enc_sse2.c revision b6dbce6bfeaabde2a7b581c4c6888d532d32f3ac
1// Copyright 2011 Google Inc. All Rights Reserved.
2//
3// This code is licensed under the same terms as WebM:
4//  Software License Agreement:  http://www.webmproject.org/license/software/
5//  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
6// -----------------------------------------------------------------------------
7//
8// SSE2 version of speed-critical encoding functions.
9//
10// Author: Christian Duvivier (cduvivier@google.com)
11
12#include "./dsp.h"
13
14#if defined(WEBP_USE_SSE2)
15#include <stdlib.h>  // for abs()
16#include <emmintrin.h>
17
18#include "../enc/vp8enci.h"
19
20#if defined(__cplusplus) || defined(c_plusplus)
21extern "C" {
22#endif
23
24//------------------------------------------------------------------------------
25// Compute susceptibility based on DCT-coeff histograms:
26// the higher, the "easier" the macroblock is to compress.
27
28static int CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
29                                int start_block, int end_block) {
30  int histo[MAX_COEFF_THRESH + 1] = { 0 };
31  int16_t out[16];
32  int j, k;
33  const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
34  for (j = start_block; j < end_block; ++j) {
35    VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
36
37    // Convert coefficients to bin (within out[]).
38    {
39      // Load.
40      const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
41      const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
42      // sign(out) = out >> 15  (0x0000 if positive, 0xffff if negative)
43      const __m128i sign0 = _mm_srai_epi16(out0, 15);
44      const __m128i sign1 = _mm_srai_epi16(out1, 15);
45      // abs(out) = (out ^ sign) - sign
46      const __m128i xor0 = _mm_xor_si128(out0, sign0);
47      const __m128i xor1 = _mm_xor_si128(out1, sign1);
48      const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
49      const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
50      // v = abs(out) >> 2
51      const __m128i v0 = _mm_srai_epi16(abs0, 2);
52      const __m128i v1 = _mm_srai_epi16(abs1, 2);
53      // bin = min(v, MAX_COEFF_THRESH)
54      const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
55      const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
56      // Store.
57      _mm_storeu_si128((__m128i*)&out[0], bin0);
58      _mm_storeu_si128((__m128i*)&out[8], bin1);
59    }
60
61    // Use bin to update histogram.
62    for (k = 0; k < 16; ++k) {
63      histo[out[k]]++;
64    }
65  }
66
67  return VP8GetAlpha(histo);
68}
69
70//------------------------------------------------------------------------------
71// Transforms (Paragraph 14.4)
72
73// Does one or two inverse transforms.
74static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
75                           int do_two) {
76  // This implementation makes use of 16-bit fixed point versions of two
77  // multiply constants:
78  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
79  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
80  //
81  // To be able to use signed 16-bit integers, we use the following trick to
82  // have constants within range:
83  // - Associated constants are obtained by subtracting the 16-bit fixed point
84  //   version of one:
85  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
86  //      K1 = 85267  =>  k1 =  20091
87  //      K2 = 35468  =>  k2 = -30068
88  // - The multiplication of a variable by a constant become the sum of the
89  //   variable and the multiplication of that variable by the associated
90  //   constant:
91  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
92  const __m128i k1 = _mm_set1_epi16(20091);
93  const __m128i k2 = _mm_set1_epi16(-30068);
94  __m128i T0, T1, T2, T3;
95
96  // Load and concatenate the transform coefficients (we'll do two inverse
97  // transforms in parallel). In the case of only one inverse transform, the
98  // second half of the vectors will just contain random value we'll never
99  // use nor store.
100  __m128i in0, in1, in2, in3;
101  {
102    in0 = _mm_loadl_epi64((__m128i*)&in[0]);
103    in1 = _mm_loadl_epi64((__m128i*)&in[4]);
104    in2 = _mm_loadl_epi64((__m128i*)&in[8]);
105    in3 = _mm_loadl_epi64((__m128i*)&in[12]);
106    // a00 a10 a20 a30   x x x x
107    // a01 a11 a21 a31   x x x x
108    // a02 a12 a22 a32   x x x x
109    // a03 a13 a23 a33   x x x x
110    if (do_two) {
111      const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
112      const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
113      const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
114      const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
115      in0 = _mm_unpacklo_epi64(in0, inB0);
116      in1 = _mm_unpacklo_epi64(in1, inB1);
117      in2 = _mm_unpacklo_epi64(in2, inB2);
118      in3 = _mm_unpacklo_epi64(in3, inB3);
119      // a00 a10 a20 a30   b00 b10 b20 b30
120      // a01 a11 a21 a31   b01 b11 b21 b31
121      // a02 a12 a22 a32   b02 b12 b22 b32
122      // a03 a13 a23 a33   b03 b13 b23 b33
123    }
124  }
125
126  // Vertical pass and subsequent transpose.
127  {
128    // First pass, c and d calculations are longer because of the "trick"
129    // multiplications.
130    const __m128i a = _mm_add_epi16(in0, in2);
131    const __m128i b = _mm_sub_epi16(in0, in2);
132    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
133    const __m128i c1 = _mm_mulhi_epi16(in1, k2);
134    const __m128i c2 = _mm_mulhi_epi16(in3, k1);
135    const __m128i c3 = _mm_sub_epi16(in1, in3);
136    const __m128i c4 = _mm_sub_epi16(c1, c2);
137    const __m128i c = _mm_add_epi16(c3, c4);
138    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
139    const __m128i d1 = _mm_mulhi_epi16(in1, k1);
140    const __m128i d2 = _mm_mulhi_epi16(in3, k2);
141    const __m128i d3 = _mm_add_epi16(in1, in3);
142    const __m128i d4 = _mm_add_epi16(d1, d2);
143    const __m128i d = _mm_add_epi16(d3, d4);
144
145    // Second pass.
146    const __m128i tmp0 = _mm_add_epi16(a, d);
147    const __m128i tmp1 = _mm_add_epi16(b, c);
148    const __m128i tmp2 = _mm_sub_epi16(b, c);
149    const __m128i tmp3 = _mm_sub_epi16(a, d);
150
151    // Transpose the two 4x4.
152    // a00 a01 a02 a03   b00 b01 b02 b03
153    // a10 a11 a12 a13   b10 b11 b12 b13
154    // a20 a21 a22 a23   b20 b21 b22 b23
155    // a30 a31 a32 a33   b30 b31 b32 b33
156    const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
157    const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
158    const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
159    const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
160    // a00 a10 a01 a11   a02 a12 a03 a13
161    // a20 a30 a21 a31   a22 a32 a23 a33
162    // b00 b10 b01 b11   b02 b12 b03 b13
163    // b20 b30 b21 b31   b22 b32 b23 b33
164    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
165    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
166    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
167    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
168    // a00 a10 a20 a30 a01 a11 a21 a31
169    // b00 b10 b20 b30 b01 b11 b21 b31
170    // a02 a12 a22 a32 a03 a13 a23 a33
171    // b02 b12 a22 b32 b03 b13 b23 b33
172    T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
173    T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
174    T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
175    T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
176    // a00 a10 a20 a30   b00 b10 b20 b30
177    // a01 a11 a21 a31   b01 b11 b21 b31
178    // a02 a12 a22 a32   b02 b12 b22 b32
179    // a03 a13 a23 a33   b03 b13 b23 b33
180  }
181
182  // Horizontal pass and subsequent transpose.
183  {
184    // First pass, c and d calculations are longer because of the "trick"
185    // multiplications.
186    const __m128i four = _mm_set1_epi16(4);
187    const __m128i dc = _mm_add_epi16(T0, four);
188    const __m128i a =  _mm_add_epi16(dc, T2);
189    const __m128i b =  _mm_sub_epi16(dc, T2);
190    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
191    const __m128i c1 = _mm_mulhi_epi16(T1, k2);
192    const __m128i c2 = _mm_mulhi_epi16(T3, k1);
193    const __m128i c3 = _mm_sub_epi16(T1, T3);
194    const __m128i c4 = _mm_sub_epi16(c1, c2);
195    const __m128i c = _mm_add_epi16(c3, c4);
196    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
197    const __m128i d1 = _mm_mulhi_epi16(T1, k1);
198    const __m128i d2 = _mm_mulhi_epi16(T3, k2);
199    const __m128i d3 = _mm_add_epi16(T1, T3);
200    const __m128i d4 = _mm_add_epi16(d1, d2);
201    const __m128i d = _mm_add_epi16(d3, d4);
202
203    // Second pass.
204    const __m128i tmp0 = _mm_add_epi16(a, d);
205    const __m128i tmp1 = _mm_add_epi16(b, c);
206    const __m128i tmp2 = _mm_sub_epi16(b, c);
207    const __m128i tmp3 = _mm_sub_epi16(a, d);
208    const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
209    const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
210    const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
211    const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
212
213    // Transpose the two 4x4.
214    // a00 a01 a02 a03   b00 b01 b02 b03
215    // a10 a11 a12 a13   b10 b11 b12 b13
216    // a20 a21 a22 a23   b20 b21 b22 b23
217    // a30 a31 a32 a33   b30 b31 b32 b33
218    const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
219    const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
220    const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
221    const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
222    // a00 a10 a01 a11   a02 a12 a03 a13
223    // a20 a30 a21 a31   a22 a32 a23 a33
224    // b00 b10 b01 b11   b02 b12 b03 b13
225    // b20 b30 b21 b31   b22 b32 b23 b33
226    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
227    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
228    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
229    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
230    // a00 a10 a20 a30 a01 a11 a21 a31
231    // b00 b10 b20 b30 b01 b11 b21 b31
232    // a02 a12 a22 a32 a03 a13 a23 a33
233    // b02 b12 a22 b32 b03 b13 b23 b33
234    T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
235    T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
236    T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
237    T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
238    // a00 a10 a20 a30   b00 b10 b20 b30
239    // a01 a11 a21 a31   b01 b11 b21 b31
240    // a02 a12 a22 a32   b02 b12 b22 b32
241    // a03 a13 a23 a33   b03 b13 b23 b33
242  }
243
244  // Add inverse transform to 'ref' and store.
245  {
246    const __m128i zero = _mm_set1_epi16(0);
247    // Load the reference(s).
248    __m128i ref0, ref1, ref2, ref3;
249    if (do_two) {
250      // Load eight bytes/pixels per line.
251      ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
252      ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
253      ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
254      ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
255    } else {
256      // Load four bytes/pixels per line.
257      ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
258      ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
259      ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
260      ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
261    }
262    // Convert to 16b.
263    ref0 = _mm_unpacklo_epi8(ref0, zero);
264    ref1 = _mm_unpacklo_epi8(ref1, zero);
265    ref2 = _mm_unpacklo_epi8(ref2, zero);
266    ref3 = _mm_unpacklo_epi8(ref3, zero);
267    // Add the inverse transform(s).
268    ref0 = _mm_add_epi16(ref0, T0);
269    ref1 = _mm_add_epi16(ref1, T1);
270    ref2 = _mm_add_epi16(ref2, T2);
271    ref3 = _mm_add_epi16(ref3, T3);
272    // Unsigned saturate to 8b.
273    ref0 = _mm_packus_epi16(ref0, ref0);
274    ref1 = _mm_packus_epi16(ref1, ref1);
275    ref2 = _mm_packus_epi16(ref2, ref2);
276    ref3 = _mm_packus_epi16(ref3, ref3);
277    // Store the results.
278    if (do_two) {
279      // Store eight bytes/pixels per line.
280      _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
281      _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
282      _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
283      _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
284    } else {
285      // Store four bytes/pixels per line.
286      *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
287      *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
288      *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
289      *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
290    }
291  }
292}
293
294static void FTransformSSE2(const uint8_t* src, const uint8_t* ref,
295                           int16_t* out) {
296  const __m128i zero = _mm_setzero_si128();
297  const __m128i seven = _mm_set1_epi16(7);
298  const __m128i k7500 = _mm_set1_epi32(7500);
299  const __m128i k14500 = _mm_set1_epi32(14500);
300  const __m128i k51000 = _mm_set1_epi32(51000);
301  const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
302  const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
303                                           5352,  2217, 5352,  2217);
304  const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
305                                           2217, -5352, 2217, -5352);
306
307  __m128i v01, v32;
308
309  // Difference between src and ref and initial transpose.
310  {
311    // Load src and convert to 16b.
312    const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
313    const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
314    const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
315    const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
316    const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
317    const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
318    const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
319    const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
320    // Load ref and convert to 16b.
321    const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
322    const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
323    const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
324    const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
325    const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
326    const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
327    const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
328    const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
329    // Compute difference.
330    const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
331    const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
332    const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
333    const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
334
335    // Transpose.
336    // 00 01 02 03   0 0 0 0
337    // 10 11 12 13   0 0 0 0
338    // 20 21 22 23   0 0 0 0
339    // 30 31 32 33   0 0 0 0
340    const __m128i transpose0_0 = _mm_unpacklo_epi16(diff0, diff1);
341    const __m128i transpose0_1 = _mm_unpacklo_epi16(diff2, diff3);
342    // 00 10 01 11   02 12 03 13
343    // 20 30 21 31   22 32 23 33
344    const __m128i v23 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
345    v01 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
346    v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));
347    // a02 a12 a22 a32   a03 a13 a23 a33
348    // a00 a10 a20 a30   a01 a11 a21 a31
349    // a03 a13 a23 a33   a02 a12 a22 a32
350  }
351
352  // First pass and subsequent transpose.
353  {
354    // Same operations are done on the (0,3) and (1,2) pairs.
355    // b0 = (a0 + a3) << 3
356    // b1 = (a1 + a2) << 3
357    // b3 = (a0 - a3) << 3
358    // b2 = (a1 - a2) << 3
359    const __m128i a01 = _mm_add_epi16(v01, v32);
360    const __m128i a32 = _mm_sub_epi16(v01, v32);
361    const __m128i b01 = _mm_slli_epi16(a01, 3);
362    const __m128i b32 = _mm_slli_epi16(a32, 3);
363    const __m128i b11 = _mm_unpackhi_epi64(b01, b01);
364    const __m128i b22 = _mm_unpackhi_epi64(b32, b32);
365
366    // e0 = b0 + b1
367    // e2 = b0 - b1
368    const __m128i e0 = _mm_add_epi16(b01, b11);
369    const __m128i e2 = _mm_sub_epi16(b01, b11);
370    const __m128i e02 = _mm_unpacklo_epi64(e0, e2);
371
372    // e1 = (b3 * 5352 + b2 * 2217 + 14500) >> 12
373    // e3 = (b3 * 2217 - b2 * 5352 +  7500) >> 12
374    const __m128i b23 = _mm_unpacklo_epi16(b22, b32);
375    const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
376    const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
377    const __m128i d1 = _mm_add_epi32(c1, k14500);
378    const __m128i d3 = _mm_add_epi32(c3, k7500);
379    const __m128i e1 = _mm_srai_epi32(d1, 12);
380    const __m128i e3 = _mm_srai_epi32(d3, 12);
381    const __m128i e13 = _mm_packs_epi32(e1, e3);
382
383    // Transpose.
384    // 00 01 02 03  20 21 22 23
385    // 10 11 12 13  30 31 32 33
386    const __m128i transpose0_0 = _mm_unpacklo_epi16(e02, e13);
387    const __m128i transpose0_1 = _mm_unpackhi_epi16(e02, e13);
388    // 00 10 01 11   02 12 03 13
389    // 20 30 21 31   22 32 23 33
390    const __m128i v23 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
391    v01 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
392    v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));
393    // 02 12 22 32   03 13 23 33
394    // 00 10 20 30   01 11 21 31
395    // 03 13 23 33   02 12 22 32
396  }
397
398  // Second pass
399  {
400    // Same operations are done on the (0,3) and (1,2) pairs.
401    // a0 = v0 + v3
402    // a1 = v1 + v2
403    // a3 = v0 - v3
404    // a2 = v1 - v2
405    const __m128i a01 = _mm_add_epi16(v01, v32);
406    const __m128i a32 = _mm_sub_epi16(v01, v32);
407    const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
408    const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
409
410    // d0 = (a0 + a1 + 7) >> 4;
411    // d2 = (a0 - a1 + 7) >> 4;
412    const __m128i b0 = _mm_add_epi16(a01, a11);
413    const __m128i b2 = _mm_sub_epi16(a01, a11);
414    const __m128i c0 = _mm_add_epi16(b0, seven);
415    const __m128i c2 = _mm_add_epi16(b2, seven);
416    const __m128i d0 = _mm_srai_epi16(c0, 4);
417    const __m128i d2 = _mm_srai_epi16(c2, 4);
418
419    // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
420    // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
421    const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
422    const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
423    const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
424    const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
425    const __m128i d3 = _mm_add_epi32(c3, k51000);
426    const __m128i e1 = _mm_srai_epi32(d1, 16);
427    const __m128i e3 = _mm_srai_epi32(d3, 16);
428    const __m128i f1 = _mm_packs_epi32(e1, e1);
429    const __m128i f3 = _mm_packs_epi32(e3, e3);
430    // f1 = f1 + (a3 != 0);
431    // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
432    // desired (0, 1), we add one earlier through k12000_plus_one.
433    const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
434
435    _mm_storel_epi64((__m128i*)&out[ 0], d0);
436    _mm_storel_epi64((__m128i*)&out[ 4], g1);
437    _mm_storel_epi64((__m128i*)&out[ 8], d2);
438    _mm_storel_epi64((__m128i*)&out[12], f3);
439  }
440}
441
442//------------------------------------------------------------------------------
443// Metric
444
445static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) {
446  const __m128i zero = _mm_set1_epi16(0);
447
448  // Load values.
449  const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
450  const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
451  const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
452  const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
453  const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
454  const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
455  const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
456  const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
457
458  // Combine pair of lines and convert to 16b.
459  const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
460  const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
461  const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
462  const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
463  const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
464  const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
465  const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
466  const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
467
468  // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
469  // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
470  //                  need absolute values, there is no need to do calculation
471  //                  in 8bit as we are already in 16bit, ... Yet this is what
472  //                  benchmarks the fastest!
473  const __m128i d0 = _mm_subs_epu8(a01s, b01s);
474  const __m128i d1 = _mm_subs_epu8(b01s, a01s);
475  const __m128i d2 = _mm_subs_epu8(a23s, b23s);
476  const __m128i d3 = _mm_subs_epu8(b23s, a23s);
477
478  // Square and add them all together.
479  const __m128i madd0 = _mm_madd_epi16(d0, d0);
480  const __m128i madd1 = _mm_madd_epi16(d1, d1);
481  const __m128i madd2 = _mm_madd_epi16(d2, d2);
482  const __m128i madd3 = _mm_madd_epi16(d3, d3);
483  const __m128i sum0 = _mm_add_epi32(madd0, madd1);
484  const __m128i sum1 = _mm_add_epi32(madd2, madd3);
485  const __m128i sum2 = _mm_add_epi32(sum0, sum1);
486  int32_t tmp[4];
487  _mm_storeu_si128((__m128i*)tmp, sum2);
488  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
489}
490
491//------------------------------------------------------------------------------
492// Texture distortion
493//
494// We try to match the spectral content (weighted) between source and
495// reconstructed samples.
496
497// Hadamard transform
498// Returns the difference between the weighted sum of the absolute value of
499// transformed coefficients.
500static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB,
501                          const uint16_t* const w) {
502  int32_t sum[4];
503  __m128i tmp_0, tmp_1, tmp_2, tmp_3;
504  const __m128i zero = _mm_setzero_si128();
505  const __m128i one = _mm_set1_epi16(1);
506  const __m128i three = _mm_set1_epi16(3);
507
508  // Load, combine and tranpose inputs.
509  {
510    const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
511    const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
512    const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
513    const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
514    const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
515    const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
516    const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
517    const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
518
519    // Combine inA and inB (we'll do two transforms in parallel).
520    const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
521    const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
522    const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
523    const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
524    // a00 b00 a01 b01 a02 b03 a03 b03   0 0 0 0 0 0 0 0
525    // a10 b10 a11 b11 a12 b12 a13 b13   0 0 0 0 0 0 0 0
526    // a20 b20 a21 b21 a22 b22 a23 b23   0 0 0 0 0 0 0 0
527    // a30 b30 a31 b31 a32 b32 a33 b33   0 0 0 0 0 0 0 0
528
529    // Transpose the two 4x4, discarding the filling zeroes.
530    const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
531    const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
532    // a00 a20  b00 b20  a01 a21  b01 b21  a02 a22  b02 b22  a03 a23  b03 b23
533    // a10 a30  b10 b30  a11 a31  b11 b31  a12 a32  b12 b32  a13 a33  b13 b33
534    const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
535    const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
536    // a00 a10 a20 a30  b00 b10 b20 b30  a01 a11 a21 a31  b01 b11 b21 b31
537    // a02 a12 a22 a32  b02 b12 b22 b32  a03 a13 a23 a33  b03 b13 b23 b33
538
539    // Convert to 16b.
540    tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
541    tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
542    tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
543    tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
544    // a00 a10 a20 a30   b00 b10 b20 b30
545    // a01 a11 a21 a31   b01 b11 b21 b31
546    // a02 a12 a22 a32   b02 b12 b22 b32
547    // a03 a13 a23 a33   b03 b13 b23 b33
548  }
549
550  // Horizontal pass and subsequent transpose.
551  {
552    // Calculate a and b (two 4x4 at once).
553    const __m128i a0 = _mm_slli_epi16(_mm_add_epi16(tmp_0, tmp_2), 2);
554    const __m128i a1 = _mm_slli_epi16(_mm_add_epi16(tmp_1, tmp_3), 2);
555    const __m128i a2 = _mm_slli_epi16(_mm_sub_epi16(tmp_1, tmp_3), 2);
556    const __m128i a3 = _mm_slli_epi16(_mm_sub_epi16(tmp_0, tmp_2), 2);
557    // b0_extra = (a0 != 0);
558    const __m128i b0_extra = _mm_andnot_si128(_mm_cmpeq_epi16 (a0, zero), one);
559    const __m128i b0_base = _mm_add_epi16(a0, a1);
560    const __m128i b1 = _mm_add_epi16(a3, a2);
561    const __m128i b2 = _mm_sub_epi16(a3, a2);
562    const __m128i b3 = _mm_sub_epi16(a0, a1);
563    const __m128i b0 = _mm_add_epi16(b0_base, b0_extra);
564    // a00 a01 a02 a03   b00 b01 b02 b03
565    // a10 a11 a12 a13   b10 b11 b12 b13
566    // a20 a21 a22 a23   b20 b21 b22 b23
567    // a30 a31 a32 a33   b30 b31 b32 b33
568
569    // Transpose the two 4x4.
570    const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
571    const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
572    const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
573    const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
574    // a00 a10 a01 a11   a02 a12 a03 a13
575    // a20 a30 a21 a31   a22 a32 a23 a33
576    // b00 b10 b01 b11   b02 b12 b03 b13
577    // b20 b30 b21 b31   b22 b32 b23 b33
578    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
579    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
580    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
581    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
582    // a00 a10 a20 a30 a01 a11 a21 a31
583    // b00 b10 b20 b30 b01 b11 b21 b31
584    // a02 a12 a22 a32 a03 a13 a23 a33
585    // b02 b12 a22 b32 b03 b13 b23 b33
586    tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
587    tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
588    tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
589    tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
590    // a00 a10 a20 a30   b00 b10 b20 b30
591    // a01 a11 a21 a31   b01 b11 b21 b31
592    // a02 a12 a22 a32   b02 b12 b22 b32
593    // a03 a13 a23 a33   b03 b13 b23 b33
594  }
595
596  // Vertical pass and difference of weighted sums.
597  {
598    // Load all inputs.
599    // TODO(cduvivier): Make variable declarations and allocations aligned so
600    //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
601    const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
602    const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
603
604    // Calculate a and b (two 4x4 at once).
605    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
606    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
607    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
608    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
609    const __m128i b0 = _mm_add_epi16(a0, a1);
610    const __m128i b1 = _mm_add_epi16(a3, a2);
611    const __m128i b2 = _mm_sub_epi16(a3, a2);
612    const __m128i b3 = _mm_sub_epi16(a0, a1);
613
614    // Separate the transforms of inA and inB.
615    __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
616    __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
617    __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
618    __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
619
620    {
621      // sign(b) = b >> 15  (0x0000 if positive, 0xffff if negative)
622      const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
623      const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
624      const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
625      const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
626
627      // b = abs(b) = (b ^ sign) - sign
628      A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
629      A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
630      B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
631      B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
632      A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
633      A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
634      B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
635      B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
636    }
637
638    // b = abs(b) + 3
639    A_b0 = _mm_add_epi16(A_b0, three);
640    A_b2 = _mm_add_epi16(A_b2, three);
641    B_b0 = _mm_add_epi16(B_b0, three);
642    B_b2 = _mm_add_epi16(B_b2, three);
643
644    // abs((b + (b<0) + 3) >> 3) = (abs(b) + 3) >> 3
645    // b = (abs(b) + 3) >> 3
646    A_b0 = _mm_srai_epi16(A_b0, 3);
647    A_b2 = _mm_srai_epi16(A_b2, 3);
648    B_b0 = _mm_srai_epi16(B_b0, 3);
649    B_b2 = _mm_srai_epi16(B_b2, 3);
650
651    // weighted sums
652    A_b0 = _mm_madd_epi16(A_b0, w_0);
653    A_b2 = _mm_madd_epi16(A_b2, w_8);
654    B_b0 = _mm_madd_epi16(B_b0, w_0);
655    B_b2 = _mm_madd_epi16(B_b2, w_8);
656    A_b0 = _mm_add_epi32(A_b0, A_b2);
657    B_b0 = _mm_add_epi32(B_b0, B_b2);
658
659    // difference of weighted sums
660    A_b0 = _mm_sub_epi32(A_b0, B_b0);
661    _mm_storeu_si128((__m128i*)&sum[0], A_b0);
662  }
663  return sum[0] + sum[1] + sum[2] + sum[3];
664}
665
666static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b,
667                        const uint16_t* const w) {
668  const int diff_sum = TTransformSSE2(a, b, w);
669  return (abs(diff_sum) + 8) >> 4;
670}
671
672static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b,
673                          const uint16_t* const w) {
674  int D = 0;
675  int x, y;
676  for (y = 0; y < 16 * BPS; y += 4 * BPS) {
677    for (x = 0; x < 16; x += 4) {
678      D += Disto4x4SSE2(a + x + y, b + x + y, w);
679    }
680  }
681  return D;
682}
683
684
685//------------------------------------------------------------------------------
686// Quantization
687//
688
689// Simple quantization
690static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16],
691                             int n, const VP8Matrix* const mtx) {
692  const __m128i max_coeff_2047 = _mm_set1_epi16(2047);
693  const __m128i zero = _mm_set1_epi16(0);
694  __m128i sign0, sign8;
695  __m128i coeff0, coeff8;
696  __m128i out0, out8;
697  __m128i packed_out;
698
699  // Load all inputs.
700  // TODO(cduvivier): Make variable declarations and allocations aligned so that
701  //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
702  __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
703  __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
704  const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]);
705  const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]);
706  const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
707  const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
708  const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
709  const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
710  const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
711  const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
712  const __m128i zthresh0 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[0]);
713  const __m128i zthresh8 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[8]);
714
715  // sign(in) = in >> 15  (0x0000 if positive, 0xffff if negative)
716  sign0 = _mm_srai_epi16(in0, 15);
717  sign8 = _mm_srai_epi16(in8, 15);
718
719  // coeff = abs(in) = (in ^ sign) - sign
720  coeff0 = _mm_xor_si128(in0, sign0);
721  coeff8 = _mm_xor_si128(in8, sign8);
722  coeff0 = _mm_sub_epi16(coeff0, sign0);
723  coeff8 = _mm_sub_epi16(coeff8, sign8);
724
725  // coeff = abs(in) + sharpen
726  coeff0 = _mm_add_epi16(coeff0, sharpen0);
727  coeff8 = _mm_add_epi16(coeff8, sharpen8);
728
729  // if (coeff > 2047) coeff = 2047
730  coeff0 = _mm_min_epi16(coeff0, max_coeff_2047);
731  coeff8 = _mm_min_epi16(coeff8, max_coeff_2047);
732
733  // out = (coeff * iQ + B) >> QFIX;
734  {
735    // doing calculations with 32b precision (QFIX=17)
736    // out = (coeff * iQ)
737    __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
738    __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
739    __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
740    __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
741    __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
742    __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
743    __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
744    __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
745    // expand bias from 16b to 32b
746    __m128i bias_00 = _mm_unpacklo_epi16(bias0, zero);
747    __m128i bias_04 = _mm_unpackhi_epi16(bias0, zero);
748    __m128i bias_08 = _mm_unpacklo_epi16(bias8, zero);
749    __m128i bias_12 = _mm_unpackhi_epi16(bias8, zero);
750    // out = (coeff * iQ + B)
751    out_00 = _mm_add_epi32(out_00, bias_00);
752    out_04 = _mm_add_epi32(out_04, bias_04);
753    out_08 = _mm_add_epi32(out_08, bias_08);
754    out_12 = _mm_add_epi32(out_12, bias_12);
755    // out = (coeff * iQ + B) >> QFIX;
756    out_00 = _mm_srai_epi32(out_00, QFIX);
757    out_04 = _mm_srai_epi32(out_04, QFIX);
758    out_08 = _mm_srai_epi32(out_08, QFIX);
759    out_12 = _mm_srai_epi32(out_12, QFIX);
760    // pack result as 16b
761    out0 = _mm_packs_epi32(out_00, out_04);
762    out8 = _mm_packs_epi32(out_08, out_12);
763  }
764
765  // get sign back (if (sign[j]) out_n = -out_n)
766  out0 = _mm_xor_si128(out0, sign0);
767  out8 = _mm_xor_si128(out8, sign8);
768  out0 = _mm_sub_epi16(out0, sign0);
769  out8 = _mm_sub_epi16(out8, sign8);
770
771  // in = out * Q
772  in0 = _mm_mullo_epi16(out0, q0);
773  in8 = _mm_mullo_epi16(out8, q8);
774
775  // if (coeff <= mtx->zthresh_) {in=0; out=0;}
776  {
777    __m128i cmp0 = _mm_cmpgt_epi16(coeff0, zthresh0);
778    __m128i cmp8 = _mm_cmpgt_epi16(coeff8, zthresh8);
779    in0 = _mm_and_si128(in0, cmp0);
780    in8 = _mm_and_si128(in8, cmp8);
781    _mm_storeu_si128((__m128i*)&in[0], in0);
782    _mm_storeu_si128((__m128i*)&in[8], in8);
783    out0 = _mm_and_si128(out0, cmp0);
784    out8 = _mm_and_si128(out8, cmp8);
785  }
786
787  // zigzag the output before storing it.
788  //
789  // The zigzag pattern can almost be reproduced with a small sequence of
790  // shuffles. After it, we only need to swap the 7th (ending up in third
791  // position instead of twelfth) and 8th values.
792  {
793    __m128i outZ0, outZ8;
794    outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
795    outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
796    outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
797    outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
798    outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
799    outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
800    _mm_storeu_si128((__m128i*)&out[0], outZ0);
801    _mm_storeu_si128((__m128i*)&out[8], outZ8);
802    packed_out = _mm_packs_epi16(outZ0, outZ8);
803  }
804  {
805    const int16_t outZ_12 = out[12];
806    const int16_t outZ_3 = out[3];
807    out[3] = outZ_12;
808    out[12] = outZ_3;
809  }
810
811  // detect if all 'out' values are zeroes or not
812  {
813    int32_t tmp[4];
814    _mm_storeu_si128((__m128i*)tmp, packed_out);
815    if (n) {
816      tmp[0] &= ~0xff;
817    }
818    return (tmp[3] || tmp[2] || tmp[1] || tmp[0]);
819  }
820}
821
822extern void VP8EncDspInitSSE2(void);
823void VP8EncDspInitSSE2(void) {
824  VP8CollectHistogram = CollectHistogramSSE2;
825  VP8EncQuantizeBlock = QuantizeBlockSSE2;
826  VP8ITransform = ITransformSSE2;
827  VP8FTransform = FTransformSSE2;
828  VP8SSE4x4 = SSE4x4SSE2;
829  VP8TDisto4x4 = Disto4x4SSE2;
830  VP8TDisto16x16 = Disto16x16SSE2;
831}
832
833#if defined(__cplusplus) || defined(c_plusplus)
834}    // extern "C"
835#endif
836
837#endif   // WEBP_USE_SSE2
838