yuv.h revision 8b720228d581a84fd173b6dcb2fa295b59db489a
13a5b11b140639d21e62f011da8ec6a15c125062cSebastian Redl// Copyright 2010 Google Inc. All Rights Reserved.
23a5b11b140639d21e62f011da8ec6a15c125062cSebastian Redl//
33a5b11b140639d21e62f011da8ec6a15c125062cSebastian Redl// Use of this source code is governed by a BSD-style license
43a5b11b140639d21e62f011da8ec6a15c125062cSebastian Redl// that can be found in the COPYING file in the root of the source
53a5b11b140639d21e62f011da8ec6a15c125062cSebastian Redl// tree. An additional intellectual property rights grant can be found
63a5b11b140639d21e62f011da8ec6a15c125062cSebastian Redl// in the file PATENTS. All contributing project authors may
73a5b11b140639d21e62f011da8ec6a15c125062cSebastian Redl// be found in the AUTHORS file in the root of the source tree.
83a5b11b140639d21e62f011da8ec6a15c125062cSebastian Redl// -----------------------------------------------------------------------------
93a5b11b140639d21e62f011da8ec6a15c125062cSebastian Redl//
103a5b11b140639d21e62f011da8ec6a15c125062cSebastian Redl// inline YUV<->RGB conversion function
113a5b11b140639d21e62f011da8ec6a15c125062cSebastian Redl//
12// The exact naming is Y'CbCr, following the ITU-R BT.601 standard.
13// More information at: http://en.wikipedia.org/wiki/YCbCr
14// Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
15// U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
16// V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
17// We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX).
18//
19// For the Y'CbCr to RGB conversion, the BT.601 specification reads:
20//   R = 1.164 * (Y-16) + 1.596 * (V-128)
21//   G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128)
22//   B = 1.164 * (Y-16)                   + 2.018 * (U-128)
23// where Y is in the [16,235] range, and U/V in the [16,240] range.
24// In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor
25// "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table.
26// So in this case the formulae should read:
27//   R = 1.164 * [Y + 1.371 * (V-128)                  ] - 18.624
28//   G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624
29//   B = 1.164 * [Y                   + 1.733 * (U-128)] - 18.624
30// once factorized.
31// For YUV->RGB conversion, only 14bit fixed precision is used (YUV_FIX2).
32// That's the maximum possible for a convenient ARM implementation.
33//
34// Author: Skal (pascal.massimino@gmail.com)
35
36#ifndef WEBP_DSP_YUV_H_
37#define WEBP_DSP_YUV_H_
38
39#include "./dsp.h"
40#include "../dec/decode_vp8.h"
41
42// Define the following to use the LUT-based code:
43// #define WEBP_YUV_USE_TABLE
44
45#if defined(WEBP_EXPERIMENTAL_FEATURES)
46// Do NOT activate this feature for real compression. This is only experimental!
47// This flag is for comparison purpose against JPEG's "YUVj" natural colorspace.
48// This colorspace is close to Rec.601's Y'CbCr model with the notable
49// difference of allowing larger range for luma/chroma.
50// See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its
51// difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion
52// #define USE_YUVj
53#endif
54
55//------------------------------------------------------------------------------
56// YUV -> RGB conversion
57
58#ifdef __cplusplus
59extern "C" {
60#endif
61
62enum {
63  YUV_FIX = 16,                    // fixed-point precision for RGB->YUV
64  YUV_HALF = 1 << (YUV_FIX - 1),
65  YUV_MASK = (256 << YUV_FIX) - 1,
66  YUV_RANGE_MIN = -227,            // min value of r/g/b output
67  YUV_RANGE_MAX = 256 + 226,       // max value of r/g/b output
68
69  YUV_FIX2 = 14,                   // fixed-point precision for YUV->RGB
70  YUV_HALF2 = 1 << (YUV_FIX2 - 1),
71  YUV_MASK2 = (256 << YUV_FIX2) - 1
72};
73
74// These constants are 14b fixed-point version of ITU-R BT.601 constants.
75#define kYScale 19077    // 1.164 = 255 / 219
76#define kVToR   26149    // 1.596 = 255 / 112 * 0.701
77#define kUToG   6419     // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587
78#define kVToG   13320    // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587
79#define kUToB   33050    // 2.018 = 255 / 112 * 0.886
80#define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF2)
81#define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF2)
82#define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF2)
83
84//------------------------------------------------------------------------------
85
86#if !defined(WEBP_YUV_USE_TABLE)
87
88// slower on x86 by ~7-8%, but bit-exact with the SSE2 version
89
90static WEBP_INLINE int VP8Clip8(int v) {
91  return ((v & ~YUV_MASK2) == 0) ? (v >> YUV_FIX2) : (v < 0) ? 0 : 255;
92}
93
94static WEBP_INLINE int VP8YUVToR(int y, int v) {
95  return VP8Clip8(kYScale * y + kVToR * v + kRCst);
96}
97
98static WEBP_INLINE int VP8YUVToG(int y, int u, int v) {
99  return VP8Clip8(kYScale * y - kUToG * u - kVToG * v + kGCst);
100}
101
102static WEBP_INLINE int VP8YUVToB(int y, int u) {
103  return VP8Clip8(kYScale * y + kUToB * u + kBCst);
104}
105
106static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v,
107                                    uint8_t* const rgb) {
108  rgb[0] = VP8YUVToR(y, v);
109  rgb[1] = VP8YUVToG(y, u, v);
110  rgb[2] = VP8YUVToB(y, u);
111}
112
113static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v,
114                                    uint8_t* const bgr) {
115  bgr[0] = VP8YUVToB(y, u);
116  bgr[1] = VP8YUVToG(y, u, v);
117  bgr[2] = VP8YUVToR(y, v);
118}
119
120static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v,
121                                       uint8_t* const rgb) {
122  const int r = VP8YUVToR(y, v);      // 5 usable bits
123  const int g = VP8YUVToG(y, u, v);   // 6 usable bits
124  const int b = VP8YUVToB(y, u);      // 5 usable bits
125  const int rg = (r & 0xf8) | (g >> 5);
126  const int gb = ((g << 3) & 0xe0) | (b >> 3);
127#ifdef WEBP_SWAP_16BIT_CSP
128  rgb[0] = gb;
129  rgb[1] = rg;
130#else
131  rgb[0] = rg;
132  rgb[1] = gb;
133#endif
134}
135
136static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v,
137                                         uint8_t* const argb) {
138  const int r = VP8YUVToR(y, v);        // 4 usable bits
139  const int g = VP8YUVToG(y, u, v);     // 4 usable bits
140  const int b = VP8YUVToB(y, u);        // 4 usable bits
141  const int rg = (r & 0xf0) | (g >> 4);
142  const int ba = (b & 0xf0) | 0x0f;     // overwrite the lower 4 bits
143#ifdef WEBP_SWAP_16BIT_CSP
144  argb[0] = ba;
145  argb[1] = rg;
146#else
147  argb[0] = rg;
148  argb[1] = ba;
149#endif
150}
151
152#else
153
154// Table-based version, not totally equivalent to the SSE2 version.
155// Rounding diff is only +/-1 though.
156
157extern int16_t VP8kVToR[256], VP8kUToB[256];
158extern int32_t VP8kVToG[256], VP8kUToG[256];
159extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
160extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];
161
162static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v,
163                                    uint8_t* const rgb) {
164  const int r_off = VP8kVToR[v];
165  const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
166  const int b_off = VP8kUToB[u];
167  rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN];
168  rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
169  rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN];
170}
171
172static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v,
173                                    uint8_t* const bgr) {
174  const int r_off = VP8kVToR[v];
175  const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
176  const int b_off = VP8kUToB[u];
177  bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN];
178  bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
179  bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN];
180}
181
182static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v,
183                                       uint8_t* const rgb) {
184  const int r_off = VP8kVToR[v];
185  const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
186  const int b_off = VP8kUToB[u];
187  const int rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) |
188                  (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5));
189  const int gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) |
190                   (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3));
191#ifdef WEBP_SWAP_16BIT_CSP
192  rgb[0] = gb;
193  rgb[1] = rg;
194#else
195  rgb[0] = rg;
196  rgb[1] = gb;
197#endif
198}
199
200static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v,
201                                         uint8_t* const argb) {
202  const int r_off = VP8kVToR[v];
203  const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
204  const int b_off = VP8kUToB[u];
205  const int rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) |
206                   VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]);
207  const int ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f;
208#ifdef WEBP_SWAP_16BIT_CSP
209  argb[0] = ba;
210  argb[1] = rg;
211#else
212  argb[0] = rg;
213  argb[1] = ba;
214#endif
215}
216
217#endif  // WEBP_YUV_USE_TABLE
218
219//-----------------------------------------------------------------------------
220// Alpha handling variants
221
222static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v,
223                                     uint8_t* const argb) {
224  argb[0] = 0xff;
225  VP8YuvToRgb(y, u, v, argb + 1);
226}
227
228static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v,
229                                     uint8_t* const bgra) {
230  VP8YuvToBgr(y, u, v, bgra);
231  bgra[3] = 0xff;
232}
233
234static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
235                                     uint8_t* const rgba) {
236  VP8YuvToRgb(y, u, v, rgba);
237  rgba[3] = 0xff;
238}
239
240// Must be called before everything, to initialize the tables.
241void VP8YUVInit(void);
242
243//-----------------------------------------------------------------------------
244// SSE2 extra functions (mostly for upsampling_sse2.c)
245
246#if defined(WEBP_USE_SSE2)
247
248#if defined(FANCY_UPSAMPLING)
249// Process 32 pixels and store the result (24b or 32b per pixel) in *dst.
250void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
251                    uint8_t* dst);
252void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
253                   uint8_t* dst);
254void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
255                    uint8_t* dst);
256void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
257                   uint8_t* dst);
258#endif  // FANCY_UPSAMPLING
259
260// Must be called to initialize tables before using the functions.
261void VP8YUVInitSSE2(void);
262
263#endif    // WEBP_USE_SSE2
264
265//------------------------------------------------------------------------------
266// RGB -> YUV conversion
267
268// Stub functions that can be called with various rounding values:
269static WEBP_INLINE int VP8ClipUV(int uv, int rounding) {
270  uv = (uv + rounding + (128 << (YUV_FIX + 2))) >> (YUV_FIX + 2);
271  return ((uv & ~0xff) == 0) ? uv : (uv < 0) ? 0 : 255;
272}
273
274#ifndef USE_YUVj
275
276static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) {
277  const int luma = 16839 * r + 33059 * g + 6420 * b;
278  return (luma + rounding + (16 << YUV_FIX)) >> YUV_FIX;  // no need to clip
279}
280
281static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) {
282  const int u = -9719 * r - 19081 * g + 28800 * b;
283  return VP8ClipUV(u, rounding);
284}
285
286static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) {
287  const int v = +28800 * r - 24116 * g - 4684 * b;
288  return VP8ClipUV(v, rounding);
289}
290
291#else
292
293// This JPEG-YUV colorspace, only for comparison!
294// These are also 16bit precision coefficients from Rec.601, but with full
295// [0..255] output range.
296static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) {
297  const int luma = 19595 * r + 38470 * g + 7471 * b;
298  return (luma + rounding) >> YUV_FIX;  // no need to clip
299}
300
301static WEBP_INLINE int VP8_RGB_TO_U(int r, int g, int b, int rounding) {
302  const int u = -11058 * r - 21710 * g + 32768 * b;
303  return VP8ClipUV(u, rounding);
304}
305
306static WEBP_INLINE int VP8_RGB_TO_V(int r, int g, int b, int rounding) {
307  const int v = 32768 * r - 27439 * g - 5329 * b;
308  return VP8ClipUV(v, rounding);
309}
310
311#endif    // USE_YUVj
312
313#ifdef __cplusplus
314}    // extern "C"
315#endif
316
317#endif  /* WEBP_DSP_YUV_H_ */
318