dec_sse2.c revision 0406ce1417f76f2034833414dcecc9f56253640c
1// Copyright 2011 Google Inc. All Rights Reserved.
2//
3// Use of this source code is governed by a BSD-style license
4// that can be found in the COPYING file in the root of the source
5// tree. An additional intellectual property rights grant can be found
6// in the file PATENTS. All contributing project authors may
7// be found in the AUTHORS file in the root of the source tree.
8// -----------------------------------------------------------------------------
9//
10// SSE2 version of some decoding functions (idct, loop filtering).
11//
12// Author: somnath@google.com (Somnath Banerjee)
13//         cduvivier@google.com (Christian Duvivier)
14
15#include "./dsp.h"
16
17#if defined(__cplusplus) || defined(c_plusplus)
18extern "C" {
19#endif
20
21#if defined(WEBP_USE_SSE2)
22
23#include <emmintrin.h>
24#include "../dec/vp8i.h"
25
26//------------------------------------------------------------------------------
27// Transforms (Paragraph 14.4)
28
29static void TransformSSE2(const int16_t* in, uint8_t* dst, int do_two) {
30  // This implementation makes use of 16-bit fixed point versions of two
31  // multiply constants:
32  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
33  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
34  //
35  // To be able to use signed 16-bit integers, we use the following trick to
36  // have constants within range:
37  // - Associated constants are obtained by subtracting the 16-bit fixed point
38  //   version of one:
39  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
40  //      K1 = 85267  =>  k1 =  20091
41  //      K2 = 35468  =>  k2 = -30068
42  // - The multiplication of a variable by a constant become the sum of the
43  //   variable and the multiplication of that variable by the associated
44  //   constant:
45  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
46  const __m128i k1 = _mm_set1_epi16(20091);
47  const __m128i k2 = _mm_set1_epi16(-30068);
48  __m128i T0, T1, T2, T3;
49
50  // Load and concatenate the transform coefficients (we'll do two transforms
51  // in parallel). In the case of only one transform, the second half of the
52  // vectors will just contain random value we'll never use nor store.
53  __m128i in0, in1, in2, in3;
54  {
55    in0 = _mm_loadl_epi64((__m128i*)&in[0]);
56    in1 = _mm_loadl_epi64((__m128i*)&in[4]);
57    in2 = _mm_loadl_epi64((__m128i*)&in[8]);
58    in3 = _mm_loadl_epi64((__m128i*)&in[12]);
59    // a00 a10 a20 a30   x x x x
60    // a01 a11 a21 a31   x x x x
61    // a02 a12 a22 a32   x x x x
62    // a03 a13 a23 a33   x x x x
63    if (do_two) {
64      const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
65      const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
66      const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
67      const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
68      in0 = _mm_unpacklo_epi64(in0, inB0);
69      in1 = _mm_unpacklo_epi64(in1, inB1);
70      in2 = _mm_unpacklo_epi64(in2, inB2);
71      in3 = _mm_unpacklo_epi64(in3, inB3);
72      // a00 a10 a20 a30   b00 b10 b20 b30
73      // a01 a11 a21 a31   b01 b11 b21 b31
74      // a02 a12 a22 a32   b02 b12 b22 b32
75      // a03 a13 a23 a33   b03 b13 b23 b33
76    }
77  }
78
79  // Vertical pass and subsequent transpose.
80  {
81    // First pass, c and d calculations are longer because of the "trick"
82    // multiplications.
83    const __m128i a = _mm_add_epi16(in0, in2);
84    const __m128i b = _mm_sub_epi16(in0, in2);
85    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
86    const __m128i c1 = _mm_mulhi_epi16(in1, k2);
87    const __m128i c2 = _mm_mulhi_epi16(in3, k1);
88    const __m128i c3 = _mm_sub_epi16(in1, in3);
89    const __m128i c4 = _mm_sub_epi16(c1, c2);
90    const __m128i c = _mm_add_epi16(c3, c4);
91    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
92    const __m128i d1 = _mm_mulhi_epi16(in1, k1);
93    const __m128i d2 = _mm_mulhi_epi16(in3, k2);
94    const __m128i d3 = _mm_add_epi16(in1, in3);
95    const __m128i d4 = _mm_add_epi16(d1, d2);
96    const __m128i d = _mm_add_epi16(d3, d4);
97
98    // Second pass.
99    const __m128i tmp0 = _mm_add_epi16(a, d);
100    const __m128i tmp1 = _mm_add_epi16(b, c);
101    const __m128i tmp2 = _mm_sub_epi16(b, c);
102    const __m128i tmp3 = _mm_sub_epi16(a, d);
103
104    // Transpose the two 4x4.
105    // a00 a01 a02 a03   b00 b01 b02 b03
106    // a10 a11 a12 a13   b10 b11 b12 b13
107    // a20 a21 a22 a23   b20 b21 b22 b23
108    // a30 a31 a32 a33   b30 b31 b32 b33
109    const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
110    const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
111    const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
112    const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
113    // a00 a10 a01 a11   a02 a12 a03 a13
114    // a20 a30 a21 a31   a22 a32 a23 a33
115    // b00 b10 b01 b11   b02 b12 b03 b13
116    // b20 b30 b21 b31   b22 b32 b23 b33
117    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
118    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
119    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
120    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
121    // a00 a10 a20 a30 a01 a11 a21 a31
122    // b00 b10 b20 b30 b01 b11 b21 b31
123    // a02 a12 a22 a32 a03 a13 a23 a33
124    // b02 b12 a22 b32 b03 b13 b23 b33
125    T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
126    T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
127    T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
128    T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
129    // a00 a10 a20 a30   b00 b10 b20 b30
130    // a01 a11 a21 a31   b01 b11 b21 b31
131    // a02 a12 a22 a32   b02 b12 b22 b32
132    // a03 a13 a23 a33   b03 b13 b23 b33
133  }
134
135  // Horizontal pass and subsequent transpose.
136  {
137    // First pass, c and d calculations are longer because of the "trick"
138    // multiplications.
139    const __m128i four = _mm_set1_epi16(4);
140    const __m128i dc = _mm_add_epi16(T0, four);
141    const __m128i a =  _mm_add_epi16(dc, T2);
142    const __m128i b =  _mm_sub_epi16(dc, T2);
143    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
144    const __m128i c1 = _mm_mulhi_epi16(T1, k2);
145    const __m128i c2 = _mm_mulhi_epi16(T3, k1);
146    const __m128i c3 = _mm_sub_epi16(T1, T3);
147    const __m128i c4 = _mm_sub_epi16(c1, c2);
148    const __m128i c = _mm_add_epi16(c3, c4);
149    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
150    const __m128i d1 = _mm_mulhi_epi16(T1, k1);
151    const __m128i d2 = _mm_mulhi_epi16(T3, k2);
152    const __m128i d3 = _mm_add_epi16(T1, T3);
153    const __m128i d4 = _mm_add_epi16(d1, d2);
154    const __m128i d = _mm_add_epi16(d3, d4);
155
156    // Second pass.
157    const __m128i tmp0 = _mm_add_epi16(a, d);
158    const __m128i tmp1 = _mm_add_epi16(b, c);
159    const __m128i tmp2 = _mm_sub_epi16(b, c);
160    const __m128i tmp3 = _mm_sub_epi16(a, d);
161    const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
162    const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
163    const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
164    const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
165
166    // Transpose the two 4x4.
167    // a00 a01 a02 a03   b00 b01 b02 b03
168    // a10 a11 a12 a13   b10 b11 b12 b13
169    // a20 a21 a22 a23   b20 b21 b22 b23
170    // a30 a31 a32 a33   b30 b31 b32 b33
171    const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
172    const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
173    const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
174    const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
175    // a00 a10 a01 a11   a02 a12 a03 a13
176    // a20 a30 a21 a31   a22 a32 a23 a33
177    // b00 b10 b01 b11   b02 b12 b03 b13
178    // b20 b30 b21 b31   b22 b32 b23 b33
179    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
180    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
181    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
182    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
183    // a00 a10 a20 a30 a01 a11 a21 a31
184    // b00 b10 b20 b30 b01 b11 b21 b31
185    // a02 a12 a22 a32 a03 a13 a23 a33
186    // b02 b12 a22 b32 b03 b13 b23 b33
187    T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
188    T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
189    T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
190    T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
191    // a00 a10 a20 a30   b00 b10 b20 b30
192    // a01 a11 a21 a31   b01 b11 b21 b31
193    // a02 a12 a22 a32   b02 b12 b22 b32
194    // a03 a13 a23 a33   b03 b13 b23 b33
195  }
196
197  // Add inverse transform to 'dst' and store.
198  {
199    const __m128i zero = _mm_setzero_si128();
200    // Load the reference(s).
201    __m128i dst0, dst1, dst2, dst3;
202    if (do_two) {
203      // Load eight bytes/pixels per line.
204      dst0 = _mm_loadl_epi64((__m128i*)&dst[0 * BPS]);
205      dst1 = _mm_loadl_epi64((__m128i*)&dst[1 * BPS]);
206      dst2 = _mm_loadl_epi64((__m128i*)&dst[2 * BPS]);
207      dst3 = _mm_loadl_epi64((__m128i*)&dst[3 * BPS]);
208    } else {
209      // Load four bytes/pixels per line.
210      dst0 = _mm_cvtsi32_si128(*(int*)&dst[0 * BPS]);
211      dst1 = _mm_cvtsi32_si128(*(int*)&dst[1 * BPS]);
212      dst2 = _mm_cvtsi32_si128(*(int*)&dst[2 * BPS]);
213      dst3 = _mm_cvtsi32_si128(*(int*)&dst[3 * BPS]);
214    }
215    // Convert to 16b.
216    dst0 = _mm_unpacklo_epi8(dst0, zero);
217    dst1 = _mm_unpacklo_epi8(dst1, zero);
218    dst2 = _mm_unpacklo_epi8(dst2, zero);
219    dst3 = _mm_unpacklo_epi8(dst3, zero);
220    // Add the inverse transform(s).
221    dst0 = _mm_add_epi16(dst0, T0);
222    dst1 = _mm_add_epi16(dst1, T1);
223    dst2 = _mm_add_epi16(dst2, T2);
224    dst3 = _mm_add_epi16(dst3, T3);
225    // Unsigned saturate to 8b.
226    dst0 = _mm_packus_epi16(dst0, dst0);
227    dst1 = _mm_packus_epi16(dst1, dst1);
228    dst2 = _mm_packus_epi16(dst2, dst2);
229    dst3 = _mm_packus_epi16(dst3, dst3);
230    // Store the results.
231    if (do_two) {
232      // Store eight bytes/pixels per line.
233      _mm_storel_epi64((__m128i*)&dst[0 * BPS], dst0);
234      _mm_storel_epi64((__m128i*)&dst[1 * BPS], dst1);
235      _mm_storel_epi64((__m128i*)&dst[2 * BPS], dst2);
236      _mm_storel_epi64((__m128i*)&dst[3 * BPS], dst3);
237    } else {
238      // Store four bytes/pixels per line.
239      *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(dst0);
240      *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(dst1);
241      *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(dst2);
242      *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(dst3);
243    }
244  }
245}
246
247//------------------------------------------------------------------------------
248// Loop Filter (Paragraph 15)
249
250// Compute abs(p - q) = subs(p - q) OR subs(q - p)
251#define MM_ABS(p, q)  _mm_or_si128(                                            \
252    _mm_subs_epu8((q), (p)),                                                   \
253    _mm_subs_epu8((p), (q)))
254
255// Shift each byte of "a" by N bits while preserving by the sign bit.
256//
257// It first shifts the lower bytes of the words and then the upper bytes and
258// then merges the results together.
259#define SIGNED_SHIFT_N(a, N) {                                                 \
260  __m128i t = a;                                                               \
261  t = _mm_slli_epi16(t, 8);                                                    \
262  t = _mm_srai_epi16(t, N);                                                    \
263  t = _mm_srli_epi16(t, 8);                                                    \
264                                                                               \
265  a = _mm_srai_epi16(a, N + 8);                                                \
266  a = _mm_slli_epi16(a, 8);                                                    \
267                                                                               \
268  a = _mm_or_si128(t, a);                                                      \
269}
270
271#define FLIP_SIGN_BIT2(a, b) {                                                 \
272  a = _mm_xor_si128(a, sign_bit);                                              \
273  b = _mm_xor_si128(b, sign_bit);                                              \
274}
275
276#define FLIP_SIGN_BIT4(a, b, c, d) {                                           \
277  FLIP_SIGN_BIT2(a, b);                                                        \
278  FLIP_SIGN_BIT2(c, d);                                                        \
279}
280
281#define GET_NOTHEV(p1, p0, q0, q1, hev_thresh, not_hev) {                      \
282  const __m128i zero = _mm_setzero_si128();                                    \
283  const __m128i t_1 = MM_ABS(p1, p0);                                          \
284  const __m128i t_2 = MM_ABS(q1, q0);                                          \
285                                                                               \
286  const __m128i h = _mm_set1_epi8(hev_thresh);                                 \
287  const __m128i t_3 = _mm_subs_epu8(t_1, h);  /* abs(p1 - p0) - hev_tresh */   \
288  const __m128i t_4 = _mm_subs_epu8(t_2, h);  /* abs(q1 - q0) - hev_tresh */   \
289                                                                               \
290  not_hev = _mm_or_si128(t_3, t_4);                                            \
291  not_hev = _mm_cmpeq_epi8(not_hev, zero); /* not_hev <= t1 && not_hev <= t2 */\
292}
293
294#define GET_BASE_DELTA(p1, p0, q0, q1, o) {                                    \
295  const __m128i qp0 = _mm_subs_epi8(q0, p0);  /* q0 - p0 */                    \
296  o = _mm_subs_epi8(p1, q1);            /* p1 - q1 */                          \
297  o = _mm_adds_epi8(o, qp0);            /* p1 - q1 + 1 * (q0 - p0) */          \
298  o = _mm_adds_epi8(o, qp0);            /* p1 - q1 + 2 * (q0 - p0) */          \
299  o = _mm_adds_epi8(o, qp0);            /* p1 - q1 + 3 * (q0 - p0) */          \
300}
301
302#define DO_SIMPLE_FILTER(p0, q0, fl) {                                         \
303  const __m128i three = _mm_set1_epi8(3);                                      \
304  const __m128i four = _mm_set1_epi8(4);                                       \
305  __m128i v3 = _mm_adds_epi8(fl, three);                                       \
306  __m128i v4 = _mm_adds_epi8(fl, four);                                        \
307                                                                               \
308  /* Do +4 side */                                                             \
309  SIGNED_SHIFT_N(v4, 3);                /* v4 >> 3  */                         \
310  q0 = _mm_subs_epi8(q0, v4);           /* q0 -= v4 */                         \
311                                                                               \
312  /* Now do +3 side */                                                         \
313  SIGNED_SHIFT_N(v3, 3);                /* v3 >> 3  */                         \
314  p0 = _mm_adds_epi8(p0, v3);           /* p0 += v3 */                         \
315}
316
317// Updates values of 2 pixels at MB edge during complex filtering.
318// Update operations:
319// q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
320#define UPDATE_2PIXELS(pi, qi, a_lo, a_hi) {                                   \
321  const __m128i a_lo7 = _mm_srai_epi16(a_lo, 7);                               \
322  const __m128i a_hi7 = _mm_srai_epi16(a_hi, 7);                               \
323  const __m128i delta = _mm_packs_epi16(a_lo7, a_hi7);                         \
324  pi = _mm_adds_epi8(pi, delta);                                               \
325  qi = _mm_subs_epi8(qi, delta);                                               \
326}
327
328static void NeedsFilter(const __m128i* p1, const __m128i* p0, const __m128i* q0,
329                        const __m128i* q1, int thresh, __m128i *mask) {
330  __m128i t1 = MM_ABS(*p1, *q1);        // abs(p1 - q1)
331  *mask = _mm_set1_epi8(0xFE);
332  t1 = _mm_and_si128(t1, *mask);        // set lsb of each byte to zero
333  t1 = _mm_srli_epi16(t1, 1);           // abs(p1 - q1) / 2
334
335  *mask = MM_ABS(*p0, *q0);             // abs(p0 - q0)
336  *mask = _mm_adds_epu8(*mask, *mask);  // abs(p0 - q0) * 2
337  *mask = _mm_adds_epu8(*mask, t1);     // abs(p0 - q0) * 2 + abs(p1 - q1) / 2
338
339  t1 = _mm_set1_epi8(thresh);
340  *mask = _mm_subs_epu8(*mask, t1);     // mask <= thresh
341  *mask = _mm_cmpeq_epi8(*mask, _mm_setzero_si128());
342}
343
344//------------------------------------------------------------------------------
345// Edge filtering functions
346
347// Applies filter on 2 pixels (p0 and q0)
348static WEBP_INLINE void DoFilter2(const __m128i* p1, __m128i* p0, __m128i* q0,
349                                  const __m128i* q1, int thresh) {
350  __m128i a, mask;
351  const __m128i sign_bit = _mm_set1_epi8(0x80);
352  const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
353  const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
354
355  NeedsFilter(p1, p0, q0, q1, thresh, &mask);
356
357  // convert to signed values
358  FLIP_SIGN_BIT2(*p0, *q0);
359
360  GET_BASE_DELTA(p1s, *p0, *q0, q1s, a);
361  a = _mm_and_si128(a, mask);     // mask filter values we don't care about
362  DO_SIMPLE_FILTER(*p0, *q0, a);
363
364  // unoffset
365  FLIP_SIGN_BIT2(*p0, *q0);
366}
367
368// Applies filter on 4 pixels (p1, p0, q0 and q1)
369static WEBP_INLINE void DoFilter4(__m128i* p1, __m128i *p0,
370                                  __m128i* q0, __m128i* q1,
371                                  const __m128i* mask, int hev_thresh) {
372  __m128i not_hev;
373  __m128i t1, t2, t3;
374  const __m128i sign_bit = _mm_set1_epi8(0x80);
375
376  // compute hev mask
377  GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev);
378
379  // convert to signed values
380  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
381
382  t1 = _mm_subs_epi8(*p1, *q1);        // p1 - q1
383  t1 = _mm_andnot_si128(not_hev, t1);  // hev(p1 - q1)
384  t2 = _mm_subs_epi8(*q0, *p0);        // q0 - p0
385  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 1 * (q0 - p0)
386  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 2 * (q0 - p0)
387  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 3 * (q0 - p0)
388  t1 = _mm_and_si128(t1, *mask);       // mask filter values we don't care about
389
390  // Do +4 side
391  t2 = _mm_set1_epi8(4);
392  t2 = _mm_adds_epi8(t1, t2);        // 3 * (q0 - p0) + (p1 - q1) + 4
393  SIGNED_SHIFT_N(t2, 3);             // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
394  t3 = t2;                           // save t2
395  *q0 = _mm_subs_epi8(*q0, t2);      // q0 -= t2
396
397  // Now do +3 side
398  t2 = _mm_set1_epi8(3);
399  t2 = _mm_adds_epi8(t1, t2);        // +3 instead of +4
400  SIGNED_SHIFT_N(t2, 3);             // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
401  *p0 = _mm_adds_epi8(*p0, t2);      // p0 += t2
402
403  t2 = _mm_set1_epi8(1);
404  t3 = _mm_adds_epi8(t3, t2);
405  SIGNED_SHIFT_N(t3, 1);             // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 4
406
407  t3 = _mm_and_si128(not_hev, t3);   // if !hev
408  *q1 = _mm_subs_epi8(*q1, t3);      // q1 -= t3
409  *p1 = _mm_adds_epi8(*p1, t3);      // p1 += t3
410
411  // unoffset
412  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
413}
414
415// Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
416static WEBP_INLINE void DoFilter6(__m128i *p2, __m128i* p1, __m128i *p0,
417                                  __m128i* q0, __m128i* q1, __m128i *q2,
418                                  const __m128i* mask, int hev_thresh) {
419  __m128i a, not_hev;
420  const __m128i sign_bit = _mm_set1_epi8(0x80);
421
422  // compute hev mask
423  GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev);
424
425  // convert to signed values
426  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
427  FLIP_SIGN_BIT2(*p2, *q2);
428
429  GET_BASE_DELTA(*p1, *p0, *q0, *q1, a);
430
431  { // do simple filter on pixels with hev
432    const __m128i m = _mm_andnot_si128(not_hev, *mask);
433    const __m128i f = _mm_and_si128(a, m);
434    DO_SIMPLE_FILTER(*p0, *q0, f);
435  }
436  { // do strong filter on pixels with not hev
437    const __m128i zero = _mm_setzero_si128();
438    const __m128i nine = _mm_set1_epi16(0x0900);
439    const __m128i sixty_three = _mm_set1_epi16(63);
440
441    const __m128i m = _mm_and_si128(not_hev, *mask);
442    const __m128i f = _mm_and_si128(a, m);
443    const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
444    const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
445
446    const __m128i f9_lo = _mm_mulhi_epi16(f_lo, nine);   // Filter (lo) * 9
447    const __m128i f9_hi = _mm_mulhi_epi16(f_hi, nine);   // Filter (hi) * 9
448    const __m128i f18_lo = _mm_add_epi16(f9_lo, f9_lo);  // Filter (lo) * 18
449    const __m128i f18_hi = _mm_add_epi16(f9_hi, f9_hi);  // Filter (hi) * 18
450
451    const __m128i a2_lo = _mm_add_epi16(f9_lo, sixty_three);  // Filter * 9 + 63
452    const __m128i a2_hi = _mm_add_epi16(f9_hi, sixty_three);  // Filter * 9 + 63
453
454    const __m128i a1_lo = _mm_add_epi16(f18_lo, sixty_three);  // F... * 18 + 63
455    const __m128i a1_hi = _mm_add_epi16(f18_hi, sixty_three);  // F... * 18 + 63
456
457    const __m128i a0_lo = _mm_add_epi16(f18_lo, a2_lo);  // Filter * 27 + 63
458    const __m128i a0_hi = _mm_add_epi16(f18_hi, a2_hi);  // Filter * 27 + 63
459
460    UPDATE_2PIXELS(*p2, *q2, a2_lo, a2_hi);
461    UPDATE_2PIXELS(*p1, *q1, a1_lo, a1_hi);
462    UPDATE_2PIXELS(*p0, *q0, a0_lo, a0_hi);
463  }
464
465  // unoffset
466  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
467  FLIP_SIGN_BIT2(*p2, *q2);
468}
469
470// reads 8 rows across a vertical edge.
471//
472// TODO(somnath): Investigate _mm_shuffle* also see if it can be broken into
473// two Load4x4() to avoid code duplication.
474static WEBP_INLINE void Load8x4(const uint8_t* b, int stride,
475                                __m128i* p, __m128i* q) {
476  __m128i t1, t2;
477
478  // Load 0th, 1st, 4th and 5th rows
479  __m128i r0 =  _mm_cvtsi32_si128(*((int*)&b[0 * stride]));  // 03 02 01 00
480  __m128i r1 =  _mm_cvtsi32_si128(*((int*)&b[1 * stride]));  // 13 12 11 10
481  __m128i r4 =  _mm_cvtsi32_si128(*((int*)&b[4 * stride]));  // 43 42 41 40
482  __m128i r5 =  _mm_cvtsi32_si128(*((int*)&b[5 * stride]));  // 53 52 51 50
483
484  r0 = _mm_unpacklo_epi32(r0, r4);               // 43 42 41 40 03 02 01 00
485  r1 = _mm_unpacklo_epi32(r1, r5);               // 53 52 51 50 13 12 11 10
486
487  // t1 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
488  t1 = _mm_unpacklo_epi8(r0, r1);
489
490  // Load 2nd, 3rd, 6th and 7th rows
491  r0 =  _mm_cvtsi32_si128(*((int*)&b[2 * stride]));          // 23 22 21 22
492  r1 =  _mm_cvtsi32_si128(*((int*)&b[3 * stride]));          // 33 32 31 30
493  r4 =  _mm_cvtsi32_si128(*((int*)&b[6 * stride]));          // 63 62 61 60
494  r5 =  _mm_cvtsi32_si128(*((int*)&b[7 * stride]));          // 73 72 71 70
495
496  r0 = _mm_unpacklo_epi32(r0, r4);               // 63 62 61 60 23 22 21 20
497  r1 = _mm_unpacklo_epi32(r1, r5);               // 73 72 71 70 33 32 31 30
498
499  // t2 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
500  t2 = _mm_unpacklo_epi8(r0, r1);
501
502  // t1 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
503  // t2 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
504  r0 = t1;
505  t1 = _mm_unpacklo_epi16(t1, t2);
506  t2 = _mm_unpackhi_epi16(r0, t2);
507
508  // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
509  // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
510  *p = _mm_unpacklo_epi32(t1, t2);
511  *q = _mm_unpackhi_epi32(t1, t2);
512}
513
514static WEBP_INLINE void Load16x4(const uint8_t* r0, const uint8_t* r8,
515                                 int stride,
516                                 __m128i* p1, __m128i* p0,
517                                 __m128i* q0, __m128i* q1) {
518  __m128i t1, t2;
519  // Assume the pixels around the edge (|) are numbered as follows
520  //                00 01 | 02 03
521  //                10 11 | 12 13
522  //                 ...  |  ...
523  //                e0 e1 | e2 e3
524  //                f0 f1 | f2 f3
525  //
526  // r0 is pointing to the 0th row (00)
527  // r8 is pointing to the 8th row (80)
528
529  // Load
530  // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
531  // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
532  // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
533  // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
534  Load8x4(r0, stride, p1, q0);
535  Load8x4(r8, stride, p0, q1);
536
537  t1 = *p1;
538  t2 = *q0;
539  // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
540  // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
541  // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
542  // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
543  *p1 = _mm_unpacklo_epi64(t1, *p0);
544  *p0 = _mm_unpackhi_epi64(t1, *p0);
545  *q0 = _mm_unpacklo_epi64(t2, *q1);
546  *q1 = _mm_unpackhi_epi64(t2, *q1);
547}
548
549static WEBP_INLINE void Store4x4(__m128i* x, uint8_t* dst, int stride) {
550  int i;
551  for (i = 0; i < 4; ++i, dst += stride) {
552    *((int32_t*)dst) = _mm_cvtsi128_si32(*x);
553    *x = _mm_srli_si128(*x, 4);
554  }
555}
556
557// Transpose back and store
558static WEBP_INLINE void Store16x4(uint8_t* r0, uint8_t* r8, int stride,
559                                  __m128i* p1, __m128i* p0,
560                                  __m128i* q0, __m128i* q1) {
561  __m128i t1;
562
563  // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
564  // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
565  t1 = *p0;
566  *p0 = _mm_unpacklo_epi8(*p1, t1);
567  *p1 = _mm_unpackhi_epi8(*p1, t1);
568
569  // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
570  // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
571  t1 = *q0;
572  *q0 = _mm_unpacklo_epi8(t1, *q1);
573  *q1 = _mm_unpackhi_epi8(t1, *q1);
574
575  // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
576  // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
577  t1 = *p0;
578  *p0 = _mm_unpacklo_epi16(t1, *q0);
579  *q0 = _mm_unpackhi_epi16(t1, *q0);
580
581  // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
582  // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
583  t1 = *p1;
584  *p1 = _mm_unpacklo_epi16(t1, *q1);
585  *q1 = _mm_unpackhi_epi16(t1, *q1);
586
587  Store4x4(p0, r0, stride);
588  r0 += 4 * stride;
589  Store4x4(q0, r0, stride);
590
591  Store4x4(p1, r8, stride);
592  r8 += 4 * stride;
593  Store4x4(q1, r8, stride);
594}
595
596//------------------------------------------------------------------------------
597// Simple In-loop filtering (Paragraph 15.2)
598
599static void SimpleVFilter16SSE2(uint8_t* p, int stride, int thresh) {
600  // Load
601  __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
602  __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
603  __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
604  __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
605
606  DoFilter2(&p1, &p0, &q0, &q1, thresh);
607
608  // Store
609  _mm_storeu_si128((__m128i*)&p[-stride], p0);
610  _mm_storeu_si128((__m128i*)p, q0);
611}
612
613static void SimpleHFilter16SSE2(uint8_t* p, int stride, int thresh) {
614  __m128i p1, p0, q0, q1;
615
616  p -= 2;  // beginning of p1
617
618  Load16x4(p, p + 8 * stride,  stride, &p1, &p0, &q0, &q1);
619  DoFilter2(&p1, &p0, &q0, &q1, thresh);
620  Store16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
621}
622
623static void SimpleVFilter16iSSE2(uint8_t* p, int stride, int thresh) {
624  int k;
625  for (k = 3; k > 0; --k) {
626    p += 4 * stride;
627    SimpleVFilter16SSE2(p, stride, thresh);
628  }
629}
630
631static void SimpleHFilter16iSSE2(uint8_t* p, int stride, int thresh) {
632  int k;
633  for (k = 3; k > 0; --k) {
634    p += 4;
635    SimpleHFilter16SSE2(p, stride, thresh);
636  }
637}
638
639//------------------------------------------------------------------------------
640// Complex In-loop filtering (Paragraph 15.3)
641
642#define MAX_DIFF1(p3, p2, p1, p0, m) {                                         \
643  m = MM_ABS(p3, p2);                                                          \
644  m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
645  m = _mm_max_epu8(m, MM_ABS(p1, p0));                                         \
646}
647
648#define MAX_DIFF2(p3, p2, p1, p0, m) {                                         \
649  m = _mm_max_epu8(m, MM_ABS(p3, p2));                                         \
650  m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
651  m = _mm_max_epu8(m, MM_ABS(p1, p0));                                         \
652}
653
654#define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) {                             \
655  e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]);                            \
656  e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]);                            \
657  e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]);                            \
658  e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]);                            \
659}
660
661#define LOADUV_H_EDGE(p, u, v, stride) {                                       \
662  p = _mm_loadl_epi64((__m128i*)&(u)[(stride)]);                               \
663  p = _mm_unpacklo_epi64(p, _mm_loadl_epi64((__m128i*)&(v)[(stride)]));        \
664}
665
666#define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) {                        \
667  LOADUV_H_EDGE(e1, u, v, 0 * stride);                                         \
668  LOADUV_H_EDGE(e2, u, v, 1 * stride);                                         \
669  LOADUV_H_EDGE(e3, u, v, 2 * stride);                                         \
670  LOADUV_H_EDGE(e4, u, v, 3 * stride);                                         \
671}
672
673#define STOREUV(p, u, v, stride) {                                             \
674  _mm_storel_epi64((__m128i*)&u[(stride)], p);                                 \
675  p = _mm_srli_si128(p, 8);                                                    \
676  _mm_storel_epi64((__m128i*)&v[(stride)], p);                                 \
677}
678
679#define COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask) {               \
680  __m128i fl_yes;                                                              \
681  const __m128i it = _mm_set1_epi8(ithresh);                                   \
682  mask = _mm_subs_epu8(mask, it);                                              \
683  mask = _mm_cmpeq_epi8(mask, _mm_setzero_si128());                            \
684  NeedsFilter(&p1, &p0, &q0, &q1, thresh, &fl_yes);                            \
685  mask = _mm_and_si128(mask, fl_yes);                                          \
686}
687
688// on macroblock edges
689static void VFilter16SSE2(uint8_t* p, int stride,
690                          int thresh, int ithresh, int hev_thresh) {
691  __m128i t1;
692  __m128i mask;
693  __m128i p2, p1, p0, q0, q1, q2;
694
695  // Load p3, p2, p1, p0
696  LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
697  MAX_DIFF1(t1, p2, p1, p0, mask);
698
699  // Load q0, q1, q2, q3
700  LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
701  MAX_DIFF2(t1, q2, q1, q0, mask);
702
703  COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
704  DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
705
706  // Store
707  _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
708  _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
709  _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
710  _mm_storeu_si128((__m128i*)&p[0 * stride], q0);
711  _mm_storeu_si128((__m128i*)&p[1 * stride], q1);
712  _mm_storeu_si128((__m128i*)&p[2 * stride], q2);
713}
714
715static void HFilter16SSE2(uint8_t* p, int stride,
716                          int thresh, int ithresh, int hev_thresh) {
717  __m128i mask;
718  __m128i p3, p2, p1, p0, q0, q1, q2, q3;
719
720  uint8_t* const b = p - 4;
721  Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
722  MAX_DIFF1(p3, p2, p1, p0, mask);
723
724  Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);  // q0, q1, q2, q3
725  MAX_DIFF2(q3, q2, q1, q0, mask);
726
727  COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
728  DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
729
730  Store16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);
731  Store16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);
732}
733
734// on three inner edges
735static void VFilter16iSSE2(uint8_t* p, int stride,
736                           int thresh, int ithresh, int hev_thresh) {
737  int k;
738  __m128i mask;
739  __m128i t1, t2, p1, p0, q0, q1;
740
741  for (k = 3; k > 0; --k) {
742    // Load p3, p2, p1, p0
743    LOAD_H_EDGES4(p, stride, t2, t1, p1, p0);
744    MAX_DIFF1(t2, t1, p1, p0, mask);
745
746    p += 4 * stride;
747
748    // Load q0, q1, q2, q3
749    LOAD_H_EDGES4(p, stride, q0, q1, t1, t2);
750    MAX_DIFF2(t2, t1, q1, q0, mask);
751
752    COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
753    DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
754
755    // Store
756    _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
757    _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
758    _mm_storeu_si128((__m128i*)&p[0 * stride], q0);
759    _mm_storeu_si128((__m128i*)&p[1 * stride], q1);
760  }
761}
762
763static void HFilter16iSSE2(uint8_t* p, int stride,
764                           int thresh, int ithresh, int hev_thresh) {
765  int k;
766  uint8_t* b;
767  __m128i mask;
768  __m128i t1, t2, p1, p0, q0, q1;
769
770  for (k = 3; k > 0; --k) {
771    b = p;
772    Load16x4(b, b + 8 * stride, stride, &t2, &t1, &p1, &p0);  // p3, p2, p1, p0
773    MAX_DIFF1(t2, t1, p1, p0, mask);
774
775    b += 4;  // beginning of q0
776    Load16x4(b, b + 8 * stride, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
777    MAX_DIFF2(t2, t1, q1, q0, mask);
778
779    COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
780    DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
781
782    b -= 2;  // beginning of p1
783    Store16x4(b, b + 8 * stride, stride, &p1, &p0, &q0, &q1);
784
785    p += 4;
786  }
787}
788
789// 8-pixels wide variant, for chroma filtering
790static void VFilter8SSE2(uint8_t* u, uint8_t* v, int stride,
791                         int thresh, int ithresh, int hev_thresh) {
792  __m128i mask;
793  __m128i t1, p2, p1, p0, q0, q1, q2;
794
795  // Load p3, p2, p1, p0
796  LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
797  MAX_DIFF1(t1, p2, p1, p0, mask);
798
799  // Load q0, q1, q2, q3
800  LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
801  MAX_DIFF2(t1, q2, q1, q0, mask);
802
803  COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
804  DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
805
806  // Store
807  STOREUV(p2, u, v, -3 * stride);
808  STOREUV(p1, u, v, -2 * stride);
809  STOREUV(p0, u, v, -1 * stride);
810  STOREUV(q0, u, v, 0 * stride);
811  STOREUV(q1, u, v, 1 * stride);
812  STOREUV(q2, u, v, 2 * stride);
813}
814
815static void HFilter8SSE2(uint8_t* u, uint8_t* v, int stride,
816                         int thresh, int ithresh, int hev_thresh) {
817  __m128i mask;
818  __m128i p3, p2, p1, p0, q0, q1, q2, q3;
819
820  uint8_t* const tu = u - 4;
821  uint8_t* const tv = v - 4;
822  Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
823  MAX_DIFF1(p3, p2, p1, p0, mask);
824
825  Load16x4(u, v, stride, &q0, &q1, &q2, &q3);    // q0, q1, q2, q3
826  MAX_DIFF2(q3, q2, q1, q0, mask);
827
828  COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
829  DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
830
831  Store16x4(tu, tv, stride, &p3, &p2, &p1, &p0);
832  Store16x4(u, v, stride, &q0, &q1, &q2, &q3);
833}
834
835static void VFilter8iSSE2(uint8_t* u, uint8_t* v, int stride,
836                          int thresh, int ithresh, int hev_thresh) {
837  __m128i mask;
838  __m128i t1, t2, p1, p0, q0, q1;
839
840  // Load p3, p2, p1, p0
841  LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
842  MAX_DIFF1(t2, t1, p1, p0, mask);
843
844  u += 4 * stride;
845  v += 4 * stride;
846
847  // Load q0, q1, q2, q3
848  LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
849  MAX_DIFF2(t2, t1, q1, q0, mask);
850
851  COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
852  DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
853
854  // Store
855  STOREUV(p1, u, v, -2 * stride);
856  STOREUV(p0, u, v, -1 * stride);
857  STOREUV(q0, u, v, 0 * stride);
858  STOREUV(q1, u, v, 1 * stride);
859}
860
861static void HFilter8iSSE2(uint8_t* u, uint8_t* v, int stride,
862                          int thresh, int ithresh, int hev_thresh) {
863  __m128i mask;
864  __m128i t1, t2, p1, p0, q0, q1;
865  Load16x4(u, v, stride, &t2, &t1, &p1, &p0);   // p3, p2, p1, p0
866  MAX_DIFF1(t2, t1, p1, p0, mask);
867
868  u += 4;  // beginning of q0
869  v += 4;
870  Load16x4(u, v, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
871  MAX_DIFF2(t2, t1, q1, q0, mask);
872
873  COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
874  DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
875
876  u -= 2;  // beginning of p1
877  v -= 2;
878  Store16x4(u, v, stride, &p1, &p0, &q0, &q1);
879}
880
881#endif   // WEBP_USE_SSE2
882
883//------------------------------------------------------------------------------
884// Entry point
885
886extern void VP8DspInitSSE2(void);
887
888void VP8DspInitSSE2(void) {
889#if defined(WEBP_USE_SSE2)
890  VP8Transform = TransformSSE2;
891
892  VP8VFilter16 = VFilter16SSE2;
893  VP8HFilter16 = HFilter16SSE2;
894  VP8VFilter8 = VFilter8SSE2;
895  VP8HFilter8 = HFilter8SSE2;
896  VP8VFilter16i = VFilter16iSSE2;
897  VP8HFilter16i = HFilter16iSSE2;
898  VP8VFilter8i = VFilter8iSSE2;
899  VP8HFilter8i = HFilter8iSSE2;
900
901  VP8SimpleVFilter16 = SimpleVFilter16SSE2;
902  VP8SimpleHFilter16 = SimpleHFilter16SSE2;
903  VP8SimpleVFilter16i = SimpleVFilter16iSSE2;
904  VP8SimpleHFilter16i = SimpleHFilter16iSSE2;
905#endif   // WEBP_USE_SSE2
906}
907
908#if defined(__cplusplus) || defined(c_plusplus)
909}    // extern "C"
910#endif
911