      }
672
673      resV->w32[0] = newECX;
674      resV->w32[1] = 0;
675      resV->w32[2] = 0;
676      resV->w32[3] = 0;
677
678   }
679
680   // generate new flags, common to all ISTRI and ISTRM cases
681   *resOSZACP    // A, P are zero
682     = ((intRes2 == 0) ? 0 : MASK_C) // C == 0 iff intRes2 == 0
683     | ((zmaskL == 0)  ? 0 : MASK_Z) // Z == 1 iff any in argL is 0
684     | ((zmaskR == 0)  ? 0 : MASK_S) // S == 1 iff any in argR is 0
685     | ((intRes2 & 1) << SHIFT_O);   // O == IntRes2[0]
686}
687
688
689/* Given partial results from a 16-bit pcmpXstrX operation (intRes1,
690   basically), generate an I- or M-format output value, also the new
691   OSZACP flags.  */
692static
693void compute_PCMPxSTRx_gen_output_wide (/*OUT*/V128* resV,
694                                        /*OUT*/UInt* resOSZACP,
695                                        UInt intRes1,
696                                        UInt zmaskL, UInt zmaskR,
697                                        UInt validL,
698                                        UInt pol, UInt idx,
699                                        Bool isxSTRM )
700{
701   vassert((pol >> 2) == 0);
702   vassert((idx >> 1) == 0);
703
704   UInt intRes2 = 0;
705   switch (pol) {
706      case 0: intRes2 = intRes1;          break; // pol +
707      case 1: intRes2 = ~intRes1;         break; // pol -
708      case 2: intRes2 = intRes1;          break; // pol m+
709      case 3: intRes2 = intRes1 ^ validL; break; // pol m-
710   }
711   intRes2 &= 0xFF;
712
713   if (isxSTRM) {
714
715      // generate M-format output (a bit or byte mask in XMM0)
716      if (idx) {
717         resV->w32[0] = bits2_to_bytes4( (intRes2 >> 0) & 0x3 );
718         resV->w32[1] = bits2_to_bytes4( (intRes2 >> 2) & 0x3 );
719         resV->w32[2] = bits2_to_bytes4( (intRes2 >> 4) & 0x3 );
720         resV->w32[3] = bits2_to_bytes4( (intRes2 >> 6) & 0x3 );
721      } else {
722         resV->w32[0] = intRes2 & 0xFF;
723         resV->w32[1] = 0;
724         resV->w32[2] = 0;
725         resV->w32[3] = 0;
726      }
727
728   } else {
729
730      // generate I-format output (an index in ECX)
731      // generate ecx value
732      UInt newECX = 0;
733      if (idx) {
734         // index of ms-1-bit
735         newECX = intRes2 == 0 ? 8 : (31 - clz32(intRes2));
736      } else {
737         // index of ls-1-bit
738         newECX = intRes2 == 0 ? 8 : ctz32(intRes2);
739      }
740
741      resV->w32[0] = newECX;
742      resV->w32[1] = 0;
743      resV->w32[2] = 0;
744      resV->w32[3] = 0;
745
746   }
747
748   // generate new flags, common to all ISTRI and ISTRM cases
749   *resOSZACP    // A, P are zero
750     = ((intRes2 == 0) ? 0 : MASK_C) // C == 0 iff intRes2 == 0
751     | ((zmaskL == 0)  ? 0 : MASK_Z) // Z == 1 iff any in argL is 0
752     | ((zmaskR == 0)  ? 0 : MASK_S) // S == 1 iff any in argR is 0
753     | ((intRes2 & 1) << SHIFT_O);   // O == IntRes2[0]
754}
755
756
757/* Compute result and new OSZACP flags for all PCMP{E,I}STR{I,M}
758   variants on 8-bit data.
759
760   For xSTRI variants, the new ECX value is placed in the 32 bits
761   pointed to by *resV, and the top 96 bits are zeroed.  For xSTRM
762   variants, the result is a 128 bit value and is placed at *resV in
763   the obvious way.
764
765   For all variants, the new OSZACP value is placed at *resOSZACP.
766
767   argLV and argRV are the vector args.  The caller must prepare a
768   16-bit mask for each, zmaskL and zmaskR.  For ISTRx variants this
769   must be 1 for each zero byte of of the respective arg.  For ESTRx
770   variants this is derived from the explicit length indication, and
771   must be 0 in all places except at the bit index corresponding to
772   the valid length (0 .. 16).  If the valid length is 16 then the
773   mask must be all zeroes.  In all cases, bits 31:16 must be zero.
774
775   imm8 is the original immediate from the instruction.  isSTRM
776   indicates whether this is a xSTRM or xSTRI variant, which controls
777   how much of *res is written.
778
779   If the given imm8 case can be handled, the return value is True.
780   If not, False is returned, and neither *res not *resOSZACP are
781   altered.
782*/
783
784Bool compute_PCMPxSTRx ( /*OUT*/V128* resV,
785                         /*OUT*/UInt* resOSZACP,
786                         V128* argLV,  V128* argRV,
787                         UInt zmaskL, UInt zmaskR,
788                         UInt imm8,   Bool isxSTRM )
789{
790   vassert(imm8 < 0x80);
791   vassert((zmaskL >> 16) == 0);
792   vassert((zmaskR >> 16) == 0);
793
794   /* Explicitly reject any imm8 values that haven't been validated,
795      even if they would probably work.  Life is too short to have
796      unvalidated cases in the code base. */
797   switch (imm8) {
798      case 0x00: case 0x02: case 0x08: case 0x0A: case 0x0C: case 0x0E:
799      case 0x12: case 0x14: case 0x1A:
800      case 0x30: case 0x34: case 0x38: case 0x3A:
801      case 0x40: case 0x44: case 0x46: case 0x4A:
802         break;
803      default:
804         return False;
805   }
806
807   UInt fmt = (imm8 >> 0) & 3; // imm8[1:0]  data format
808   UInt agg = (imm8 >> 2) & 3; // imm8[3:2]  aggregation fn
809   UInt pol = (imm8 >> 4) & 3; // imm8[5:4]  polarity
810   UInt idx = (imm8 >> 6) & 1; // imm8[6]    1==msb/bytemask
811
812   /*----------------------------------------*/
813   /*-- strcmp on byte data                --*/
814   /*----------------------------------------*/
815
816   if (agg == 2/*equal each, aka strcmp*/
817       && (fmt == 0/*ub*/ || fmt == 2/*sb*/)) {
818      Int    i;
819      UChar* argL = (UChar*)argLV;
820      UChar* argR = (UChar*)argRV;
821      UInt boolResII = 0;
822      for (i = 15; i >= 0; i--) {
823         UChar cL  = argL[i];
824         UChar cR  = argR[i];
825         boolResII = (boolResII << 1) | (cL == cR ? 1 : 0);
826      }
827      UInt validL = ~(zmaskL | -zmaskL);  // not(left(zmaskL))
828      UInt validR = ~(zmaskR | -zmaskR);  // not(left(zmaskR))
829
830      // do invalidation, common to all equal-each cases
831      UInt intRes1
832         = (boolResII & validL & validR)  // if both valid, use cmpres
833           | (~ (validL | validR));       // if both invalid, force 1
834                                          // else force 0
835      intRes1 &= 0xFFFF;
836
837      // generate I-format output
838      compute_PCMPxSTRx_gen_output(
839         resV, resOSZACP,
840         intRes1, zmaskL, zmaskR, validL, pol, idx, isxSTRM
841      );
842
843      return True;
844   }
845
846   /*----------------------------------------*/
847   /*-- set membership on byte data        --*/
848   /*----------------------------------------*/
849
850   if (agg == 0/*equal any, aka find chars in a set*/
851       && (fmt == 0/*ub*/ || fmt == 2/*sb*/)) {
852      /* argL: the string,  argR: charset */
853      UInt   si, ci;
854      UChar* argL    = (UChar*)argLV;
855      UChar* argR    = (UChar*)argRV;
856      UInt   boolRes = 0;
857      UInt   validL  = ~(zmaskL | -zmaskL);  // not(left(zmaskL))
858      UInt   validR  = ~(zmaskR | -zmaskR);  // not(left(zmaskR))
859
860      for (si = 0; si < 16; si++) {
861         if ((validL & (1 << si)) == 0)
862            // run off the end of the string.
863            break;
864         UInt m = 0;
865         for (ci = 0; ci < 16; ci++) {
866            if ((validR & (1 << ci)) == 0) break;
867            if (argR[ci] == argL[si]) { m = 1; break; }
868         }
869         boolRes |= (m << si);
870      }
871
872      // boolRes is "pre-invalidated"
873      UInt intRes1 = boolRes & 0xFFFF;
874
875      // generate I-format output
876      compute_PCMPxSTRx_gen_output(
877         resV, resOSZACP,
878         intRes1, zmaskL, zmaskR, validL, pol, idx, isxSTRM
879      );
880
881      return True;
882   }
883
884   /*----------------------------------------*/
885   /*-- substring search on byte data      --*/
886   /*----------------------------------------*/
887
888   if (agg == 3/*equal ordered, aka substring search*/
889       && (fmt == 0/*ub*/ || fmt == 2/*sb*/)) {
890
891      /* argL: haystack,  argR: needle */
892      UInt   ni, hi;
893      UChar* argL    = (UChar*)argLV;
894      UChar* argR    = (UChar*)argRV;
895      UInt   boolRes = 0;
896      UInt   validL  = ~(zmaskL | -zmaskL);  // not(left(zmaskL))
897      UInt   validR  = ~(zmaskR | -zmaskR);  // not(left(zmaskR))
898      for (hi = 0; hi < 16; hi++) {
899         UInt m = 1;
900         for (ni = 0; ni < 16; ni++) {
901            if ((validR & (1 << ni)) == 0) break;
902            UInt i = ni + hi;
903            if (i >= 16) break;
904            if (argL[i] != argR[ni]) { m = 0; break; }
905         }
906         boolRes |= (m << hi);
907         if ((validL & (1 << hi)) == 0)
908            // run off the end of the haystack
909            break;
910      }
911
912      // boolRes is "pre-invalidated"
913      UInt intRes1 = boolRes & 0xFFFF;
914
915      // generate I-format output
916      compute_PCMPxSTRx_gen_output(
917         resV, resOSZACP,
918         intRes1, zmaskL, zmaskR, validL, pol, idx, isxSTRM
919      );
920
921      return True;
922   }
923
924   /*----------------------------------------*/
925   /*-- ranges, unsigned byte data         --*/
926   /*----------------------------------------*/
927
928   if (agg == 1/*ranges*/
929       && fmt == 0/*ub*/) {
930
931      /* argL: string,  argR: range-pairs */
932      UInt   ri, si;
933      UChar* argL    = (UChar*)argLV;
934      UChar* argR    = (UChar*)argRV;
935      UInt   boolRes = 0;
936      UInt   validL  = ~(zmaskL | -zmaskL);  // not(left(zmaskL))
937      UInt   validR  = ~(zmaskR | -zmaskR);  // not(left(zmaskR))
938      for (si = 0; si < 16; si++) {
939         if ((validL & (1 << si)) == 0)
940            // run off the end of the string
941            break;
942         UInt m = 0;
943         for (ri = 0; ri < 16; ri += 2) {
944            if ((validR & (3 << ri)) != (3 << ri)) break;
945            if (argR[ri] <= argL[si] && argL[si] <= argR[ri+1]) {
946               m = 1; break;
947            }
948         }
949         boolRes |= (m << si);
950      }
951
952      // boolRes is "pre-invalidated"
953      UInt intRes1 = boolRes & 0xFFFF;
954
955      // generate I-format output
956      compute_PCMPxSTRx_gen_output(
957         resV, resOSZACP,
958         intRes1, zmaskL, zmaskR, validL, pol, idx, isxSTRM
959      );
960
961      return True;
962   }
963
964   /*----------------------------------------*/
965   /*-- ranges, signed byte data           --*/
966   /*----------------------------------------*/
967
968   if (agg == 1/*ranges*/
969       && fmt == 2/*sb*/) {
970
971      /* argL: string,  argR: range-pairs */
972      UInt   ri, si;
973      Char*  argL    = (Char*)argLV;
974      Char*  argR    = (Char*)argRV;
975      UInt   boolRes = 0;
976      UInt   validL  = ~(zmaskL | -zmaskL);  // not(left(zmaskL))
977      UInt   validR  = ~(zmaskR | -zmaskR);  // not(left(zmaskR))
978      for (si = 0; si < 16; si++) {
979         if ((validL & (1 << si)) == 0)
980            // run off the end of the string
981            break;
982         UInt m = 0;
983         for (ri = 0; ri < 16; ri += 2) {
984            if ((validR & (3 << ri)) != (3 << ri)) break;
985            if (argR[ri] <= argL[si] && argL[si] <= argR[ri+1]) {
986               m = 1; break;
987            }
988         }
989         boolRes |= (m << si);
990      }
991
992      // boolRes is "pre-invalidated"
993      UInt intRes1 = boolRes & 0xFFFF;
994
995      // generate I-format output
996      compute_PCMPxSTRx_gen_output(
997         resV, resOSZACP,
998         intRes1, zmaskL, zmaskR, validL, pol, idx, isxSTRM
999      );
1000
1001      return True;
1002   }
1003
1004   return False;
1005}
1006
1007
1008/* Compute result and new OSZACP flags for all PCMP{E,I}STR{I,M}
1009   variants on 16-bit characters.
1010
1011   For xSTRI variants, the new ECX value is placed in the 32 bits
1012   pointed to by *resV, and the top 96 bits are zeroed.  For xSTRM
1013   variants, the result is a 128 bit value and is placed at *resV in
1014   the obvious way.
1015
1016   For all variants, the new OSZACP value is placed at *resOSZACP.
1017
1018   argLV and argRV are the vector args.  The caller must prepare a
1019   8-bit mask for each, zmaskL and zmaskR.  For ISTRx variants this
1020   must be 1 for each zero byte of of the respective arg.  For ESTRx
1021   variants this is derived from the explicit length indication, and
1022   must be 0 in all places except at the bit index corresponding to
1023   the valid length (0 .. 8).  If the valid length is 8 then the
1024   mask must be all zeroes.  In all cases, bits 31:8 must be zero.
1025
1026   imm8 is the original immediate from the instruction.  isSTRM
1027   indicates whether this is a xSTRM or xSTRI variant, which controls
1028   how much of *res is written.
1029
1030   If the given imm8 case can be handled, the return value is True.
1031   If not, False is returned, and neither *res not *resOSZACP are
1032   altered.
1033*/
1034
1035Bool compute_PCMPxSTRx_wide ( /*OUT*/V128* resV,
1036                              /*OUT*/UInt* resOSZACP,
1037                              V128* argLV,  V128* argRV,
1038                              UInt zmaskL, UInt zmaskR,
1039                              UInt imm8,   Bool isxSTRM )
1040{
1041   vassert(imm8 < 0x80);
1042   vassert((zmaskL >> 8) == 0);
1043   vassert((zmaskR >> 8) == 0);
1044
1045   /* Explicitly reject any imm8 values that haven't been validated,
1046      even if they would probably work.  Life is too short to have
1047      unvalidated cases in the code base. */
1048   switch (imm8) {
1049      case 0x01: case 0x03: case 0x09: case 0x0B: case 0x0D:
1050      case 0x13:            case 0x1B:
1051                            case 0x39: case 0x3B:
1052                 case 0x45:            case 0x4B:
1053         break;
1054      default:
1055         return False;
1056   }
1057
1058   UInt fmt = (imm8 >> 0) & 3; // imm8[1:0]  data format
1059   UInt agg = (imm8 >> 2) & 3; // imm8[3:2]  aggregation fn
1060   UInt pol = (imm8 >> 4) & 3; // imm8[5:4]  polarity
1061   UInt idx = (imm8 >> 6) & 1; // imm8[6]    1==msb/bytemask
1062
1063   /*----------------------------------------*/
1064   /*-- strcmp on wide data                --*/
1065   /*----------------------------------------*/
1066
1067   if (agg == 2/*equal each, aka strcmp*/
1068       && (fmt == 1/*uw*/ || fmt == 3/*sw*/)) {
1069      Int     i;
1070      UShort* argL = (UShort*)argLV;
1071      UShort* argR = (UShort*)argRV;
1072      UInt boolResII = 0;
1073      for (i = 7; i >= 0; i--) {
1074         UShort cL  = argL[i];
1075         UShort cR  = argR[i];
1076         boolResII = (boolResII << 1) | (cL == cR ? 1 : 0);
1077      }
1078      UInt validL = ~(zmaskL | -zmaskL);  // not(left(zmaskL))
1079      UInt validR = ~(zmaskR | -zmaskR);  // not(left(zmaskR))
1080
1081      // do invalidation, common to all equal-each cases
1082      UInt intRes1
1083         = (boolResII & validL & validR)  // if both valid, use cmpres
1084           | (~ (validL | validR));       // if both invalid, force 1
1085                                          // else force 0
1086      intRes1 &= 0xFF;
1087
1088      // generate I-format output
1089      compute_PCMPxSTRx_gen_output_wide(
1090         resV, resOSZACP,
1091         intRes1, zmaskL, zmaskR, validL, pol, idx, isxSTRM
1092      );
1093
1094      return True;
1095   }
1096
1097   /*----------------------------------------*/
1098   /*-- set membership on wide data        --*/
1099   /*----------------------------------------*/
1100
1101   if (agg == 0/*equal any, aka find chars in a set*/
1102       && (fmt == 1/*uw*/ || fmt == 3/*sw*/)) {
1103      /* argL: the string,  argR: charset */
1104      UInt    si, ci;
1105      UShort* argL    = (UShort*)argLV;
1106      UShort* argR    = (UShort*)argRV;
1107      UInt    boolRes = 0;
1108      UInt    validL  = ~(zmaskL | -zmaskL);  // not(left(zmaskL))
1109      UInt    validR  = ~(zmaskR | -zmaskR);  // not(left(zmaskR))
1110
1111      for (si = 0; si < 8; si++) {
1112         if ((validL & (1 << si)) == 0)
1113            // run off the end of the string.
1114            break;
1115         UInt m = 0;
1116         for (ci = 0; ci < 8; ci++) {
1117            if ((validR & (1 << ci)) == 0) break;
1118            if (argR[ci] == argL[si]) { m = 1; break; }
1119         }
1120         boolRes |= (m << si);
1121      }
1122
1123      // boolRes is "pre-invalidated"
1124      UInt intRes1 = boolRes & 0xFF;
1125
1126      // generate I-format output
1127      compute_PCMPxSTRx_gen_output_wide(
1128         resV, resOSZACP,
1129         intRes1, zmaskL, zmaskR, validL, pol, idx, isxSTRM
1130      );
1131
1132      return True;
1133   }
1134
1135   /*----------------------------------------*/
1136   /*-- substring search on wide data      --*/
1137   /*----------------------------------------*/
1138
1139   if (agg == 3/*equal ordered, aka substring search*/
1140       && (fmt == 1/*uw*/ || fmt == 3/*sw*/)) {
1141
1142      /* argL: haystack,  argR: needle */
1143      UInt    ni, hi;
1144      UShort* argL    = (UShort*)argLV;
1145      UShort* argR    = (UShort*)argRV;
1146      UInt    boolRes = 0;
1147      UInt    validL  = ~(zmaskL | -zmaskL);  // not(left(zmaskL))
1148      UInt    validR  = ~(zmaskR | -zmaskR);  // not(left(zmaskR))
1149      for (hi = 0; hi < 8; hi++) {
1150         UInt m = 1;
1151         for (ni = 0; ni < 8; ni++) {
1152            if ((validR & (1 << ni)) == 0) break;
1153            UInt i = ni + hi;
1154            if (i >= 8) break;
1155            if (argL[i] != argR[ni]) { m = 0; break; }
1156         }
1157         boolRes |= (m << hi);
1158         if ((validL & (1 << hi)) == 0)
1159            // run off the end of the haystack
1160            break;
1161      }
1162
1163      // boolRes is "pre-invalidated"
1164      UInt intRes1 = boolRes & 0xFF;
1165
1166      // generate I-format output
1167      compute_PCMPxSTRx_gen_output_wide(
1168         resV, resOSZACP,
1169         intRes1, zmaskL, zmaskR, validL, pol, idx, isxSTRM
1170      );
1171
1172      return True;
1173   }
1174
1175   /*----------------------------------------*/
1176   /*-- ranges, unsigned wide data         --*/
1177   /*----------------------------------------*/
1178
1179   if (agg == 1/*ranges*/
1180       && fmt == 1/*uw*/) {
1181
1182      /* argL: string,  argR: range-pairs */
1183      UInt    ri, si;
1184      UShort* argL    = (UShort*)argLV;
1185      UShort* argR    = (UShort*)argRV;
1186      UInt    boolRes = 0;
1187      UInt    validL  = ~(zmaskL | -zmaskL);  // not(left(zmaskL))
1188      UInt    validR  = ~(zmaskR | -zmaskR);  // not(left(zmaskR))
1189      for (si = 0; si < 8; si++) {
1190         if ((validL & (1 << si)) == 0)
1191            // run off the end of the string
1192            break;
1193         UInt m = 0;
1194         for (ri = 0; ri < 8; ri += 2) {
1195            if ((validR & (3 << ri)) != (3 << ri)) break;
1196            if (argR[ri] <= argL[si] && argL[si] <= argR[ri+1]) {
1197               m = 1; break;
1198            }
1199         }
1200         boolRes |= (m << si);
1201      }
1202
1203      // boolRes is "pre-invalidated"
1204      UInt intRes1 = boolRes & 0xFF;
1205
1206      // generate I-format output
1207      compute_PCMPxSTRx_gen_output_wide(
1208         resV, resOSZACP,
1209         intRes1, zmaskL, zmaskR, validL, pol, idx, isxSTRM
1210      );
1211
1212      return True;
1213   }
1214
1215   return False;
1216}
1217
1218
1219/*---------------------------------------------------------------*/
1220/*--- end                                 guest_generic_x87.c ---*/
1221/*---------------------------------------------------------------*/
1222