enc_sse2.c revision 4b2196c929b70f2cdc1c2556580d349db89356d8
1// Copyright 2011 Google Inc. All Rights Reserved.
2//
3// This code is licensed under the same terms as WebM:
4//  Software License Agreement:  http://www.webmproject.org/license/software/
5//  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
6// -----------------------------------------------------------------------------
7//
8// SSE2 version of speed-critical encoding functions.
9//
10// Author: Christian Duvivier (cduvivier@google.com)
11
12#include "./dsp.h"
13
14#if defined(__cplusplus) || defined(c_plusplus)
15extern "C" {
16#endif
17
18#if defined(WEBP_USE_SSE2)
19#include <stdlib.h>  // for abs()
20#include <emmintrin.h>
21
22#include "../enc/vp8enci.h"
23
24//------------------------------------------------------------------------------
25// Quite useful macro for debugging. Left here for convenience.
26
27#if 0
28#include <stdio.h>
29static void PrintReg(const __m128i r, const char* const name, int size) {
30  int n;
31  union {
32    __m128i r;
33    uint8_t i8[16];
34    uint16_t i16[8];
35    uint32_t i32[4];
36    uint64_t i64[2];
37  } tmp;
38  tmp.r = r;
39  printf("%s\t: ", name);
40  if (size == 8) {
41    for (n = 0; n < 16; ++n) printf("%.2x ", tmp.i8[n]);
42  } else if (size == 16) {
43    for (n = 0; n < 8; ++n) printf("%.4x ", tmp.i16[n]);
44  } else if (size == 32) {
45    for (n = 0; n < 4; ++n) printf("%.8x ", tmp.i32[n]);
46  } else {
47    for (n = 0; n < 2; ++n) printf("%.16lx ", tmp.i64[n]);
48  }
49  printf("\n");
50}
51#endif
52
53//------------------------------------------------------------------------------
54// Compute susceptibility based on DCT-coeff histograms:
55// the higher, the "easier" the macroblock is to compress.
56
57static void CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
58                                 int start_block, int end_block,
59                                 VP8Histogram* const histo) {
60  const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
61  int j;
62  for (j = start_block; j < end_block; ++j) {
63    int16_t out[16];
64    int k;
65
66    VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
67
68    // Convert coefficients to bin (within out[]).
69    {
70      // Load.
71      const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
72      const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
73      // sign(out) = out >> 15  (0x0000 if positive, 0xffff if negative)
74      const __m128i sign0 = _mm_srai_epi16(out0, 15);
75      const __m128i sign1 = _mm_srai_epi16(out1, 15);
76      // abs(out) = (out ^ sign) - sign
77      const __m128i xor0 = _mm_xor_si128(out0, sign0);
78      const __m128i xor1 = _mm_xor_si128(out1, sign1);
79      const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
80      const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
81      // v = abs(out) >> 3
82      const __m128i v0 = _mm_srai_epi16(abs0, 3);
83      const __m128i v1 = _mm_srai_epi16(abs1, 3);
84      // bin = min(v, MAX_COEFF_THRESH)
85      const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
86      const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
87      // Store.
88      _mm_storeu_si128((__m128i*)&out[0], bin0);
89      _mm_storeu_si128((__m128i*)&out[8], bin1);
90    }
91
92    // Convert coefficients to bin.
93    for (k = 0; k < 16; ++k) {
94      histo->distribution[out[k]]++;
95    }
96  }
97}
98
99//------------------------------------------------------------------------------
100// Transforms (Paragraph 14.4)
101
102// Does one or two inverse transforms.
103static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
104                           int do_two) {
105  // This implementation makes use of 16-bit fixed point versions of two
106  // multiply constants:
107  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
108  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
109  //
110  // To be able to use signed 16-bit integers, we use the following trick to
111  // have constants within range:
112  // - Associated constants are obtained by subtracting the 16-bit fixed point
113  //   version of one:
114  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
115  //      K1 = 85267  =>  k1 =  20091
116  //      K2 = 35468  =>  k2 = -30068
117  // - The multiplication of a variable by a constant become the sum of the
118  //   variable and the multiplication of that variable by the associated
119  //   constant:
120  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
121  const __m128i k1 = _mm_set1_epi16(20091);
122  const __m128i k2 = _mm_set1_epi16(-30068);
123  __m128i T0, T1, T2, T3;
124
125  // Load and concatenate the transform coefficients (we'll do two inverse
126  // transforms in parallel). In the case of only one inverse transform, the
127  // second half of the vectors will just contain random value we'll never
128  // use nor store.
129  __m128i in0, in1, in2, in3;
130  {
131    in0 = _mm_loadl_epi64((__m128i*)&in[0]);
132    in1 = _mm_loadl_epi64((__m128i*)&in[4]);
133    in2 = _mm_loadl_epi64((__m128i*)&in[8]);
134    in3 = _mm_loadl_epi64((__m128i*)&in[12]);
135    // a00 a10 a20 a30   x x x x
136    // a01 a11 a21 a31   x x x x
137    // a02 a12 a22 a32   x x x x
138    // a03 a13 a23 a33   x x x x
139    if (do_two) {
140      const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
141      const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
142      const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
143      const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
144      in0 = _mm_unpacklo_epi64(in0, inB0);
145      in1 = _mm_unpacklo_epi64(in1, inB1);
146      in2 = _mm_unpacklo_epi64(in2, inB2);
147      in3 = _mm_unpacklo_epi64(in3, inB3);
148      // a00 a10 a20 a30   b00 b10 b20 b30
149      // a01 a11 a21 a31   b01 b11 b21 b31
150      // a02 a12 a22 a32   b02 b12 b22 b32
151      // a03 a13 a23 a33   b03 b13 b23 b33
152    }
153  }
154
155  // Vertical pass and subsequent transpose.
156  {
157    // First pass, c and d calculations are longer because of the "trick"
158    // multiplications.
159    const __m128i a = _mm_add_epi16(in0, in2);
160    const __m128i b = _mm_sub_epi16(in0, in2);
161    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
162    const __m128i c1 = _mm_mulhi_epi16(in1, k2);
163    const __m128i c2 = _mm_mulhi_epi16(in3, k1);
164    const __m128i c3 = _mm_sub_epi16(in1, in3);
165    const __m128i c4 = _mm_sub_epi16(c1, c2);
166    const __m128i c = _mm_add_epi16(c3, c4);
167    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
168    const __m128i d1 = _mm_mulhi_epi16(in1, k1);
169    const __m128i d2 = _mm_mulhi_epi16(in3, k2);
170    const __m128i d3 = _mm_add_epi16(in1, in3);
171    const __m128i d4 = _mm_add_epi16(d1, d2);
172    const __m128i d = _mm_add_epi16(d3, d4);
173
174    // Second pass.
175    const __m128i tmp0 = _mm_add_epi16(a, d);
176    const __m128i tmp1 = _mm_add_epi16(b, c);
177    const __m128i tmp2 = _mm_sub_epi16(b, c);
178    const __m128i tmp3 = _mm_sub_epi16(a, d);
179
180    // Transpose the two 4x4.
181    // a00 a01 a02 a03   b00 b01 b02 b03
182    // a10 a11 a12 a13   b10 b11 b12 b13
183    // a20 a21 a22 a23   b20 b21 b22 b23
184    // a30 a31 a32 a33   b30 b31 b32 b33
185    const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
186    const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
187    const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
188    const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
189    // a00 a10 a01 a11   a02 a12 a03 a13
190    // a20 a30 a21 a31   a22 a32 a23 a33
191    // b00 b10 b01 b11   b02 b12 b03 b13
192    // b20 b30 b21 b31   b22 b32 b23 b33
193    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
194    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
195    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
196    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
197    // a00 a10 a20 a30 a01 a11 a21 a31
198    // b00 b10 b20 b30 b01 b11 b21 b31
199    // a02 a12 a22 a32 a03 a13 a23 a33
200    // b02 b12 a22 b32 b03 b13 b23 b33
201    T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
202    T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
203    T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
204    T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
205    // a00 a10 a20 a30   b00 b10 b20 b30
206    // a01 a11 a21 a31   b01 b11 b21 b31
207    // a02 a12 a22 a32   b02 b12 b22 b32
208    // a03 a13 a23 a33   b03 b13 b23 b33
209  }
210
211  // Horizontal pass and subsequent transpose.
212  {
213    // First pass, c and d calculations are longer because of the "trick"
214    // multiplications.
215    const __m128i four = _mm_set1_epi16(4);
216    const __m128i dc = _mm_add_epi16(T0, four);
217    const __m128i a =  _mm_add_epi16(dc, T2);
218    const __m128i b =  _mm_sub_epi16(dc, T2);
219    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
220    const __m128i c1 = _mm_mulhi_epi16(T1, k2);
221    const __m128i c2 = _mm_mulhi_epi16(T3, k1);
222    const __m128i c3 = _mm_sub_epi16(T1, T3);
223    const __m128i c4 = _mm_sub_epi16(c1, c2);
224    const __m128i c = _mm_add_epi16(c3, c4);
225    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
226    const __m128i d1 = _mm_mulhi_epi16(T1, k1);
227    const __m128i d2 = _mm_mulhi_epi16(T3, k2);
228    const __m128i d3 = _mm_add_epi16(T1, T3);
229    const __m128i d4 = _mm_add_epi16(d1, d2);
230    const __m128i d = _mm_add_epi16(d3, d4);
231
232    // Second pass.
233    const __m128i tmp0 = _mm_add_epi16(a, d);
234    const __m128i tmp1 = _mm_add_epi16(b, c);
235    const __m128i tmp2 = _mm_sub_epi16(b, c);
236    const __m128i tmp3 = _mm_sub_epi16(a, d);
237    const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
238    const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
239    const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
240    const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
241
242    // Transpose the two 4x4.
243    // a00 a01 a02 a03   b00 b01 b02 b03
244    // a10 a11 a12 a13   b10 b11 b12 b13
245    // a20 a21 a22 a23   b20 b21 b22 b23
246    // a30 a31 a32 a33   b30 b31 b32 b33
247    const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
248    const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
249    const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
250    const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
251    // a00 a10 a01 a11   a02 a12 a03 a13
252    // a20 a30 a21 a31   a22 a32 a23 a33
253    // b00 b10 b01 b11   b02 b12 b03 b13
254    // b20 b30 b21 b31   b22 b32 b23 b33
255    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
256    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
257    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
258    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
259    // a00 a10 a20 a30 a01 a11 a21 a31
260    // b00 b10 b20 b30 b01 b11 b21 b31
261    // a02 a12 a22 a32 a03 a13 a23 a33
262    // b02 b12 a22 b32 b03 b13 b23 b33
263    T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
264    T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
265    T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
266    T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
267    // a00 a10 a20 a30   b00 b10 b20 b30
268    // a01 a11 a21 a31   b01 b11 b21 b31
269    // a02 a12 a22 a32   b02 b12 b22 b32
270    // a03 a13 a23 a33   b03 b13 b23 b33
271  }
272
273  // Add inverse transform to 'ref' and store.
274  {
275    const __m128i zero = _mm_setzero_si128();
276    // Load the reference(s).
277    __m128i ref0, ref1, ref2, ref3;
278    if (do_two) {
279      // Load eight bytes/pixels per line.
280      ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
281      ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
282      ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
283      ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
284    } else {
285      // Load four bytes/pixels per line.
286      ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
287      ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
288      ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
289      ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
290    }
291    // Convert to 16b.
292    ref0 = _mm_unpacklo_epi8(ref0, zero);
293    ref1 = _mm_unpacklo_epi8(ref1, zero);
294    ref2 = _mm_unpacklo_epi8(ref2, zero);
295    ref3 = _mm_unpacklo_epi8(ref3, zero);
296    // Add the inverse transform(s).
297    ref0 = _mm_add_epi16(ref0, T0);
298    ref1 = _mm_add_epi16(ref1, T1);
299    ref2 = _mm_add_epi16(ref2, T2);
300    ref3 = _mm_add_epi16(ref3, T3);
301    // Unsigned saturate to 8b.
302    ref0 = _mm_packus_epi16(ref0, ref0);
303    ref1 = _mm_packus_epi16(ref1, ref1);
304    ref2 = _mm_packus_epi16(ref2, ref2);
305    ref3 = _mm_packus_epi16(ref3, ref3);
306    // Store the results.
307    if (do_two) {
308      // Store eight bytes/pixels per line.
309      _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
310      _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
311      _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
312      _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
313    } else {
314      // Store four bytes/pixels per line.
315      *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
316      *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
317      *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
318      *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
319    }
320  }
321}
322
323static void FTransformSSE2(const uint8_t* src, const uint8_t* ref,
324                           int16_t* out) {
325  const __m128i zero = _mm_setzero_si128();
326  const __m128i seven = _mm_set1_epi16(7);
327  const __m128i k937 = _mm_set1_epi32(937);
328  const __m128i k1812 = _mm_set1_epi32(1812);
329  const __m128i k51000 = _mm_set1_epi32(51000);
330  const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
331  const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
332                                           5352,  2217, 5352,  2217);
333  const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
334                                           2217, -5352, 2217, -5352);
335  const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
336  const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
337  const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
338                                            2217, 5352, 2217, 5352);
339  const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
340                                            -5352, 2217, -5352, 2217);
341  __m128i v01, v32;
342
343
344  // Difference between src and ref and initial transpose.
345  {
346    // Load src and convert to 16b.
347    const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
348    const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
349    const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
350    const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
351    const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
352    const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
353    const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
354    const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
355    // Load ref and convert to 16b.
356    const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
357    const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
358    const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
359    const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
360    const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
361    const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
362    const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
363    const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
364    // Compute difference. -> 00 01 02 03 00 00 00 00
365    const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
366    const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
367    const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
368    const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
369
370
371    // Unpack and shuffle
372    // 00 01 02 03   0 0 0 0
373    // 10 11 12 13   0 0 0 0
374    // 20 21 22 23   0 0 0 0
375    // 30 31 32 33   0 0 0 0
376    const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1);
377    const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3);
378    // 00 01 10 11 02 03 12 13
379    // 20 21 30 31 22 23 32 33
380    const __m128i shuf01_p =
381        _mm_shufflehi_epi16(shuf01, _MM_SHUFFLE(2, 3, 0, 1));
382    const __m128i shuf23_p =
383        _mm_shufflehi_epi16(shuf23, _MM_SHUFFLE(2, 3, 0, 1));
384    // 00 01 10 11 03 02 13 12
385    // 20 21 30 31 23 22 33 32
386    const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
387    const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
388    // 00 01 10 11 20 21 30 31
389    // 03 02 13 12 23 22 33 32
390    const __m128i a01 = _mm_add_epi16(s01, s32);
391    const __m128i a32 = _mm_sub_epi16(s01, s32);
392    // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
393    // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
394
395    const __m128i tmp0 = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
396    const __m128i tmp2 = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
397    const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
398    const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
399    const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
400    const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
401    const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
402    const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
403    const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
404    const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
405    const __m128i s_lo = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
406    const __m128i s_hi = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
407    const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
408    v01 = _mm_unpacklo_epi32(s_lo, s_hi);
409    v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
410  }
411
412  // Second pass
413  {
414    // Same operations are done on the (0,3) and (1,2) pairs.
415    // a0 = v0 + v3
416    // a1 = v1 + v2
417    // a3 = v0 - v3
418    // a2 = v1 - v2
419    const __m128i a01 = _mm_add_epi16(v01, v32);
420    const __m128i a32 = _mm_sub_epi16(v01, v32);
421    const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
422    const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
423    const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
424
425    // d0 = (a0 + a1 + 7) >> 4;
426    // d2 = (a0 - a1 + 7) >> 4;
427    const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
428    const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
429    const __m128i d0 = _mm_srai_epi16(c0, 4);
430    const __m128i d2 = _mm_srai_epi16(c2, 4);
431
432    // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
433    // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
434    const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
435    const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
436    const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
437    const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
438    const __m128i d3 = _mm_add_epi32(c3, k51000);
439    const __m128i e1 = _mm_srai_epi32(d1, 16);
440    const __m128i e3 = _mm_srai_epi32(d3, 16);
441    const __m128i f1 = _mm_packs_epi32(e1, e1);
442    const __m128i f3 = _mm_packs_epi32(e3, e3);
443    // f1 = f1 + (a3 != 0);
444    // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
445    // desired (0, 1), we add one earlier through k12000_plus_one.
446    // -> f1 = f1 + 1 - (a3 == 0)
447    const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
448
449    _mm_storel_epi64((__m128i*)&out[ 0], d0);
450    _mm_storel_epi64((__m128i*)&out[ 4], g1);
451    _mm_storel_epi64((__m128i*)&out[ 8], d2);
452    _mm_storel_epi64((__m128i*)&out[12], f3);
453  }
454}
455
456//------------------------------------------------------------------------------
457// Metric
458
459static int SSE_Nx4SSE2(const uint8_t* a, const uint8_t* b,
460                       int num_quads, int do_16) {
461  const __m128i zero = _mm_setzero_si128();
462  __m128i sum1 = zero;
463  __m128i sum2 = zero;
464
465  while (num_quads-- > 0) {
466    // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok,
467    // thanks to buffer over-allocation to that effect.
468    const __m128i a0 = _mm_loadu_si128((__m128i*)&a[BPS * 0]);
469    const __m128i a1 = _mm_loadu_si128((__m128i*)&a[BPS * 1]);
470    const __m128i a2 = _mm_loadu_si128((__m128i*)&a[BPS * 2]);
471    const __m128i a3 = _mm_loadu_si128((__m128i*)&a[BPS * 3]);
472    const __m128i b0 = _mm_loadu_si128((__m128i*)&b[BPS * 0]);
473    const __m128i b1 = _mm_loadu_si128((__m128i*)&b[BPS * 1]);
474    const __m128i b2 = _mm_loadu_si128((__m128i*)&b[BPS * 2]);
475    const __m128i b3 = _mm_loadu_si128((__m128i*)&b[BPS * 3]);
476
477    // compute clip0(a-b) and clip0(b-a)
478    const __m128i a0p = _mm_subs_epu8(a0, b0);
479    const __m128i a0m = _mm_subs_epu8(b0, a0);
480    const __m128i a1p = _mm_subs_epu8(a1, b1);
481    const __m128i a1m = _mm_subs_epu8(b1, a1);
482    const __m128i a2p = _mm_subs_epu8(a2, b2);
483    const __m128i a2m = _mm_subs_epu8(b2, a2);
484    const __m128i a3p = _mm_subs_epu8(a3, b3);
485    const __m128i a3m = _mm_subs_epu8(b3, a3);
486
487    // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a)
488    const __m128i diff0 = _mm_or_si128(a0p, a0m);
489    const __m128i diff1 = _mm_or_si128(a1p, a1m);
490    const __m128i diff2 = _mm_or_si128(a2p, a2m);
491    const __m128i diff3 = _mm_or_si128(a3p, a3m);
492
493    // unpack (only four operations, instead of eight)
494    const __m128i low0 = _mm_unpacklo_epi8(diff0, zero);
495    const __m128i low1 = _mm_unpacklo_epi8(diff1, zero);
496    const __m128i low2 = _mm_unpacklo_epi8(diff2, zero);
497    const __m128i low3 = _mm_unpacklo_epi8(diff3, zero);
498
499    // multiply with self
500    const __m128i low_madd0 = _mm_madd_epi16(low0, low0);
501    const __m128i low_madd1 = _mm_madd_epi16(low1, low1);
502    const __m128i low_madd2 = _mm_madd_epi16(low2, low2);
503    const __m128i low_madd3 = _mm_madd_epi16(low3, low3);
504
505    // collect in a cascading way
506    const __m128i low_sum0 = _mm_add_epi32(low_madd0, low_madd1);
507    const __m128i low_sum1 = _mm_add_epi32(low_madd2, low_madd3);
508    sum1 = _mm_add_epi32(sum1, low_sum0);
509    sum2 = _mm_add_epi32(sum2, low_sum1);
510
511    if (do_16) {  // if necessary, process the higher 8 bytes similarly
512      const __m128i hi0 = _mm_unpackhi_epi8(diff0, zero);
513      const __m128i hi1 = _mm_unpackhi_epi8(diff1, zero);
514      const __m128i hi2 = _mm_unpackhi_epi8(diff2, zero);
515      const __m128i hi3 = _mm_unpackhi_epi8(diff3, zero);
516
517      const __m128i hi_madd0 = _mm_madd_epi16(hi0, hi0);
518      const __m128i hi_madd1 = _mm_madd_epi16(hi1, hi1);
519      const __m128i hi_madd2 = _mm_madd_epi16(hi2, hi2);
520      const __m128i hi_madd3 = _mm_madd_epi16(hi3, hi3);
521      const __m128i hi_sum0 = _mm_add_epi32(hi_madd0, hi_madd1);
522      const __m128i hi_sum1 = _mm_add_epi32(hi_madd2, hi_madd3);
523      sum1 = _mm_add_epi32(sum1, hi_sum0);
524      sum2 = _mm_add_epi32(sum2, hi_sum1);
525    }
526    a += 4 * BPS;
527    b += 4 * BPS;
528  }
529  {
530    int32_t tmp[4];
531    const __m128i sum = _mm_add_epi32(sum1, sum2);
532    _mm_storeu_si128((__m128i*)tmp, sum);
533    return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
534  }
535}
536
537static int SSE16x16SSE2(const uint8_t* a, const uint8_t* b) {
538  return SSE_Nx4SSE2(a, b, 4, 1);
539}
540
541static int SSE16x8SSE2(const uint8_t* a, const uint8_t* b) {
542  return SSE_Nx4SSE2(a, b, 2, 1);
543}
544
545static int SSE8x8SSE2(const uint8_t* a, const uint8_t* b) {
546  return SSE_Nx4SSE2(a, b, 2, 0);
547}
548
549static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) {
550  const __m128i zero = _mm_setzero_si128();
551
552  // Load values. Note that we read 8 pixels instead of 4,
553  // but the a/b buffers are over-allocated to that effect.
554  const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
555  const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
556  const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
557  const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
558  const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
559  const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
560  const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
561  const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
562
563  // Combine pair of lines and convert to 16b.
564  const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
565  const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
566  const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
567  const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
568  const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
569  const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
570  const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
571  const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
572
573  // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
574  // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
575  //                  need absolute values, there is no need to do calculation
576  //                  in 8bit as we are already in 16bit, ... Yet this is what
577  //                  benchmarks the fastest!
578  const __m128i d0 = _mm_subs_epu8(a01s, b01s);
579  const __m128i d1 = _mm_subs_epu8(b01s, a01s);
580  const __m128i d2 = _mm_subs_epu8(a23s, b23s);
581  const __m128i d3 = _mm_subs_epu8(b23s, a23s);
582
583  // Square and add them all together.
584  const __m128i madd0 = _mm_madd_epi16(d0, d0);
585  const __m128i madd1 = _mm_madd_epi16(d1, d1);
586  const __m128i madd2 = _mm_madd_epi16(d2, d2);
587  const __m128i madd3 = _mm_madd_epi16(d3, d3);
588  const __m128i sum0 = _mm_add_epi32(madd0, madd1);
589  const __m128i sum1 = _mm_add_epi32(madd2, madd3);
590  const __m128i sum2 = _mm_add_epi32(sum0, sum1);
591
592  int32_t tmp[4];
593  _mm_storeu_si128((__m128i*)tmp, sum2);
594  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
595}
596
597//------------------------------------------------------------------------------
598// Texture distortion
599//
600// We try to match the spectral content (weighted) between source and
601// reconstructed samples.
602
603// Hadamard transform
604// Returns the difference between the weighted sum of the absolute value of
605// transformed coefficients.
606static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB,
607                          const uint16_t* const w) {
608  int32_t sum[4];
609  __m128i tmp_0, tmp_1, tmp_2, tmp_3;
610  const __m128i zero = _mm_setzero_si128();
611
612  // Load, combine and tranpose inputs.
613  {
614    const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
615    const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
616    const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
617    const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
618    const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
619    const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
620    const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
621    const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
622
623    // Combine inA and inB (we'll do two transforms in parallel).
624    const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
625    const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
626    const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
627    const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
628    // a00 b00 a01 b01 a02 b03 a03 b03   0 0 0 0 0 0 0 0
629    // a10 b10 a11 b11 a12 b12 a13 b13   0 0 0 0 0 0 0 0
630    // a20 b20 a21 b21 a22 b22 a23 b23   0 0 0 0 0 0 0 0
631    // a30 b30 a31 b31 a32 b32 a33 b33   0 0 0 0 0 0 0 0
632
633    // Transpose the two 4x4, discarding the filling zeroes.
634    const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
635    const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
636    // a00 a20  b00 b20  a01 a21  b01 b21  a02 a22  b02 b22  a03 a23  b03 b23
637    // a10 a30  b10 b30  a11 a31  b11 b31  a12 a32  b12 b32  a13 a33  b13 b33
638    const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
639    const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
640    // a00 a10 a20 a30  b00 b10 b20 b30  a01 a11 a21 a31  b01 b11 b21 b31
641    // a02 a12 a22 a32  b02 b12 b22 b32  a03 a13 a23 a33  b03 b13 b23 b33
642
643    // Convert to 16b.
644    tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
645    tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
646    tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
647    tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
648    // a00 a10 a20 a30   b00 b10 b20 b30
649    // a01 a11 a21 a31   b01 b11 b21 b31
650    // a02 a12 a22 a32   b02 b12 b22 b32
651    // a03 a13 a23 a33   b03 b13 b23 b33
652  }
653
654  // Horizontal pass and subsequent transpose.
655  {
656    // Calculate a and b (two 4x4 at once).
657    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
658    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
659    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
660    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
661    const __m128i b0 = _mm_add_epi16(a0, a1);
662    const __m128i b1 = _mm_add_epi16(a3, a2);
663    const __m128i b2 = _mm_sub_epi16(a3, a2);
664    const __m128i b3 = _mm_sub_epi16(a0, a1);
665    // a00 a01 a02 a03   b00 b01 b02 b03
666    // a10 a11 a12 a13   b10 b11 b12 b13
667    // a20 a21 a22 a23   b20 b21 b22 b23
668    // a30 a31 a32 a33   b30 b31 b32 b33
669
670    // Transpose the two 4x4.
671    const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
672    const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
673    const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
674    const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
675    // a00 a10 a01 a11   a02 a12 a03 a13
676    // a20 a30 a21 a31   a22 a32 a23 a33
677    // b00 b10 b01 b11   b02 b12 b03 b13
678    // b20 b30 b21 b31   b22 b32 b23 b33
679    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
680    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
681    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
682    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
683    // a00 a10 a20 a30 a01 a11 a21 a31
684    // b00 b10 b20 b30 b01 b11 b21 b31
685    // a02 a12 a22 a32 a03 a13 a23 a33
686    // b02 b12 a22 b32 b03 b13 b23 b33
687    tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
688    tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
689    tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
690    tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
691    // a00 a10 a20 a30   b00 b10 b20 b30
692    // a01 a11 a21 a31   b01 b11 b21 b31
693    // a02 a12 a22 a32   b02 b12 b22 b32
694    // a03 a13 a23 a33   b03 b13 b23 b33
695  }
696
697  // Vertical pass and difference of weighted sums.
698  {
699    // Load all inputs.
700    // TODO(cduvivier): Make variable declarations and allocations aligned so
701    //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
702    const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
703    const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
704
705    // Calculate a and b (two 4x4 at once).
706    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
707    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
708    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
709    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
710    const __m128i b0 = _mm_add_epi16(a0, a1);
711    const __m128i b1 = _mm_add_epi16(a3, a2);
712    const __m128i b2 = _mm_sub_epi16(a3, a2);
713    const __m128i b3 = _mm_sub_epi16(a0, a1);
714
715    // Separate the transforms of inA and inB.
716    __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
717    __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
718    __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
719    __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
720
721    {
722      // sign(b) = b >> 15  (0x0000 if positive, 0xffff if negative)
723      const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
724      const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
725      const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
726      const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
727
728      // b = abs(b) = (b ^ sign) - sign
729      A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
730      A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
731      B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
732      B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
733      A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
734      A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
735      B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
736      B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
737    }
738
739    // weighted sums
740    A_b0 = _mm_madd_epi16(A_b0, w_0);
741    A_b2 = _mm_madd_epi16(A_b2, w_8);
742    B_b0 = _mm_madd_epi16(B_b0, w_0);
743    B_b2 = _mm_madd_epi16(B_b2, w_8);
744    A_b0 = _mm_add_epi32(A_b0, A_b2);
745    B_b0 = _mm_add_epi32(B_b0, B_b2);
746
747    // difference of weighted sums
748    A_b0 = _mm_sub_epi32(A_b0, B_b0);
749    _mm_storeu_si128((__m128i*)&sum[0], A_b0);
750  }
751  return sum[0] + sum[1] + sum[2] + sum[3];
752}
753
754static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b,
755                        const uint16_t* const w) {
756  const int diff_sum = TTransformSSE2(a, b, w);
757  return abs(diff_sum) >> 5;
758}
759
760static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b,
761                          const uint16_t* const w) {
762  int D = 0;
763  int x, y;
764  for (y = 0; y < 16 * BPS; y += 4 * BPS) {
765    for (x = 0; x < 16; x += 4) {
766      D += Disto4x4SSE2(a + x + y, b + x + y, w);
767    }
768  }
769  return D;
770}
771
772//------------------------------------------------------------------------------
773// Quantization
774//
775
776// Simple quantization
777static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16],
778                             int n, const VP8Matrix* const mtx) {
779  const __m128i max_coeff_2047 = _mm_set1_epi16(2047);
780  const __m128i zero = _mm_setzero_si128();
781  __m128i coeff0, coeff8;
782  __m128i out0, out8;
783  __m128i packed_out;
784
785  // Load all inputs.
786  // TODO(cduvivier): Make variable declarations and allocations aligned so that
787  //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
788  __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
789  __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
790  const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]);
791  const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]);
792  const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
793  const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
794  const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
795  const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
796  const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
797  const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
798  const __m128i zthresh0 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[0]);
799  const __m128i zthresh8 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[8]);
800
801  // sign(in) = in >> 15  (0x0000 if positive, 0xffff if negative)
802  const __m128i sign0 = _mm_srai_epi16(in0, 15);
803  const __m128i sign8 = _mm_srai_epi16(in8, 15);
804
805  // coeff = abs(in) = (in ^ sign) - sign
806  coeff0 = _mm_xor_si128(in0, sign0);
807  coeff8 = _mm_xor_si128(in8, sign8);
808  coeff0 = _mm_sub_epi16(coeff0, sign0);
809  coeff8 = _mm_sub_epi16(coeff8, sign8);
810
811  // coeff = abs(in) + sharpen
812  coeff0 = _mm_add_epi16(coeff0, sharpen0);
813  coeff8 = _mm_add_epi16(coeff8, sharpen8);
814
815  // if (coeff > 2047) coeff = 2047
816  coeff0 = _mm_min_epi16(coeff0, max_coeff_2047);
817  coeff8 = _mm_min_epi16(coeff8, max_coeff_2047);
818
819  // out = (coeff * iQ + B) >> QFIX;
820  {
821    // doing calculations with 32b precision (QFIX=17)
822    // out = (coeff * iQ)
823    __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
824    __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
825    __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
826    __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
827    __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
828    __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
829    __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
830    __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
831    // expand bias from 16b to 32b
832    __m128i bias_00 = _mm_unpacklo_epi16(bias0, zero);
833    __m128i bias_04 = _mm_unpackhi_epi16(bias0, zero);
834    __m128i bias_08 = _mm_unpacklo_epi16(bias8, zero);
835    __m128i bias_12 = _mm_unpackhi_epi16(bias8, zero);
836    // out = (coeff * iQ + B)
837    out_00 = _mm_add_epi32(out_00, bias_00);
838    out_04 = _mm_add_epi32(out_04, bias_04);
839    out_08 = _mm_add_epi32(out_08, bias_08);
840    out_12 = _mm_add_epi32(out_12, bias_12);
841    // out = (coeff * iQ + B) >> QFIX;
842    out_00 = _mm_srai_epi32(out_00, QFIX);
843    out_04 = _mm_srai_epi32(out_04, QFIX);
844    out_08 = _mm_srai_epi32(out_08, QFIX);
845    out_12 = _mm_srai_epi32(out_12, QFIX);
846    // pack result as 16b
847    out0 = _mm_packs_epi32(out_00, out_04);
848    out8 = _mm_packs_epi32(out_08, out_12);
849  }
850
851  // get sign back (if (sign[j]) out_n = -out_n)
852  out0 = _mm_xor_si128(out0, sign0);
853  out8 = _mm_xor_si128(out8, sign8);
854  out0 = _mm_sub_epi16(out0, sign0);
855  out8 = _mm_sub_epi16(out8, sign8);
856
857  // in = out * Q
858  in0 = _mm_mullo_epi16(out0, q0);
859  in8 = _mm_mullo_epi16(out8, q8);
860
861  // if (coeff <= mtx->zthresh_) {in=0; out=0;}
862  {
863    __m128i cmp0 = _mm_cmpgt_epi16(coeff0, zthresh0);
864    __m128i cmp8 = _mm_cmpgt_epi16(coeff8, zthresh8);
865    in0 = _mm_and_si128(in0, cmp0);
866    in8 = _mm_and_si128(in8, cmp8);
867    _mm_storeu_si128((__m128i*)&in[0], in0);
868    _mm_storeu_si128((__m128i*)&in[8], in8);
869    out0 = _mm_and_si128(out0, cmp0);
870    out8 = _mm_and_si128(out8, cmp8);
871  }
872
873  // zigzag the output before storing it.
874  //
875  // The zigzag pattern can almost be reproduced with a small sequence of
876  // shuffles. After it, we only need to swap the 7th (ending up in third
877  // position instead of twelfth) and 8th values.
878  {
879    __m128i outZ0, outZ8;
880    outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
881    outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
882    outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
883    outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
884    outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
885    outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
886    _mm_storeu_si128((__m128i*)&out[0], outZ0);
887    _mm_storeu_si128((__m128i*)&out[8], outZ8);
888    packed_out = _mm_packs_epi16(outZ0, outZ8);
889  }
890  {
891    const int16_t outZ_12 = out[12];
892    const int16_t outZ_3 = out[3];
893    out[3] = outZ_12;
894    out[12] = outZ_3;
895  }
896
897  // detect if all 'out' values are zeroes or not
898  {
899    int32_t tmp[4];
900    _mm_storeu_si128((__m128i*)tmp, packed_out);
901    if (n) {
902      tmp[0] &= ~0xff;
903    }
904    return (tmp[3] || tmp[2] || tmp[1] || tmp[0]);
905  }
906}
907
908#endif   // WEBP_USE_SSE2
909
910//------------------------------------------------------------------------------
911// Entry point
912
913extern void VP8EncDspInitSSE2(void);
914
915void VP8EncDspInitSSE2(void) {
916#if defined(WEBP_USE_SSE2)
917  VP8CollectHistogram = CollectHistogramSSE2;
918  VP8EncQuantizeBlock = QuantizeBlockSSE2;
919  VP8ITransform = ITransformSSE2;
920  VP8FTransform = FTransformSSE2;
921  VP8SSE16x16 = SSE16x16SSE2;
922  VP8SSE16x8 = SSE16x8SSE2;
923  VP8SSE8x8 = SSE8x8SSE2;
924  VP8SSE4x4 = SSE4x4SSE2;
925  VP8TDisto4x4 = Disto4x4SSE2;
926  VP8TDisto16x16 = Disto16x16SSE2;
927#endif   // WEBP_USE_SSE2
928}
929
930#if defined(__cplusplus) || defined(c_plusplus)
931}    // extern "C"
932#endif
933