enc_sse2.c revision 8b720228d581a84fd173b6dcb2fa295b59db489a
1// Copyright 2011 Google Inc. All Rights Reserved.
2//
3// Use of this source code is governed by a BSD-style license
4// that can be found in the COPYING file in the root of the source
5// tree. An additional intellectual property rights grant can be found
6// in the file PATENTS. All contributing project authors may
7// be found in the AUTHORS file in the root of the source tree.
8// -----------------------------------------------------------------------------
9//
10// SSE2 version of speed-critical encoding functions.
11//
12// Author: Christian Duvivier (cduvivier@google.com)
13
14#include "./dsp.h"
15
16#if defined(WEBP_USE_SSE2)
17#include <stdlib.h>  // for abs()
18#include <emmintrin.h>
19
20#include "../enc/vp8enci.h"
21
22//------------------------------------------------------------------------------
23// Quite useful macro for debugging. Left here for convenience.
24
25#if 0
26#include <stdio.h>
27static void PrintReg(const __m128i r, const char* const name, int size) {
28  int n;
29  union {
30    __m128i r;
31    uint8_t i8[16];
32    uint16_t i16[8];
33    uint32_t i32[4];
34    uint64_t i64[2];
35  } tmp;
36  tmp.r = r;
37  printf("%s\t: ", name);
38  if (size == 8) {
39    for (n = 0; n < 16; ++n) printf("%.2x ", tmp.i8[n]);
40  } else if (size == 16) {
41    for (n = 0; n < 8; ++n) printf("%.4x ", tmp.i16[n]);
42  } else if (size == 32) {
43    for (n = 0; n < 4; ++n) printf("%.8x ", tmp.i32[n]);
44  } else {
45    for (n = 0; n < 2; ++n) printf("%.16lx ", tmp.i64[n]);
46  }
47  printf("\n");
48}
49#endif
50
51//------------------------------------------------------------------------------
52// Compute susceptibility based on DCT-coeff histograms:
53// the higher, the "easier" the macroblock is to compress.
54
55static void CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
56                                 int start_block, int end_block,
57                                 VP8Histogram* const histo) {
58  const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
59  int j;
60  for (j = start_block; j < end_block; ++j) {
61    int16_t out[16];
62    int k;
63
64    VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
65
66    // Convert coefficients to bin (within out[]).
67    {
68      // Load.
69      const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
70      const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
71      // sign(out) = out >> 15  (0x0000 if positive, 0xffff if negative)
72      const __m128i sign0 = _mm_srai_epi16(out0, 15);
73      const __m128i sign1 = _mm_srai_epi16(out1, 15);
74      // abs(out) = (out ^ sign) - sign
75      const __m128i xor0 = _mm_xor_si128(out0, sign0);
76      const __m128i xor1 = _mm_xor_si128(out1, sign1);
77      const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
78      const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
79      // v = abs(out) >> 3
80      const __m128i v0 = _mm_srai_epi16(abs0, 3);
81      const __m128i v1 = _mm_srai_epi16(abs1, 3);
82      // bin = min(v, MAX_COEFF_THRESH)
83      const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
84      const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
85      // Store.
86      _mm_storeu_si128((__m128i*)&out[0], bin0);
87      _mm_storeu_si128((__m128i*)&out[8], bin1);
88    }
89
90    // Convert coefficients to bin.
91    for (k = 0; k < 16; ++k) {
92      histo->distribution[out[k]]++;
93    }
94  }
95}
96
97//------------------------------------------------------------------------------
98// Transforms (Paragraph 14.4)
99
100// Does one or two inverse transforms.
101static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
102                           int do_two) {
103  // This implementation makes use of 16-bit fixed point versions of two
104  // multiply constants:
105  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
106  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
107  //
108  // To be able to use signed 16-bit integers, we use the following trick to
109  // have constants within range:
110  // - Associated constants are obtained by subtracting the 16-bit fixed point
111  //   version of one:
112  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
113  //      K1 = 85267  =>  k1 =  20091
114  //      K2 = 35468  =>  k2 = -30068
115  // - The multiplication of a variable by a constant become the sum of the
116  //   variable and the multiplication of that variable by the associated
117  //   constant:
118  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
119  const __m128i k1 = _mm_set1_epi16(20091);
120  const __m128i k2 = _mm_set1_epi16(-30068);
121  __m128i T0, T1, T2, T3;
122
123  // Load and concatenate the transform coefficients (we'll do two inverse
124  // transforms in parallel). In the case of only one inverse transform, the
125  // second half of the vectors will just contain random value we'll never
126  // use nor store.
127  __m128i in0, in1, in2, in3;
128  {
129    in0 = _mm_loadl_epi64((__m128i*)&in[0]);
130    in1 = _mm_loadl_epi64((__m128i*)&in[4]);
131    in2 = _mm_loadl_epi64((__m128i*)&in[8]);
132    in3 = _mm_loadl_epi64((__m128i*)&in[12]);
133    // a00 a10 a20 a30   x x x x
134    // a01 a11 a21 a31   x x x x
135    // a02 a12 a22 a32   x x x x
136    // a03 a13 a23 a33   x x x x
137    if (do_two) {
138      const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
139      const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
140      const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
141      const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
142      in0 = _mm_unpacklo_epi64(in0, inB0);
143      in1 = _mm_unpacklo_epi64(in1, inB1);
144      in2 = _mm_unpacklo_epi64(in2, inB2);
145      in3 = _mm_unpacklo_epi64(in3, inB3);
146      // a00 a10 a20 a30   b00 b10 b20 b30
147      // a01 a11 a21 a31   b01 b11 b21 b31
148      // a02 a12 a22 a32   b02 b12 b22 b32
149      // a03 a13 a23 a33   b03 b13 b23 b33
150    }
151  }
152
153  // Vertical pass and subsequent transpose.
154  {
155    // First pass, c and d calculations are longer because of the "trick"
156    // multiplications.
157    const __m128i a = _mm_add_epi16(in0, in2);
158    const __m128i b = _mm_sub_epi16(in0, in2);
159    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
160    const __m128i c1 = _mm_mulhi_epi16(in1, k2);
161    const __m128i c2 = _mm_mulhi_epi16(in3, k1);
162    const __m128i c3 = _mm_sub_epi16(in1, in3);
163    const __m128i c4 = _mm_sub_epi16(c1, c2);
164    const __m128i c = _mm_add_epi16(c3, c4);
165    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
166    const __m128i d1 = _mm_mulhi_epi16(in1, k1);
167    const __m128i d2 = _mm_mulhi_epi16(in3, k2);
168    const __m128i d3 = _mm_add_epi16(in1, in3);
169    const __m128i d4 = _mm_add_epi16(d1, d2);
170    const __m128i d = _mm_add_epi16(d3, d4);
171
172    // Second pass.
173    const __m128i tmp0 = _mm_add_epi16(a, d);
174    const __m128i tmp1 = _mm_add_epi16(b, c);
175    const __m128i tmp2 = _mm_sub_epi16(b, c);
176    const __m128i tmp3 = _mm_sub_epi16(a, d);
177
178    // Transpose the two 4x4.
179    // a00 a01 a02 a03   b00 b01 b02 b03
180    // a10 a11 a12 a13   b10 b11 b12 b13
181    // a20 a21 a22 a23   b20 b21 b22 b23
182    // a30 a31 a32 a33   b30 b31 b32 b33
183    const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
184    const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
185    const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
186    const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
187    // a00 a10 a01 a11   a02 a12 a03 a13
188    // a20 a30 a21 a31   a22 a32 a23 a33
189    // b00 b10 b01 b11   b02 b12 b03 b13
190    // b20 b30 b21 b31   b22 b32 b23 b33
191    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
192    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
193    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
194    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
195    // a00 a10 a20 a30 a01 a11 a21 a31
196    // b00 b10 b20 b30 b01 b11 b21 b31
197    // a02 a12 a22 a32 a03 a13 a23 a33
198    // b02 b12 a22 b32 b03 b13 b23 b33
199    T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
200    T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
201    T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
202    T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
203    // a00 a10 a20 a30   b00 b10 b20 b30
204    // a01 a11 a21 a31   b01 b11 b21 b31
205    // a02 a12 a22 a32   b02 b12 b22 b32
206    // a03 a13 a23 a33   b03 b13 b23 b33
207  }
208
209  // Horizontal pass and subsequent transpose.
210  {
211    // First pass, c and d calculations are longer because of the "trick"
212    // multiplications.
213    const __m128i four = _mm_set1_epi16(4);
214    const __m128i dc = _mm_add_epi16(T0, four);
215    const __m128i a =  _mm_add_epi16(dc, T2);
216    const __m128i b =  _mm_sub_epi16(dc, T2);
217    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
218    const __m128i c1 = _mm_mulhi_epi16(T1, k2);
219    const __m128i c2 = _mm_mulhi_epi16(T3, k1);
220    const __m128i c3 = _mm_sub_epi16(T1, T3);
221    const __m128i c4 = _mm_sub_epi16(c1, c2);
222    const __m128i c = _mm_add_epi16(c3, c4);
223    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
224    const __m128i d1 = _mm_mulhi_epi16(T1, k1);
225    const __m128i d2 = _mm_mulhi_epi16(T3, k2);
226    const __m128i d3 = _mm_add_epi16(T1, T3);
227    const __m128i d4 = _mm_add_epi16(d1, d2);
228    const __m128i d = _mm_add_epi16(d3, d4);
229
230    // Second pass.
231    const __m128i tmp0 = _mm_add_epi16(a, d);
232    const __m128i tmp1 = _mm_add_epi16(b, c);
233    const __m128i tmp2 = _mm_sub_epi16(b, c);
234    const __m128i tmp3 = _mm_sub_epi16(a, d);
235    const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
236    const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
237    const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
238    const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
239
240    // Transpose the two 4x4.
241    // a00 a01 a02 a03   b00 b01 b02 b03
242    // a10 a11 a12 a13   b10 b11 b12 b13
243    // a20 a21 a22 a23   b20 b21 b22 b23
244    // a30 a31 a32 a33   b30 b31 b32 b33
245    const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
246    const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
247    const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
248    const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
249    // a00 a10 a01 a11   a02 a12 a03 a13
250    // a20 a30 a21 a31   a22 a32 a23 a33
251    // b00 b10 b01 b11   b02 b12 b03 b13
252    // b20 b30 b21 b31   b22 b32 b23 b33
253    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
254    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
255    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
256    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
257    // a00 a10 a20 a30 a01 a11 a21 a31
258    // b00 b10 b20 b30 b01 b11 b21 b31
259    // a02 a12 a22 a32 a03 a13 a23 a33
260    // b02 b12 a22 b32 b03 b13 b23 b33
261    T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
262    T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
263    T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
264    T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
265    // a00 a10 a20 a30   b00 b10 b20 b30
266    // a01 a11 a21 a31   b01 b11 b21 b31
267    // a02 a12 a22 a32   b02 b12 b22 b32
268    // a03 a13 a23 a33   b03 b13 b23 b33
269  }
270
271  // Add inverse transform to 'ref' and store.
272  {
273    const __m128i zero = _mm_setzero_si128();
274    // Load the reference(s).
275    __m128i ref0, ref1, ref2, ref3;
276    if (do_two) {
277      // Load eight bytes/pixels per line.
278      ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
279      ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
280      ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
281      ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
282    } else {
283      // Load four bytes/pixels per line.
284      ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
285      ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
286      ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
287      ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
288    }
289    // Convert to 16b.
290    ref0 = _mm_unpacklo_epi8(ref0, zero);
291    ref1 = _mm_unpacklo_epi8(ref1, zero);
292    ref2 = _mm_unpacklo_epi8(ref2, zero);
293    ref3 = _mm_unpacklo_epi8(ref3, zero);
294    // Add the inverse transform(s).
295    ref0 = _mm_add_epi16(ref0, T0);
296    ref1 = _mm_add_epi16(ref1, T1);
297    ref2 = _mm_add_epi16(ref2, T2);
298    ref3 = _mm_add_epi16(ref3, T3);
299    // Unsigned saturate to 8b.
300    ref0 = _mm_packus_epi16(ref0, ref0);
301    ref1 = _mm_packus_epi16(ref1, ref1);
302    ref2 = _mm_packus_epi16(ref2, ref2);
303    ref3 = _mm_packus_epi16(ref3, ref3);
304    // Store the results.
305    if (do_two) {
306      // Store eight bytes/pixels per line.
307      _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
308      _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
309      _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
310      _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
311    } else {
312      // Store four bytes/pixels per line.
313      *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
314      *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
315      *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
316      *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
317    }
318  }
319}
320
321static void FTransformSSE2(const uint8_t* src, const uint8_t* ref,
322                           int16_t* out) {
323  const __m128i zero = _mm_setzero_si128();
324  const __m128i seven = _mm_set1_epi16(7);
325  const __m128i k937 = _mm_set1_epi32(937);
326  const __m128i k1812 = _mm_set1_epi32(1812);
327  const __m128i k51000 = _mm_set1_epi32(51000);
328  const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
329  const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
330                                           5352,  2217, 5352,  2217);
331  const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
332                                           2217, -5352, 2217, -5352);
333  const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
334  const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
335  const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
336                                            2217, 5352, 2217, 5352);
337  const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
338                                            -5352, 2217, -5352, 2217);
339  __m128i v01, v32;
340
341
342  // Difference between src and ref and initial transpose.
343  {
344    // Load src and convert to 16b.
345    const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
346    const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
347    const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
348    const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
349    const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
350    const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
351    const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
352    const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
353    // Load ref and convert to 16b.
354    const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
355    const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
356    const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
357    const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
358    const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
359    const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
360    const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
361    const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
362    // Compute difference. -> 00 01 02 03 00 00 00 00
363    const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
364    const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
365    const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
366    const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
367
368
369    // Unpack and shuffle
370    // 00 01 02 03   0 0 0 0
371    // 10 11 12 13   0 0 0 0
372    // 20 21 22 23   0 0 0 0
373    // 30 31 32 33   0 0 0 0
374    const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1);
375    const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3);
376    // 00 01 10 11 02 03 12 13
377    // 20 21 30 31 22 23 32 33
378    const __m128i shuf01_p =
379        _mm_shufflehi_epi16(shuf01, _MM_SHUFFLE(2, 3, 0, 1));
380    const __m128i shuf23_p =
381        _mm_shufflehi_epi16(shuf23, _MM_SHUFFLE(2, 3, 0, 1));
382    // 00 01 10 11 03 02 13 12
383    // 20 21 30 31 23 22 33 32
384    const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
385    const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
386    // 00 01 10 11 20 21 30 31
387    // 03 02 13 12 23 22 33 32
388    const __m128i a01 = _mm_add_epi16(s01, s32);
389    const __m128i a32 = _mm_sub_epi16(s01, s32);
390    // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
391    // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
392
393    const __m128i tmp0 = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
394    const __m128i tmp2 = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
395    const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
396    const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
397    const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
398    const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
399    const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
400    const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
401    const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
402    const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
403    const __m128i s_lo = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
404    const __m128i s_hi = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
405    const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
406    v01 = _mm_unpacklo_epi32(s_lo, s_hi);
407    v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
408  }
409
410  // Second pass
411  {
412    // Same operations are done on the (0,3) and (1,2) pairs.
413    // a0 = v0 + v3
414    // a1 = v1 + v2
415    // a3 = v0 - v3
416    // a2 = v1 - v2
417    const __m128i a01 = _mm_add_epi16(v01, v32);
418    const __m128i a32 = _mm_sub_epi16(v01, v32);
419    const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
420    const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
421    const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
422
423    // d0 = (a0 + a1 + 7) >> 4;
424    // d2 = (a0 - a1 + 7) >> 4;
425    const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
426    const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
427    const __m128i d0 = _mm_srai_epi16(c0, 4);
428    const __m128i d2 = _mm_srai_epi16(c2, 4);
429
430    // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
431    // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
432    const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
433    const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
434    const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
435    const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
436    const __m128i d3 = _mm_add_epi32(c3, k51000);
437    const __m128i e1 = _mm_srai_epi32(d1, 16);
438    const __m128i e3 = _mm_srai_epi32(d3, 16);
439    const __m128i f1 = _mm_packs_epi32(e1, e1);
440    const __m128i f3 = _mm_packs_epi32(e3, e3);
441    // f1 = f1 + (a3 != 0);
442    // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
443    // desired (0, 1), we add one earlier through k12000_plus_one.
444    // -> f1 = f1 + 1 - (a3 == 0)
445    const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
446
447    _mm_storel_epi64((__m128i*)&out[ 0], d0);
448    _mm_storel_epi64((__m128i*)&out[ 4], g1);
449    _mm_storel_epi64((__m128i*)&out[ 8], d2);
450    _mm_storel_epi64((__m128i*)&out[12], f3);
451  }
452}
453
454static void FTransformWHTSSE2(const int16_t* in, int16_t* out) {
455  int32_t tmp[16];
456  int i;
457  for (i = 0; i < 4; ++i, in += 64) {
458    const int a0 = (in[0 * 16] + in[2 * 16]);
459    const int a1 = (in[1 * 16] + in[3 * 16]);
460    const int a2 = (in[1 * 16] - in[3 * 16]);
461    const int a3 = (in[0 * 16] - in[2 * 16]);
462    tmp[0 + i * 4] = a0 + a1;
463    tmp[1 + i * 4] = a3 + a2;
464    tmp[2 + i * 4] = a3 - a2;
465    tmp[3 + i * 4] = a0 - a1;
466  }
467  {
468    const __m128i src0 = _mm_loadu_si128((__m128i*)&tmp[0]);
469    const __m128i src1 = _mm_loadu_si128((__m128i*)&tmp[4]);
470    const __m128i src2 = _mm_loadu_si128((__m128i*)&tmp[8]);
471    const __m128i src3 = _mm_loadu_si128((__m128i*)&tmp[12]);
472    const __m128i a0 = _mm_add_epi32(src0, src2);
473    const __m128i a1 = _mm_add_epi32(src1, src3);
474    const __m128i a2 = _mm_sub_epi32(src1, src3);
475    const __m128i a3 = _mm_sub_epi32(src0, src2);
476    const __m128i b0 = _mm_srai_epi32(_mm_add_epi32(a0, a1), 1);
477    const __m128i b1 = _mm_srai_epi32(_mm_add_epi32(a3, a2), 1);
478    const __m128i b2 = _mm_srai_epi32(_mm_sub_epi32(a3, a2), 1);
479    const __m128i b3 = _mm_srai_epi32(_mm_sub_epi32(a0, a1), 1);
480    const __m128i out0 = _mm_packs_epi32(b0, b1);
481    const __m128i out1 = _mm_packs_epi32(b2, b3);
482    _mm_storeu_si128((__m128i*)&out[0], out0);
483    _mm_storeu_si128((__m128i*)&out[8], out1);
484  }
485}
486
487//------------------------------------------------------------------------------
488// Metric
489
490static int SSE_Nx4SSE2(const uint8_t* a, const uint8_t* b,
491                       int num_quads, int do_16) {
492  const __m128i zero = _mm_setzero_si128();
493  __m128i sum1 = zero;
494  __m128i sum2 = zero;
495
496  while (num_quads-- > 0) {
497    // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok,
498    // thanks to buffer over-allocation to that effect.
499    const __m128i a0 = _mm_loadu_si128((__m128i*)&a[BPS * 0]);
500    const __m128i a1 = _mm_loadu_si128((__m128i*)&a[BPS * 1]);
501    const __m128i a2 = _mm_loadu_si128((__m128i*)&a[BPS * 2]);
502    const __m128i a3 = _mm_loadu_si128((__m128i*)&a[BPS * 3]);
503    const __m128i b0 = _mm_loadu_si128((__m128i*)&b[BPS * 0]);
504    const __m128i b1 = _mm_loadu_si128((__m128i*)&b[BPS * 1]);
505    const __m128i b2 = _mm_loadu_si128((__m128i*)&b[BPS * 2]);
506    const __m128i b3 = _mm_loadu_si128((__m128i*)&b[BPS * 3]);
507
508    // compute clip0(a-b) and clip0(b-a)
509    const __m128i a0p = _mm_subs_epu8(a0, b0);
510    const __m128i a0m = _mm_subs_epu8(b0, a0);
511    const __m128i a1p = _mm_subs_epu8(a1, b1);
512    const __m128i a1m = _mm_subs_epu8(b1, a1);
513    const __m128i a2p = _mm_subs_epu8(a2, b2);
514    const __m128i a2m = _mm_subs_epu8(b2, a2);
515    const __m128i a3p = _mm_subs_epu8(a3, b3);
516    const __m128i a3m = _mm_subs_epu8(b3, a3);
517
518    // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a)
519    const __m128i diff0 = _mm_or_si128(a0p, a0m);
520    const __m128i diff1 = _mm_or_si128(a1p, a1m);
521    const __m128i diff2 = _mm_or_si128(a2p, a2m);
522    const __m128i diff3 = _mm_or_si128(a3p, a3m);
523
524    // unpack (only four operations, instead of eight)
525    const __m128i low0 = _mm_unpacklo_epi8(diff0, zero);
526    const __m128i low1 = _mm_unpacklo_epi8(diff1, zero);
527    const __m128i low2 = _mm_unpacklo_epi8(diff2, zero);
528    const __m128i low3 = _mm_unpacklo_epi8(diff3, zero);
529
530    // multiply with self
531    const __m128i low_madd0 = _mm_madd_epi16(low0, low0);
532    const __m128i low_madd1 = _mm_madd_epi16(low1, low1);
533    const __m128i low_madd2 = _mm_madd_epi16(low2, low2);
534    const __m128i low_madd3 = _mm_madd_epi16(low3, low3);
535
536    // collect in a cascading way
537    const __m128i low_sum0 = _mm_add_epi32(low_madd0, low_madd1);
538    const __m128i low_sum1 = _mm_add_epi32(low_madd2, low_madd3);
539    sum1 = _mm_add_epi32(sum1, low_sum0);
540    sum2 = _mm_add_epi32(sum2, low_sum1);
541
542    if (do_16) {  // if necessary, process the higher 8 bytes similarly
543      const __m128i hi0 = _mm_unpackhi_epi8(diff0, zero);
544      const __m128i hi1 = _mm_unpackhi_epi8(diff1, zero);
545      const __m128i hi2 = _mm_unpackhi_epi8(diff2, zero);
546      const __m128i hi3 = _mm_unpackhi_epi8(diff3, zero);
547
548      const __m128i hi_madd0 = _mm_madd_epi16(hi0, hi0);
549      const __m128i hi_madd1 = _mm_madd_epi16(hi1, hi1);
550      const __m128i hi_madd2 = _mm_madd_epi16(hi2, hi2);
551      const __m128i hi_madd3 = _mm_madd_epi16(hi3, hi3);
552      const __m128i hi_sum0 = _mm_add_epi32(hi_madd0, hi_madd1);
553      const __m128i hi_sum1 = _mm_add_epi32(hi_madd2, hi_madd3);
554      sum1 = _mm_add_epi32(sum1, hi_sum0);
555      sum2 = _mm_add_epi32(sum2, hi_sum1);
556    }
557    a += 4 * BPS;
558    b += 4 * BPS;
559  }
560  {
561    int32_t tmp[4];
562    const __m128i sum = _mm_add_epi32(sum1, sum2);
563    _mm_storeu_si128((__m128i*)tmp, sum);
564    return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
565  }
566}
567
568static int SSE16x16SSE2(const uint8_t* a, const uint8_t* b) {
569  return SSE_Nx4SSE2(a, b, 4, 1);
570}
571
572static int SSE16x8SSE2(const uint8_t* a, const uint8_t* b) {
573  return SSE_Nx4SSE2(a, b, 2, 1);
574}
575
576static int SSE8x8SSE2(const uint8_t* a, const uint8_t* b) {
577  return SSE_Nx4SSE2(a, b, 2, 0);
578}
579
580static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) {
581  const __m128i zero = _mm_setzero_si128();
582
583  // Load values. Note that we read 8 pixels instead of 4,
584  // but the a/b buffers are over-allocated to that effect.
585  const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
586  const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
587  const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
588  const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
589  const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
590  const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
591  const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
592  const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
593
594  // Combine pair of lines and convert to 16b.
595  const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
596  const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
597  const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
598  const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
599  const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
600  const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
601  const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
602  const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
603
604  // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
605  // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
606  //                  need absolute values, there is no need to do calculation
607  //                  in 8bit as we are already in 16bit, ... Yet this is what
608  //                  benchmarks the fastest!
609  const __m128i d0 = _mm_subs_epu8(a01s, b01s);
610  const __m128i d1 = _mm_subs_epu8(b01s, a01s);
611  const __m128i d2 = _mm_subs_epu8(a23s, b23s);
612  const __m128i d3 = _mm_subs_epu8(b23s, a23s);
613
614  // Square and add them all together.
615  const __m128i madd0 = _mm_madd_epi16(d0, d0);
616  const __m128i madd1 = _mm_madd_epi16(d1, d1);
617  const __m128i madd2 = _mm_madd_epi16(d2, d2);
618  const __m128i madd3 = _mm_madd_epi16(d3, d3);
619  const __m128i sum0 = _mm_add_epi32(madd0, madd1);
620  const __m128i sum1 = _mm_add_epi32(madd2, madd3);
621  const __m128i sum2 = _mm_add_epi32(sum0, sum1);
622
623  int32_t tmp[4];
624  _mm_storeu_si128((__m128i*)tmp, sum2);
625  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
626}
627
628//------------------------------------------------------------------------------
629// Texture distortion
630//
631// We try to match the spectral content (weighted) between source and
632// reconstructed samples.
633
634// Hadamard transform
635// Returns the difference between the weighted sum of the absolute value of
636// transformed coefficients.
637static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB,
638                          const uint16_t* const w) {
639  int32_t sum[4];
640  __m128i tmp_0, tmp_1, tmp_2, tmp_3;
641  const __m128i zero = _mm_setzero_si128();
642
643  // Load, combine and transpose inputs.
644  {
645    const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
646    const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
647    const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
648    const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
649    const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
650    const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
651    const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
652    const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
653
654    // Combine inA and inB (we'll do two transforms in parallel).
655    const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
656    const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
657    const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
658    const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
659    // a00 b00 a01 b01 a02 b03 a03 b03   0 0 0 0 0 0 0 0
660    // a10 b10 a11 b11 a12 b12 a13 b13   0 0 0 0 0 0 0 0
661    // a20 b20 a21 b21 a22 b22 a23 b23   0 0 0 0 0 0 0 0
662    // a30 b30 a31 b31 a32 b32 a33 b33   0 0 0 0 0 0 0 0
663
664    // Transpose the two 4x4, discarding the filling zeroes.
665    const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
666    const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
667    // a00 a20  b00 b20  a01 a21  b01 b21  a02 a22  b02 b22  a03 a23  b03 b23
668    // a10 a30  b10 b30  a11 a31  b11 b31  a12 a32  b12 b32  a13 a33  b13 b33
669    const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
670    const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
671    // a00 a10 a20 a30  b00 b10 b20 b30  a01 a11 a21 a31  b01 b11 b21 b31
672    // a02 a12 a22 a32  b02 b12 b22 b32  a03 a13 a23 a33  b03 b13 b23 b33
673
674    // Convert to 16b.
675    tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
676    tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
677    tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
678    tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
679    // a00 a10 a20 a30   b00 b10 b20 b30
680    // a01 a11 a21 a31   b01 b11 b21 b31
681    // a02 a12 a22 a32   b02 b12 b22 b32
682    // a03 a13 a23 a33   b03 b13 b23 b33
683  }
684
685  // Horizontal pass and subsequent transpose.
686  {
687    // Calculate a and b (two 4x4 at once).
688    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
689    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
690    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
691    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
692    const __m128i b0 = _mm_add_epi16(a0, a1);
693    const __m128i b1 = _mm_add_epi16(a3, a2);
694    const __m128i b2 = _mm_sub_epi16(a3, a2);
695    const __m128i b3 = _mm_sub_epi16(a0, a1);
696    // a00 a01 a02 a03   b00 b01 b02 b03
697    // a10 a11 a12 a13   b10 b11 b12 b13
698    // a20 a21 a22 a23   b20 b21 b22 b23
699    // a30 a31 a32 a33   b30 b31 b32 b33
700
701    // Transpose the two 4x4.
702    const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
703    const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
704    const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
705    const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
706    // a00 a10 a01 a11   a02 a12 a03 a13
707    // a20 a30 a21 a31   a22 a32 a23 a33
708    // b00 b10 b01 b11   b02 b12 b03 b13
709    // b20 b30 b21 b31   b22 b32 b23 b33
710    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
711    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
712    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
713    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
714    // a00 a10 a20 a30 a01 a11 a21 a31
715    // b00 b10 b20 b30 b01 b11 b21 b31
716    // a02 a12 a22 a32 a03 a13 a23 a33
717    // b02 b12 a22 b32 b03 b13 b23 b33
718    tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
719    tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
720    tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
721    tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
722    // a00 a10 a20 a30   b00 b10 b20 b30
723    // a01 a11 a21 a31   b01 b11 b21 b31
724    // a02 a12 a22 a32   b02 b12 b22 b32
725    // a03 a13 a23 a33   b03 b13 b23 b33
726  }
727
728  // Vertical pass and difference of weighted sums.
729  {
730    // Load all inputs.
731    // TODO(cduvivier): Make variable declarations and allocations aligned so
732    //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
733    const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
734    const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
735
736    // Calculate a and b (two 4x4 at once).
737    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
738    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
739    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
740    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
741    const __m128i b0 = _mm_add_epi16(a0, a1);
742    const __m128i b1 = _mm_add_epi16(a3, a2);
743    const __m128i b2 = _mm_sub_epi16(a3, a2);
744    const __m128i b3 = _mm_sub_epi16(a0, a1);
745
746    // Separate the transforms of inA and inB.
747    __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
748    __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
749    __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
750    __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
751
752    {
753      // sign(b) = b >> 15  (0x0000 if positive, 0xffff if negative)
754      const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
755      const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
756      const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
757      const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
758
759      // b = abs(b) = (b ^ sign) - sign
760      A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
761      A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
762      B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
763      B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
764      A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
765      A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
766      B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
767      B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
768    }
769
770    // weighted sums
771    A_b0 = _mm_madd_epi16(A_b0, w_0);
772    A_b2 = _mm_madd_epi16(A_b2, w_8);
773    B_b0 = _mm_madd_epi16(B_b0, w_0);
774    B_b2 = _mm_madd_epi16(B_b2, w_8);
775    A_b0 = _mm_add_epi32(A_b0, A_b2);
776    B_b0 = _mm_add_epi32(B_b0, B_b2);
777
778    // difference of weighted sums
779    A_b0 = _mm_sub_epi32(A_b0, B_b0);
780    _mm_storeu_si128((__m128i*)&sum[0], A_b0);
781  }
782  return sum[0] + sum[1] + sum[2] + sum[3];
783}
784
785static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b,
786                        const uint16_t* const w) {
787  const int diff_sum = TTransformSSE2(a, b, w);
788  return abs(diff_sum) >> 5;
789}
790
791static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b,
792                          const uint16_t* const w) {
793  int D = 0;
794  int x, y;
795  for (y = 0; y < 16 * BPS; y += 4 * BPS) {
796    for (x = 0; x < 16; x += 4) {
797      D += Disto4x4SSE2(a + x + y, b + x + y, w);
798    }
799  }
800  return D;
801}
802
803//------------------------------------------------------------------------------
804// Quantization
805//
806
807// Simple quantization
808static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16],
809                             int n, const VP8Matrix* const mtx) {
810  const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
811  const __m128i zero = _mm_setzero_si128();
812  __m128i coeff0, coeff8;
813  __m128i out0, out8;
814  __m128i packed_out;
815
816  // Load all inputs.
817  // TODO(cduvivier): Make variable declarations and allocations aligned so that
818  //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
819  __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
820  __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
821  const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]);
822  const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]);
823  const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
824  const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
825  const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
826  const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
827  const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
828  const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
829
830  // sign(in) = in >> 15  (0x0000 if positive, 0xffff if negative)
831  const __m128i sign0 = _mm_srai_epi16(in0, 15);
832  const __m128i sign8 = _mm_srai_epi16(in8, 15);
833
834  // coeff = abs(in) = (in ^ sign) - sign
835  coeff0 = _mm_xor_si128(in0, sign0);
836  coeff8 = _mm_xor_si128(in8, sign8);
837  coeff0 = _mm_sub_epi16(coeff0, sign0);
838  coeff8 = _mm_sub_epi16(coeff8, sign8);
839
840  // coeff = abs(in) + sharpen
841  coeff0 = _mm_add_epi16(coeff0, sharpen0);
842  coeff8 = _mm_add_epi16(coeff8, sharpen8);
843
844  // out = (coeff * iQ + B) >> QFIX;
845  {
846    // doing calculations with 32b precision (QFIX=17)
847    // out = (coeff * iQ)
848    __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
849    __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
850    __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
851    __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
852    __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
853    __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
854    __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
855    __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
856    // expand bias from 16b to 32b
857    __m128i bias_00 = _mm_unpacklo_epi16(bias0, zero);
858    __m128i bias_04 = _mm_unpackhi_epi16(bias0, zero);
859    __m128i bias_08 = _mm_unpacklo_epi16(bias8, zero);
860    __m128i bias_12 = _mm_unpackhi_epi16(bias8, zero);
861    // out = (coeff * iQ + B)
862    out_00 = _mm_add_epi32(out_00, bias_00);
863    out_04 = _mm_add_epi32(out_04, bias_04);
864    out_08 = _mm_add_epi32(out_08, bias_08);
865    out_12 = _mm_add_epi32(out_12, bias_12);
866    // out = (coeff * iQ + B) >> QFIX;
867    out_00 = _mm_srai_epi32(out_00, QFIX);
868    out_04 = _mm_srai_epi32(out_04, QFIX);
869    out_08 = _mm_srai_epi32(out_08, QFIX);
870    out_12 = _mm_srai_epi32(out_12, QFIX);
871
872    // pack result as 16b
873    out0 = _mm_packs_epi32(out_00, out_04);
874    out8 = _mm_packs_epi32(out_08, out_12);
875
876    // if (coeff > 2047) coeff = 2047
877    out0 = _mm_min_epi16(out0, max_coeff_2047);
878    out8 = _mm_min_epi16(out8, max_coeff_2047);
879  }
880
881  // get sign back (if (sign[j]) out_n = -out_n)
882  out0 = _mm_xor_si128(out0, sign0);
883  out8 = _mm_xor_si128(out8, sign8);
884  out0 = _mm_sub_epi16(out0, sign0);
885  out8 = _mm_sub_epi16(out8, sign8);
886
887  // in = out * Q
888  in0 = _mm_mullo_epi16(out0, q0);
889  in8 = _mm_mullo_epi16(out8, q8);
890
891  _mm_storeu_si128((__m128i*)&in[0], in0);
892  _mm_storeu_si128((__m128i*)&in[8], in8);
893
894  // zigzag the output before storing it.
895  //
896  // The zigzag pattern can almost be reproduced with a small sequence of
897  // shuffles. After it, we only need to swap the 7th (ending up in third
898  // position instead of twelfth) and 8th values.
899  {
900    __m128i outZ0, outZ8;
901    outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
902    outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
903    outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
904    outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
905    outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
906    outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
907    _mm_storeu_si128((__m128i*)&out[0], outZ0);
908    _mm_storeu_si128((__m128i*)&out[8], outZ8);
909    packed_out = _mm_packs_epi16(outZ0, outZ8);
910  }
911  {
912    const int16_t outZ_12 = out[12];
913    const int16_t outZ_3 = out[3];
914    out[3] = outZ_12;
915    out[12] = outZ_3;
916  }
917
918  // detect if all 'out' values are zeroes or not
919  {
920    int32_t tmp[4];
921    _mm_storeu_si128((__m128i*)tmp, packed_out);
922    if (n) {
923      tmp[0] &= ~0xff;
924    }
925    return (tmp[3] || tmp[2] || tmp[1] || tmp[0]);
926  }
927}
928
929static int QuantizeBlockWHTSSE2(int16_t in[16], int16_t out[16],
930                                const VP8Matrix* const mtx) {
931  return QuantizeBlockSSE2(in, out, 0, mtx);
932}
933
934#endif   // WEBP_USE_SSE2
935
936//------------------------------------------------------------------------------
937// Entry point
938
939extern void VP8EncDspInitSSE2(void);
940
941void VP8EncDspInitSSE2(void) {
942#if defined(WEBP_USE_SSE2)
943  VP8CollectHistogram = CollectHistogramSSE2;
944  VP8EncQuantizeBlock = QuantizeBlockSSE2;
945  VP8EncQuantizeBlockWHT = QuantizeBlockWHTSSE2;
946  VP8ITransform = ITransformSSE2;
947  VP8FTransform = FTransformSSE2;
948  VP8FTransformWHT = FTransformWHTSSE2;
949  VP8SSE16x16 = SSE16x16SSE2;
950  VP8SSE16x8 = SSE16x8SSE2;
951  VP8SSE8x8 = SSE8x8SSE2;
952  VP8SSE4x4 = SSE4x4SSE2;
953  VP8TDisto4x4 = Disto4x4SSE2;
954  VP8TDisto16x16 = Disto16x16SSE2;
955#endif   // WEBP_USE_SSE2
956}
957
958