dec_sse2.c revision af51b94a435132e9014c324e25fb686b3d07a8c8
1// Copyright 2011 Google Inc. All Rights Reserved.
2//
3// Use of this source code is governed by a BSD-style license
4// that can be found in the COPYING file in the root of the source
5// tree. An additional intellectual property rights grant can be found
6// in the file PATENTS. All contributing project authors may
7// be found in the AUTHORS file in the root of the source tree.
8// -----------------------------------------------------------------------------
9//
10// SSE2 version of some decoding functions (idct, loop filtering).
11//
12// Author: somnath@google.com (Somnath Banerjee)
13//         cduvivier@google.com (Christian Duvivier)
14
15#include "./dsp.h"
16
17#if defined(WEBP_USE_SSE2)
18
19// The 3-coeff sparse transform in SSE2 is not really faster than the plain-C
20// one it seems => disable it by default. Uncomment the following to enable:
21// #define USE_TRANSFORM_AC3
22
23#include <emmintrin.h>
24#include "../dec/vp8i.h"
25
26//------------------------------------------------------------------------------
27// Transforms (Paragraph 14.4)
28
29static void Transform(const int16_t* in, uint8_t* dst, int do_two) {
30  // This implementation makes use of 16-bit fixed point versions of two
31  // multiply constants:
32  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
33  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
34  //
35  // To be able to use signed 16-bit integers, we use the following trick to
36  // have constants within range:
37  // - Associated constants are obtained by subtracting the 16-bit fixed point
38  //   version of one:
39  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
40  //      K1 = 85267  =>  k1 =  20091
41  //      K2 = 35468  =>  k2 = -30068
42  // - The multiplication of a variable by a constant become the sum of the
43  //   variable and the multiplication of that variable by the associated
44  //   constant:
45  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
46  const __m128i k1 = _mm_set1_epi16(20091);
47  const __m128i k2 = _mm_set1_epi16(-30068);
48  __m128i T0, T1, T2, T3;
49
50  // Load and concatenate the transform coefficients (we'll do two transforms
51  // in parallel). In the case of only one transform, the second half of the
52  // vectors will just contain random value we'll never use nor store.
53  __m128i in0, in1, in2, in3;
54  {
55    in0 = _mm_loadl_epi64((__m128i*)&in[0]);
56    in1 = _mm_loadl_epi64((__m128i*)&in[4]);
57    in2 = _mm_loadl_epi64((__m128i*)&in[8]);
58    in3 = _mm_loadl_epi64((__m128i*)&in[12]);
59    // a00 a10 a20 a30   x x x x
60    // a01 a11 a21 a31   x x x x
61    // a02 a12 a22 a32   x x x x
62    // a03 a13 a23 a33   x x x x
63    if (do_two) {
64      const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
65      const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
66      const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
67      const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
68      in0 = _mm_unpacklo_epi64(in0, inB0);
69      in1 = _mm_unpacklo_epi64(in1, inB1);
70      in2 = _mm_unpacklo_epi64(in2, inB2);
71      in3 = _mm_unpacklo_epi64(in3, inB3);
72      // a00 a10 a20 a30   b00 b10 b20 b30
73      // a01 a11 a21 a31   b01 b11 b21 b31
74      // a02 a12 a22 a32   b02 b12 b22 b32
75      // a03 a13 a23 a33   b03 b13 b23 b33
76    }
77  }
78
79  // Vertical pass and subsequent transpose.
80  {
81    // First pass, c and d calculations are longer because of the "trick"
82    // multiplications.
83    const __m128i a = _mm_add_epi16(in0, in2);
84    const __m128i b = _mm_sub_epi16(in0, in2);
85    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
86    const __m128i c1 = _mm_mulhi_epi16(in1, k2);
87    const __m128i c2 = _mm_mulhi_epi16(in3, k1);
88    const __m128i c3 = _mm_sub_epi16(in1, in3);
89    const __m128i c4 = _mm_sub_epi16(c1, c2);
90    const __m128i c = _mm_add_epi16(c3, c4);
91    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
92    const __m128i d1 = _mm_mulhi_epi16(in1, k1);
93    const __m128i d2 = _mm_mulhi_epi16(in3, k2);
94    const __m128i d3 = _mm_add_epi16(in1, in3);
95    const __m128i d4 = _mm_add_epi16(d1, d2);
96    const __m128i d = _mm_add_epi16(d3, d4);
97
98    // Second pass.
99    const __m128i tmp0 = _mm_add_epi16(a, d);
100    const __m128i tmp1 = _mm_add_epi16(b, c);
101    const __m128i tmp2 = _mm_sub_epi16(b, c);
102    const __m128i tmp3 = _mm_sub_epi16(a, d);
103
104    // Transpose the two 4x4.
105    // a00 a01 a02 a03   b00 b01 b02 b03
106    // a10 a11 a12 a13   b10 b11 b12 b13
107    // a20 a21 a22 a23   b20 b21 b22 b23
108    // a30 a31 a32 a33   b30 b31 b32 b33
109    const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
110    const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
111    const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
112    const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
113    // a00 a10 a01 a11   a02 a12 a03 a13
114    // a20 a30 a21 a31   a22 a32 a23 a33
115    // b00 b10 b01 b11   b02 b12 b03 b13
116    // b20 b30 b21 b31   b22 b32 b23 b33
117    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
118    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
119    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
120    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
121    // a00 a10 a20 a30 a01 a11 a21 a31
122    // b00 b10 b20 b30 b01 b11 b21 b31
123    // a02 a12 a22 a32 a03 a13 a23 a33
124    // b02 b12 a22 b32 b03 b13 b23 b33
125    T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
126    T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
127    T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
128    T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
129    // a00 a10 a20 a30   b00 b10 b20 b30
130    // a01 a11 a21 a31   b01 b11 b21 b31
131    // a02 a12 a22 a32   b02 b12 b22 b32
132    // a03 a13 a23 a33   b03 b13 b23 b33
133  }
134
135  // Horizontal pass and subsequent transpose.
136  {
137    // First pass, c and d calculations are longer because of the "trick"
138    // multiplications.
139    const __m128i four = _mm_set1_epi16(4);
140    const __m128i dc = _mm_add_epi16(T0, four);
141    const __m128i a =  _mm_add_epi16(dc, T2);
142    const __m128i b =  _mm_sub_epi16(dc, T2);
143    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
144    const __m128i c1 = _mm_mulhi_epi16(T1, k2);
145    const __m128i c2 = _mm_mulhi_epi16(T3, k1);
146    const __m128i c3 = _mm_sub_epi16(T1, T3);
147    const __m128i c4 = _mm_sub_epi16(c1, c2);
148    const __m128i c = _mm_add_epi16(c3, c4);
149    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
150    const __m128i d1 = _mm_mulhi_epi16(T1, k1);
151    const __m128i d2 = _mm_mulhi_epi16(T3, k2);
152    const __m128i d3 = _mm_add_epi16(T1, T3);
153    const __m128i d4 = _mm_add_epi16(d1, d2);
154    const __m128i d = _mm_add_epi16(d3, d4);
155
156    // Second pass.
157    const __m128i tmp0 = _mm_add_epi16(a, d);
158    const __m128i tmp1 = _mm_add_epi16(b, c);
159    const __m128i tmp2 = _mm_sub_epi16(b, c);
160    const __m128i tmp3 = _mm_sub_epi16(a, d);
161    const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
162    const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
163    const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
164    const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
165
166    // Transpose the two 4x4.
167    // a00 a01 a02 a03   b00 b01 b02 b03
168    // a10 a11 a12 a13   b10 b11 b12 b13
169    // a20 a21 a22 a23   b20 b21 b22 b23
170    // a30 a31 a32 a33   b30 b31 b32 b33
171    const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
172    const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
173    const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
174    const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
175    // a00 a10 a01 a11   a02 a12 a03 a13
176    // a20 a30 a21 a31   a22 a32 a23 a33
177    // b00 b10 b01 b11   b02 b12 b03 b13
178    // b20 b30 b21 b31   b22 b32 b23 b33
179    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
180    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
181    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
182    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
183    // a00 a10 a20 a30 a01 a11 a21 a31
184    // b00 b10 b20 b30 b01 b11 b21 b31
185    // a02 a12 a22 a32 a03 a13 a23 a33
186    // b02 b12 a22 b32 b03 b13 b23 b33
187    T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
188    T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
189    T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
190    T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
191    // a00 a10 a20 a30   b00 b10 b20 b30
192    // a01 a11 a21 a31   b01 b11 b21 b31
193    // a02 a12 a22 a32   b02 b12 b22 b32
194    // a03 a13 a23 a33   b03 b13 b23 b33
195  }
196
197  // Add inverse transform to 'dst' and store.
198  {
199    const __m128i zero = _mm_setzero_si128();
200    // Load the reference(s).
201    __m128i dst0, dst1, dst2, dst3;
202    if (do_two) {
203      // Load eight bytes/pixels per line.
204      dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
205      dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
206      dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
207      dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
208    } else {
209      // Load four bytes/pixels per line.
210      dst0 = _mm_cvtsi32_si128(*(int*)(dst + 0 * BPS));
211      dst1 = _mm_cvtsi32_si128(*(int*)(dst + 1 * BPS));
212      dst2 = _mm_cvtsi32_si128(*(int*)(dst + 2 * BPS));
213      dst3 = _mm_cvtsi32_si128(*(int*)(dst + 3 * BPS));
214    }
215    // Convert to 16b.
216    dst0 = _mm_unpacklo_epi8(dst0, zero);
217    dst1 = _mm_unpacklo_epi8(dst1, zero);
218    dst2 = _mm_unpacklo_epi8(dst2, zero);
219    dst3 = _mm_unpacklo_epi8(dst3, zero);
220    // Add the inverse transform(s).
221    dst0 = _mm_add_epi16(dst0, T0);
222    dst1 = _mm_add_epi16(dst1, T1);
223    dst2 = _mm_add_epi16(dst2, T2);
224    dst3 = _mm_add_epi16(dst3, T3);
225    // Unsigned saturate to 8b.
226    dst0 = _mm_packus_epi16(dst0, dst0);
227    dst1 = _mm_packus_epi16(dst1, dst1);
228    dst2 = _mm_packus_epi16(dst2, dst2);
229    dst3 = _mm_packus_epi16(dst3, dst3);
230    // Store the results.
231    if (do_two) {
232      // Store eight bytes/pixels per line.
233      _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
234      _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
235      _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
236      _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
237    } else {
238      // Store four bytes/pixels per line.
239      *(int*)(dst + 0 * BPS) = _mm_cvtsi128_si32(dst0);
240      *(int*)(dst + 1 * BPS) = _mm_cvtsi128_si32(dst1);
241      *(int*)(dst + 2 * BPS) = _mm_cvtsi128_si32(dst2);
242      *(int*)(dst + 3 * BPS) = _mm_cvtsi128_si32(dst3);
243    }
244  }
245}
246
247#if defined(USE_TRANSFORM_AC3)
248#define MUL(a, b) (((a) * (b)) >> 16)
249static void TransformAC3(const int16_t* in, uint8_t* dst) {
250  static const int kC1 = 20091 + (1 << 16);
251  static const int kC2 = 35468;
252  const __m128i A = _mm_set1_epi16(in[0] + 4);
253  const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2));
254  const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1));
255  const int c1 = MUL(in[1], kC2);
256  const int d1 = MUL(in[1], kC1);
257  const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
258  const __m128i B = _mm_adds_epi16(A, CD);
259  const __m128i m0 = _mm_adds_epi16(B, d4);
260  const __m128i m1 = _mm_adds_epi16(B, c4);
261  const __m128i m2 = _mm_subs_epi16(B, c4);
262  const __m128i m3 = _mm_subs_epi16(B, d4);
263  const __m128i zero = _mm_setzero_si128();
264  // Load the source pixels.
265  __m128i dst0 = _mm_cvtsi32_si128(*(int*)(dst + 0 * BPS));
266  __m128i dst1 = _mm_cvtsi32_si128(*(int*)(dst + 1 * BPS));
267  __m128i dst2 = _mm_cvtsi32_si128(*(int*)(dst + 2 * BPS));
268  __m128i dst3 = _mm_cvtsi32_si128(*(int*)(dst + 3 * BPS));
269  // Convert to 16b.
270  dst0 = _mm_unpacklo_epi8(dst0, zero);
271  dst1 = _mm_unpacklo_epi8(dst1, zero);
272  dst2 = _mm_unpacklo_epi8(dst2, zero);
273  dst3 = _mm_unpacklo_epi8(dst3, zero);
274  // Add the inverse transform.
275  dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
276  dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
277  dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
278  dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
279  // Unsigned saturate to 8b.
280  dst0 = _mm_packus_epi16(dst0, dst0);
281  dst1 = _mm_packus_epi16(dst1, dst1);
282  dst2 = _mm_packus_epi16(dst2, dst2);
283  dst3 = _mm_packus_epi16(dst3, dst3);
284  // Store the results.
285  *(int*)(dst + 0 * BPS) = _mm_cvtsi128_si32(dst0);
286  *(int*)(dst + 1 * BPS) = _mm_cvtsi128_si32(dst1);
287  *(int*)(dst + 2 * BPS) = _mm_cvtsi128_si32(dst2);
288  *(int*)(dst + 3 * BPS) = _mm_cvtsi128_si32(dst3);
289}
290#undef MUL
291#endif   // USE_TRANSFORM_AC3
292
293//------------------------------------------------------------------------------
294// Loop Filter (Paragraph 15)
295
296// Compute abs(p - q) = subs(p - q) OR subs(q - p)
297#define MM_ABS(p, q)  _mm_or_si128(                                            \
298    _mm_subs_epu8((q), (p)),                                                   \
299    _mm_subs_epu8((p), (q)))
300
301// Shift each byte of "x" by 3 bits while preserving by the sign bit.
302static WEBP_INLINE void SignedShift8b(__m128i* const x) {
303  const __m128i zero = _mm_setzero_si128();
304  const __m128i signs = _mm_cmpgt_epi8(zero, *x);
305  const __m128i lo_0 = _mm_unpacklo_epi8(*x, signs);  // s8 -> s16 sign extend
306  const __m128i hi_0 = _mm_unpackhi_epi8(*x, signs);
307  const __m128i lo_1 = _mm_srai_epi16(lo_0, 3);
308  const __m128i hi_1 = _mm_srai_epi16(hi_0, 3);
309  *x = _mm_packs_epi16(lo_1, hi_1);
310}
311
312#define FLIP_SIGN_BIT2(a, b) {                                                 \
313  a = _mm_xor_si128(a, sign_bit);                                              \
314  b = _mm_xor_si128(b, sign_bit);                                              \
315}
316
317#define FLIP_SIGN_BIT4(a, b, c, d) {                                           \
318  FLIP_SIGN_BIT2(a, b);                                                        \
319  FLIP_SIGN_BIT2(c, d);                                                        \
320}
321
322// input/output is uint8_t
323static WEBP_INLINE void GetNotHEV(const __m128i* const p1,
324                                  const __m128i* const p0,
325                                  const __m128i* const q0,
326                                  const __m128i* const q1,
327                                  int hev_thresh, __m128i* const not_hev) {
328  const __m128i zero = _mm_setzero_si128();
329  const __m128i t_1 = MM_ABS(*p1, *p0);
330  const __m128i t_2 = MM_ABS(*q1, *q0);
331
332  const __m128i h = _mm_set1_epi8(hev_thresh);
333  const __m128i t_3 = _mm_subs_epu8(t_1, h);  // abs(p1 - p0) - hev_tresh
334  const __m128i t_4 = _mm_subs_epu8(t_2, h);  // abs(q1 - q0) - hev_tresh
335
336  *not_hev = _mm_or_si128(t_3, t_4);
337  *not_hev = _mm_cmpeq_epi8(*not_hev, zero);  // not_hev <= t1 && not_hev <= t2
338}
339
340// input pixels are int8_t
341static WEBP_INLINE void GetBaseDelta(const __m128i* const p1,
342                                     const __m128i* const p0,
343                                     const __m128i* const q0,
344                                     const __m128i* const q1,
345                                     __m128i* const delta) {
346  // beware of addition order, for saturation!
347  const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1);   // p1 - q1
348  const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0);   // q0 - p0
349  const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0);  // p1 - q1 + 1 * (q0 - p0)
350  const __m128i s2 = _mm_adds_epi8(q0_p0, s1);     // p1 - q1 + 2 * (q0 - p0)
351  const __m128i s3 = _mm_adds_epi8(q0_p0, s2);     // p1 - q1 + 3 * (q0 - p0)
352  *delta = s3;
353}
354
355// input and output are int8_t
356static WEBP_INLINE void DoSimpleFilter(__m128i* const p0, __m128i* const q0,
357                                       const __m128i* const fl) {
358  const __m128i k3 = _mm_set1_epi8(3);
359  const __m128i k4 = _mm_set1_epi8(4);
360  __m128i v3 = _mm_adds_epi8(*fl, k3);
361  __m128i v4 = _mm_adds_epi8(*fl, k4);
362
363  SignedShift8b(&v4);                  // v4 >> 3
364  SignedShift8b(&v3);                  // v3 >> 3
365  *q0 = _mm_subs_epi8(*q0, v4);        // q0 -= v4
366  *p0 = _mm_adds_epi8(*p0, v3);        // p0 += v3
367}
368
369// Updates values of 2 pixels at MB edge during complex filtering.
370// Update operations:
371// q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
372// Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip).
373static WEBP_INLINE void Update2Pixels(__m128i* const pi, __m128i* const qi,
374                                      const __m128i* const a0_lo,
375                                      const __m128i* const a0_hi) {
376  const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7);
377  const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7);
378  const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi);
379  const __m128i sign_bit = _mm_set1_epi8(0x80);
380  *pi = _mm_adds_epi8(*pi, delta);
381  *qi = _mm_subs_epi8(*qi, delta);
382  FLIP_SIGN_BIT2(*pi, *qi);
383}
384
385// input pixels are uint8_t
386static WEBP_INLINE void NeedsFilter(const __m128i* const p1,
387                                    const __m128i* const p0,
388                                    const __m128i* const q0,
389                                    const __m128i* const q1,
390                                    int thresh, __m128i* const mask) {
391  const __m128i m_thresh = _mm_set1_epi8(thresh);
392  const __m128i t1 = MM_ABS(*p1, *q1);        // abs(p1 - q1)
393  const __m128i kFE = _mm_set1_epi8(0xFE);
394  const __m128i t2 = _mm_and_si128(t1, kFE);  // set lsb of each byte to zero
395  const __m128i t3 = _mm_srli_epi16(t2, 1);   // abs(p1 - q1) / 2
396
397  const __m128i t4 = MM_ABS(*p0, *q0);        // abs(p0 - q0)
398  const __m128i t5 = _mm_adds_epu8(t4, t4);   // abs(p0 - q0) * 2
399  const __m128i t6 = _mm_adds_epu8(t5, t3);   // abs(p0-q0)*2 + abs(p1-q1)/2
400
401  const __m128i t7 = _mm_subs_epu8(t6, m_thresh);  // mask <= m_thresh
402  *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128());
403}
404
405//------------------------------------------------------------------------------
406// Edge filtering functions
407
408// Applies filter on 2 pixels (p0 and q0)
409static WEBP_INLINE void DoFilter2(__m128i* const p1, __m128i* const p0,
410                                  __m128i* const q0, __m128i* const q1,
411                                  int thresh) {
412  __m128i a, mask;
413  const __m128i sign_bit = _mm_set1_epi8(0x80);
414  // convert p1/q1 to int8_t (for GetBaseDelta)
415  const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
416  const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
417
418  NeedsFilter(p1, p0, q0, q1, thresh, &mask);
419
420  FLIP_SIGN_BIT2(*p0, *q0);
421  GetBaseDelta(&p1s, p0, q0, &q1s, &a);
422  a = _mm_and_si128(a, mask);     // mask filter values we don't care about
423  DoSimpleFilter(p0, q0, &a);
424  FLIP_SIGN_BIT2(*p0, *q0);
425}
426
427// Applies filter on 4 pixels (p1, p0, q0 and q1)
428static WEBP_INLINE void DoFilter4(__m128i* const p1, __m128i* const p0,
429                                  __m128i* const q0, __m128i* const q1,
430                                  const __m128i* const mask, int hev_thresh) {
431  const __m128i sign_bit = _mm_set1_epi8(0x80);
432  const __m128i k64 = _mm_set1_epi8(0x40);
433  const __m128i zero = _mm_setzero_si128();
434  __m128i not_hev;
435  __m128i t1, t2, t3;
436
437  // compute hev mask
438  GetNotHEV(p1, p0, q0, q1, hev_thresh, &not_hev);
439
440  // convert to signed values
441  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
442
443  t1 = _mm_subs_epi8(*p1, *q1);        // p1 - q1
444  t1 = _mm_andnot_si128(not_hev, t1);  // hev(p1 - q1)
445  t2 = _mm_subs_epi8(*q0, *p0);        // q0 - p0
446  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 1 * (q0 - p0)
447  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 2 * (q0 - p0)
448  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 3 * (q0 - p0)
449  t1 = _mm_and_si128(t1, *mask);       // mask filter values we don't care about
450
451  t2 = _mm_set1_epi8(3);
452  t3 = _mm_set1_epi8(4);
453  t2 = _mm_adds_epi8(t1, t2);        // 3 * (q0 - p0) + (p1 - q1) + 3
454  t3 = _mm_adds_epi8(t1, t3);        // 3 * (q0 - p0) + (p1 - q1) + 4
455  SignedShift8b(&t2);                // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
456  SignedShift8b(&t3);                // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
457  *p0 = _mm_adds_epi8(*p0, t2);      // p0 += t2
458  *q0 = _mm_subs_epi8(*q0, t3);      // q0 -= t3
459  FLIP_SIGN_BIT2(*p0, *q0);
460
461  // this is equivalent to signed (a + 1) >> 1 calculation
462  t2 = _mm_add_epi8(t3, sign_bit);
463  t3 = _mm_avg_epu8(t2, zero);
464  t3 = _mm_sub_epi8(t3, k64);
465
466  t3 = _mm_and_si128(not_hev, t3);   // if !hev
467  *q1 = _mm_subs_epi8(*q1, t3);      // q1 -= t3
468  *p1 = _mm_adds_epi8(*p1, t3);      // p1 += t3
469  FLIP_SIGN_BIT2(*p1, *q1);
470}
471
472// Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
473static WEBP_INLINE void DoFilter6(__m128i* const p2, __m128i* const p1,
474                                  __m128i* const p0, __m128i* const q0,
475                                  __m128i* const q1, __m128i* const q2,
476                                  const __m128i* const mask, int hev_thresh) {
477  const __m128i zero = _mm_setzero_si128();
478  const __m128i sign_bit = _mm_set1_epi8(0x80);
479  __m128i a, not_hev;
480
481  // compute hev mask
482  GetNotHEV(p1, p0, q0, q1, hev_thresh, &not_hev);
483
484  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
485  FLIP_SIGN_BIT2(*p2, *q2);
486  GetBaseDelta(p1, p0, q0, q1, &a);
487
488  { // do simple filter on pixels with hev
489    const __m128i m = _mm_andnot_si128(not_hev, *mask);
490    const __m128i f = _mm_and_si128(a, m);
491    DoSimpleFilter(p0, q0, &f);
492  }
493
494  { // do strong filter on pixels with not hev
495    const __m128i k9 = _mm_set1_epi16(0x0900);
496    const __m128i k63 = _mm_set1_epi16(63);
497
498    const __m128i m = _mm_and_si128(not_hev, *mask);
499    const __m128i f = _mm_and_si128(a, m);
500
501    const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
502    const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
503
504    const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9);    // Filter (lo) * 9
505    const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9);    // Filter (hi) * 9
506
507    const __m128i a2_lo = _mm_add_epi16(f9_lo, k63);    // Filter * 9 + 63
508    const __m128i a2_hi = _mm_add_epi16(f9_hi, k63);    // Filter * 9 + 63
509
510    const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo);  // Filter * 18 + 63
511    const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi);  // Filter * 18 + 63
512
513    const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo);  // Filter * 27 + 63
514    const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi);  // Filter * 27 + 63
515
516    Update2Pixels(p2, q2, &a2_lo, &a2_hi);
517    Update2Pixels(p1, q1, &a1_lo, &a1_hi);
518    Update2Pixels(p0, q0, &a0_lo, &a0_hi);
519  }
520}
521
522// reads 8 rows across a vertical edge.
523//
524// TODO(somnath): Investigate _mm_shuffle* also see if it can be broken into
525// two Load4x4() to avoid code duplication.
526static WEBP_INLINE void Load8x4(const uint8_t* const b, int stride,
527                                __m128i* const p, __m128i* const q) {
528  __m128i t1, t2;
529
530  // Load 0th, 1st, 4th and 5th rows
531  __m128i r0 =  _mm_cvtsi32_si128(*((int*)&b[0 * stride]));  // 03 02 01 00
532  __m128i r1 =  _mm_cvtsi32_si128(*((int*)&b[1 * stride]));  // 13 12 11 10
533  __m128i r4 =  _mm_cvtsi32_si128(*((int*)&b[4 * stride]));  // 43 42 41 40
534  __m128i r5 =  _mm_cvtsi32_si128(*((int*)&b[5 * stride]));  // 53 52 51 50
535
536  r0 = _mm_unpacklo_epi32(r0, r4);               // 43 42 41 40 03 02 01 00
537  r1 = _mm_unpacklo_epi32(r1, r5);               // 53 52 51 50 13 12 11 10
538
539  // t1 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
540  t1 = _mm_unpacklo_epi8(r0, r1);
541
542  // Load 2nd, 3rd, 6th and 7th rows
543  r0 =  _mm_cvtsi32_si128(*((int*)&b[2 * stride]));          // 23 22 21 22
544  r1 =  _mm_cvtsi32_si128(*((int*)&b[3 * stride]));          // 33 32 31 30
545  r4 =  _mm_cvtsi32_si128(*((int*)&b[6 * stride]));          // 63 62 61 60
546  r5 =  _mm_cvtsi32_si128(*((int*)&b[7 * stride]));          // 73 72 71 70
547
548  r0 = _mm_unpacklo_epi32(r0, r4);               // 63 62 61 60 23 22 21 20
549  r1 = _mm_unpacklo_epi32(r1, r5);               // 73 72 71 70 33 32 31 30
550
551  // t2 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
552  t2 = _mm_unpacklo_epi8(r0, r1);
553
554  // t1 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
555  // t2 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
556  r0 = t1;
557  t1 = _mm_unpacklo_epi16(t1, t2);
558  t2 = _mm_unpackhi_epi16(r0, t2);
559
560  // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
561  // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
562  *p = _mm_unpacklo_epi32(t1, t2);
563  *q = _mm_unpackhi_epi32(t1, t2);
564}
565
566static WEBP_INLINE void Load16x4(const uint8_t* const r0,
567                                 const uint8_t* const r8,
568                                 int stride,
569                                 __m128i* const p1, __m128i* const p0,
570                                 __m128i* const q0, __m128i* const q1) {
571  __m128i t1, t2;
572  // Assume the pixels around the edge (|) are numbered as follows
573  //                00 01 | 02 03
574  //                10 11 | 12 13
575  //                 ...  |  ...
576  //                e0 e1 | e2 e3
577  //                f0 f1 | f2 f3
578  //
579  // r0 is pointing to the 0th row (00)
580  // r8 is pointing to the 8th row (80)
581
582  // Load
583  // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
584  // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
585  // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
586  // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
587  Load8x4(r0, stride, p1, q0);
588  Load8x4(r8, stride, p0, q1);
589
590  t1 = *p1;
591  t2 = *q0;
592  // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
593  // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
594  // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
595  // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
596  *p1 = _mm_unpacklo_epi64(t1, *p0);
597  *p0 = _mm_unpackhi_epi64(t1, *p0);
598  *q0 = _mm_unpacklo_epi64(t2, *q1);
599  *q1 = _mm_unpackhi_epi64(t2, *q1);
600}
601
602static WEBP_INLINE void Store4x4(__m128i* const x, uint8_t* dst, int stride) {
603  int i;
604  for (i = 0; i < 4; ++i, dst += stride) {
605    *((int32_t*)dst) = _mm_cvtsi128_si32(*x);
606    *x = _mm_srli_si128(*x, 4);
607  }
608}
609
610// Transpose back and store
611static WEBP_INLINE void Store16x4(const __m128i* const p1,
612                                  const __m128i* const p0,
613                                  const __m128i* const q0,
614                                  const __m128i* const q1,
615                                  uint8_t* r0, uint8_t* r8,
616                                  int stride) {
617  __m128i t1, p1_s, p0_s, q0_s, q1_s;
618
619  // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
620  // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
621  t1 = *p0;
622  p0_s = _mm_unpacklo_epi8(*p1, t1);
623  p1_s = _mm_unpackhi_epi8(*p1, t1);
624
625  // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
626  // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
627  t1 = *q0;
628  q0_s = _mm_unpacklo_epi8(t1, *q1);
629  q1_s = _mm_unpackhi_epi8(t1, *q1);
630
631  // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
632  // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
633  t1 = p0_s;
634  p0_s = _mm_unpacklo_epi16(t1, q0_s);
635  q0_s = _mm_unpackhi_epi16(t1, q0_s);
636
637  // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
638  // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
639  t1 = p1_s;
640  p1_s = _mm_unpacklo_epi16(t1, q1_s);
641  q1_s = _mm_unpackhi_epi16(t1, q1_s);
642
643  Store4x4(&p0_s, r0, stride);
644  r0 += 4 * stride;
645  Store4x4(&q0_s, r0, stride);
646
647  Store4x4(&p1_s, r8, stride);
648  r8 += 4 * stride;
649  Store4x4(&q1_s, r8, stride);
650}
651
652//------------------------------------------------------------------------------
653// Simple In-loop filtering (Paragraph 15.2)
654
655static void SimpleVFilter16(uint8_t* p, int stride, int thresh) {
656  // Load
657  __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
658  __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
659  __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
660  __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
661
662  DoFilter2(&p1, &p0, &q0, &q1, thresh);
663
664  // Store
665  _mm_storeu_si128((__m128i*)&p[-stride], p0);
666  _mm_storeu_si128((__m128i*)&p[0], q0);
667}
668
669static void SimpleHFilter16(uint8_t* p, int stride, int thresh) {
670  __m128i p1, p0, q0, q1;
671
672  p -= 2;  // beginning of p1
673
674  Load16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
675  DoFilter2(&p1, &p0, &q0, &q1, thresh);
676  Store16x4(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride);
677}
678
679static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) {
680  int k;
681  for (k = 3; k > 0; --k) {
682    p += 4 * stride;
683    SimpleVFilter16(p, stride, thresh);
684  }
685}
686
687static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) {
688  int k;
689  for (k = 3; k > 0; --k) {
690    p += 4;
691    SimpleHFilter16(p, stride, thresh);
692  }
693}
694
695//------------------------------------------------------------------------------
696// Complex In-loop filtering (Paragraph 15.3)
697
698#define MAX_DIFF1(p3, p2, p1, p0, m) do {                                      \
699  m = MM_ABS(p1, p0);                                                          \
700  m = _mm_max_epu8(m, MM_ABS(p3, p2));                                         \
701  m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
702} while (0)
703
704#define MAX_DIFF2(p3, p2, p1, p0, m) do {                                      \
705  m = _mm_max_epu8(m, MM_ABS(p1, p0));                                         \
706  m = _mm_max_epu8(m, MM_ABS(p3, p2));                                         \
707  m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
708} while (0)
709
710#define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) {                             \
711  e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]);                            \
712  e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]);                            \
713  e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]);                            \
714  e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]);                            \
715}
716
717#define LOADUV_H_EDGE(p, u, v, stride) do {                                    \
718  const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]);                 \
719  const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]);                 \
720  p = _mm_unpacklo_epi64(U, V);                                                \
721} while (0)
722
723#define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) {                        \
724  LOADUV_H_EDGE(e1, u, v, 0 * stride);                                         \
725  LOADUV_H_EDGE(e2, u, v, 1 * stride);                                         \
726  LOADUV_H_EDGE(e3, u, v, 2 * stride);                                         \
727  LOADUV_H_EDGE(e4, u, v, 3 * stride);                                         \
728}
729
730#define STOREUV(p, u, v, stride) {                                             \
731  _mm_storel_epi64((__m128i*)&u[(stride)], p);                                 \
732  p = _mm_srli_si128(p, 8);                                                    \
733  _mm_storel_epi64((__m128i*)&v[(stride)], p);                                 \
734}
735
736static WEBP_INLINE void ComplexMask(const __m128i* const p1,
737                                    const __m128i* const p0,
738                                    const __m128i* const q0,
739                                    const __m128i* const q1,
740                                    int thresh, int ithresh,
741                                    __m128i* const mask) {
742  const __m128i it = _mm_set1_epi8(ithresh);
743  const __m128i diff = _mm_subs_epu8(*mask, it);
744  const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128());
745  __m128i filter_mask;
746  NeedsFilter(p1, p0, q0, q1, thresh, &filter_mask);
747  *mask = _mm_and_si128(thresh_mask, filter_mask);
748}
749
750// on macroblock edges
751static void VFilter16(uint8_t* p, int stride,
752                      int thresh, int ithresh, int hev_thresh) {
753  __m128i t1;
754  __m128i mask;
755  __m128i p2, p1, p0, q0, q1, q2;
756
757  // Load p3, p2, p1, p0
758  LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
759  MAX_DIFF1(t1, p2, p1, p0, mask);
760
761  // Load q0, q1, q2, q3
762  LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
763  MAX_DIFF2(t1, q2, q1, q0, mask);
764
765  ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
766  DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
767
768  // Store
769  _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
770  _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
771  _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
772  _mm_storeu_si128((__m128i*)&p[+0 * stride], q0);
773  _mm_storeu_si128((__m128i*)&p[+1 * stride], q1);
774  _mm_storeu_si128((__m128i*)&p[+2 * stride], q2);
775}
776
777static void HFilter16(uint8_t* p, int stride,
778                      int thresh, int ithresh, int hev_thresh) {
779  __m128i mask;
780  __m128i p3, p2, p1, p0, q0, q1, q2, q3;
781
782  uint8_t* const b = p - 4;
783  Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
784  MAX_DIFF1(p3, p2, p1, p0, mask);
785
786  Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);  // q0, q1, q2, q3
787  MAX_DIFF2(q3, q2, q1, q0, mask);
788
789  ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
790  DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
791
792  Store16x4(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride);
793  Store16x4(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride);
794}
795
796// on three inner edges
797static void VFilter16i(uint8_t* p, int stride,
798                       int thresh, int ithresh, int hev_thresh) {
799  int k;
800  __m128i p3, p2, p1, p0;   // loop invariants
801
802  LOAD_H_EDGES4(p, stride, p3, p2, p1, p0);  // prologue
803
804  for (k = 3; k > 0; --k) {
805    __m128i mask, tmp1, tmp2;
806    uint8_t* const b = p + 2 * stride;   // beginning of p1
807    p += 4 * stride;
808
809    MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
810    LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2);
811    MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
812
813    // p3 and p2 are not just temporary variables here: they will be
814    // re-used for next span. And q2/q3 will become p1/p0 accordingly.
815    ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
816    DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh);
817
818    // Store
819    _mm_storeu_si128((__m128i*)&b[0 * stride], p1);
820    _mm_storeu_si128((__m128i*)&b[1 * stride], p0);
821    _mm_storeu_si128((__m128i*)&b[2 * stride], p3);
822    _mm_storeu_si128((__m128i*)&b[3 * stride], p2);
823
824    // rotate samples
825    p1 = tmp1;
826    p0 = tmp2;
827  }
828}
829
830static void HFilter16i(uint8_t* p, int stride,
831                       int thresh, int ithresh, int hev_thresh) {
832  int k;
833  __m128i p3, p2, p1, p0;   // loop invariants
834
835  Load16x4(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0);  // prologue
836
837  for (k = 3; k > 0; --k) {
838    __m128i mask, tmp1, tmp2;
839    uint8_t* const b = p + 2;   // beginning of p1
840
841    p += 4;  // beginning of q0 (and next span)
842
843    MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
844    Load16x4(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2);
845    MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
846
847    ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
848    DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh);
849
850    Store16x4(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride);
851
852    // rotate samples
853    p1 = tmp1;
854    p0 = tmp2;
855  }
856}
857
858// 8-pixels wide variant, for chroma filtering
859static void VFilter8(uint8_t* u, uint8_t* v, int stride,
860                     int thresh, int ithresh, int hev_thresh) {
861  __m128i mask;
862  __m128i t1, p2, p1, p0, q0, q1, q2;
863
864  // Load p3, p2, p1, p0
865  LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
866  MAX_DIFF1(t1, p2, p1, p0, mask);
867
868  // Load q0, q1, q2, q3
869  LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
870  MAX_DIFF2(t1, q2, q1, q0, mask);
871
872  ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
873  DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
874
875  // Store
876  STOREUV(p2, u, v, -3 * stride);
877  STOREUV(p1, u, v, -2 * stride);
878  STOREUV(p0, u, v, -1 * stride);
879  STOREUV(q0, u, v, 0 * stride);
880  STOREUV(q1, u, v, 1 * stride);
881  STOREUV(q2, u, v, 2 * stride);
882}
883
884static void HFilter8(uint8_t* u, uint8_t* v, int stride,
885                     int thresh, int ithresh, int hev_thresh) {
886  __m128i mask;
887  __m128i p3, p2, p1, p0, q0, q1, q2, q3;
888
889  uint8_t* const tu = u - 4;
890  uint8_t* const tv = v - 4;
891  Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
892  MAX_DIFF1(p3, p2, p1, p0, mask);
893
894  Load16x4(u, v, stride, &q0, &q1, &q2, &q3);    // q0, q1, q2, q3
895  MAX_DIFF2(q3, q2, q1, q0, mask);
896
897  ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
898  DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
899
900  Store16x4(&p3, &p2, &p1, &p0, tu, tv, stride);
901  Store16x4(&q0, &q1, &q2, &q3, u, v, stride);
902}
903
904static void VFilter8i(uint8_t* u, uint8_t* v, int stride,
905                      int thresh, int ithresh, int hev_thresh) {
906  __m128i mask;
907  __m128i t1, t2, p1, p0, q0, q1;
908
909  // Load p3, p2, p1, p0
910  LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
911  MAX_DIFF1(t2, t1, p1, p0, mask);
912
913  u += 4 * stride;
914  v += 4 * stride;
915
916  // Load q0, q1, q2, q3
917  LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
918  MAX_DIFF2(t2, t1, q1, q0, mask);
919
920  ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
921  DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
922
923  // Store
924  STOREUV(p1, u, v, -2 * stride);
925  STOREUV(p0, u, v, -1 * stride);
926  STOREUV(q0, u, v, 0 * stride);
927  STOREUV(q1, u, v, 1 * stride);
928}
929
930static void HFilter8i(uint8_t* u, uint8_t* v, int stride,
931                      int thresh, int ithresh, int hev_thresh) {
932  __m128i mask;
933  __m128i t1, t2, p1, p0, q0, q1;
934  Load16x4(u, v, stride, &t2, &t1, &p1, &p0);   // p3, p2, p1, p0
935  MAX_DIFF1(t2, t1, p1, p0, mask);
936
937  u += 4;  // beginning of q0
938  v += 4;
939  Load16x4(u, v, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
940  MAX_DIFF2(t2, t1, q1, q0, mask);
941
942  ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
943  DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
944
945  u -= 2;  // beginning of p1
946  v -= 2;
947  Store16x4(&p1, &p0, &q0, &q1, u, v, stride);
948}
949
950#endif   // WEBP_USE_SSE2
951
952//------------------------------------------------------------------------------
953// Entry point
954
955extern void VP8DspInitSSE2(void);
956
957void VP8DspInitSSE2(void) {
958#if defined(WEBP_USE_SSE2)
959  VP8Transform = Transform;
960#if defined(USE_TRANSFORM_AC3)
961  VP8TransformAC3 = TransformAC3;
962#endif
963
964  VP8VFilter16 = VFilter16;
965  VP8HFilter16 = HFilter16;
966  VP8VFilter8 = VFilter8;
967  VP8HFilter8 = HFilter8;
968  VP8VFilter16i = VFilter16i;
969  VP8HFilter16i = HFilter16i;
970  VP8VFilter8i = VFilter8i;
971  VP8HFilter8i = HFilter8i;
972
973  VP8SimpleVFilter16 = SimpleVFilter16;
974  VP8SimpleHFilter16 = SimpleHFilter16;
975  VP8SimpleVFilter16i = SimpleVFilter16i;
976  VP8SimpleHFilter16i = SimpleHFilter16i;
977#endif   // WEBP_USE_SSE2
978}
979