1/*
2 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_MAIN_INTERFACE_AUDIO_PROCESSING_H_
12#define WEBRTC_MODULES_AUDIO_PROCESSING_MAIN_INTERFACE_AUDIO_PROCESSING_H_
13
14#include <stddef.h> // size_t
15
16#include "typedefs.h"
17#include "module.h"
18
19namespace webrtc {
20
21class AudioFrame;
22class EchoCancellation;
23class EchoControlMobile;
24class GainControl;
25class HighPassFilter;
26class LevelEstimator;
27class NoiseSuppression;
28class VoiceDetection;
29
30// The Audio Processing Module (APM) provides a collection of voice processing
31// components designed for real-time communications software.
32//
33// APM operates on two audio streams on a frame-by-frame basis. Frames of the
34// primary stream, on which all processing is applied, are passed to
35// |ProcessStream()|. Frames of the reverse direction stream, which are used for
36// analysis by some components, are passed to |AnalyzeReverseStream()|. On the
37// client-side, this will typically be the near-end (capture) and far-end
38// (render) streams, respectively. APM should be placed in the signal chain as
39// close to the audio hardware abstraction layer (HAL) as possible.
40//
41// On the server-side, the reverse stream will normally not be used, with
42// processing occurring on each incoming stream.
43//
44// Component interfaces follow a similar pattern and are accessed through
45// corresponding getters in APM. All components are disabled at create-time,
46// with default settings that are recommended for most situations. New settings
47// can be applied without enabling a component. Enabling a component triggers
48// memory allocation and initialization to allow it to start processing the
49// streams.
50//
51// Thread safety is provided with the following assumptions to reduce locking
52// overhead:
53//   1. The stream getters and setters are called from the same thread as
54//      ProcessStream(). More precisely, stream functions are never called
55//      concurrently with ProcessStream().
56//   2. Parameter getters are never called concurrently with the corresponding
57//      setter.
58//
59// APM accepts only 16-bit linear PCM audio data in frames of 10 ms. Multiple
60// channels should be interleaved.
61//
62// Usage example, omitting error checking:
63// AudioProcessing* apm = AudioProcessing::Create(0);
64// apm->set_sample_rate_hz(32000); // Super-wideband processing.
65//
66// // Mono capture and stereo render.
67// apm->set_num_channels(1, 1);
68// apm->set_num_reverse_channels(2);
69//
70// apm->high_pass_filter()->Enable(true);
71//
72// apm->echo_cancellation()->enable_drift_compensation(false);
73// apm->echo_cancellation()->Enable(true);
74//
75// apm->noise_reduction()->set_level(kHighSuppression);
76// apm->noise_reduction()->Enable(true);
77//
78// apm->gain_control()->set_analog_level_limits(0, 255);
79// apm->gain_control()->set_mode(kAdaptiveAnalog);
80// apm->gain_control()->Enable(true);
81//
82// apm->voice_detection()->Enable(true);
83//
84// // Start a voice call...
85//
86// // ... Render frame arrives bound for the audio HAL ...
87// apm->AnalyzeReverseStream(render_frame);
88//
89// // ... Capture frame arrives from the audio HAL ...
90// // Call required set_stream_ functions.
91// apm->set_stream_delay_ms(delay_ms);
92// apm->gain_control()->set_stream_analog_level(analog_level);
93//
94// apm->ProcessStream(capture_frame);
95//
96// // Call required stream_ functions.
97// analog_level = apm->gain_control()->stream_analog_level();
98// has_voice = apm->stream_has_voice();
99//
100// // Repeate render and capture processing for the duration of the call...
101// // Start a new call...
102// apm->Initialize();
103//
104// // Close the application...
105// AudioProcessing::Destroy(apm);
106// apm = NULL;
107//
108class AudioProcessing : public Module {
109 public:
110  // Creates a APM instance, with identifier |id|. Use one instance for every
111  // primary audio stream requiring processing. On the client-side, this would
112  // typically be one instance for the near-end stream, and additional instances
113  // for each far-end stream which requires processing. On the server-side,
114  // this would typically be one instance for every incoming stream.
115  static AudioProcessing* Create(int id);
116  virtual ~AudioProcessing() {};
117
118  // TODO(andrew): remove this method. We now allow users to delete instances
119  // directly, useful for scoped_ptr.
120  // Destroys a |apm| instance.
121  static void Destroy(AudioProcessing* apm);
122
123  // Initializes internal states, while retaining all user settings. This
124  // should be called before beginning to process a new audio stream. However,
125  // it is not necessary to call before processing the first stream after
126  // creation.
127  virtual int Initialize() = 0;
128
129  // Sets the sample |rate| in Hz for both the primary and reverse audio
130  // streams. 8000, 16000 or 32000 Hz are permitted.
131  virtual int set_sample_rate_hz(int rate) = 0;
132  virtual int sample_rate_hz() const = 0;
133
134  // Sets the number of channels for the primary audio stream. Input frames must
135  // contain a number of channels given by |input_channels|, while output frames
136  // will be returned with number of channels given by |output_channels|.
137  virtual int set_num_channels(int input_channels, int output_channels) = 0;
138  virtual int num_input_channels() const = 0;
139  virtual int num_output_channels() const = 0;
140
141  // Sets the number of channels for the reverse audio stream. Input frames must
142  // contain a number of channels given by |channels|.
143  virtual int set_num_reverse_channels(int channels) = 0;
144  virtual int num_reverse_channels() const = 0;
145
146  // Processes a 10 ms |frame| of the primary audio stream. On the client-side,
147  // this is the near-end (or captured) audio.
148  //
149  // If needed for enabled functionality, any function with the set_stream_ tag
150  // must be called prior to processing the current frame. Any getter function
151  // with the stream_ tag which is needed should be called after processing.
152  //
153  // The |_frequencyInHz|, |_audioChannel|, and |_payloadDataLengthInSamples|
154  // members of |frame| must be valid, and correspond to settings supplied
155  // to APM.
156  virtual int ProcessStream(AudioFrame* frame) = 0;
157
158  // Analyzes a 10 ms |frame| of the reverse direction audio stream. The frame
159  // will not be modified. On the client-side, this is the far-end (or to be
160  // rendered) audio.
161  //
162  // It is only necessary to provide this if echo processing is enabled, as the
163  // reverse stream forms the echo reference signal. It is recommended, but not
164  // necessary, to provide if gain control is enabled. On the server-side this
165  // typically will not be used. If you're not sure what to pass in here,
166  // chances are you don't need to use it.
167  //
168  // The |_frequencyInHz|, |_audioChannel|, and |_payloadDataLengthInSamples|
169  // members of |frame| must be valid.
170  //
171  // TODO(ajm): add const to input; requires an implementation fix.
172  virtual int AnalyzeReverseStream(AudioFrame* frame) = 0;
173
174  // This must be called if and only if echo processing is enabled.
175  //
176  // Sets the |delay| in ms between AnalyzeReverseStream() receiving a far-end
177  // frame and ProcessStream() receiving a near-end frame containing the
178  // corresponding echo. On the client-side this can be expressed as
179  //   delay = (t_render - t_analyze) + (t_process - t_capture)
180  // where,
181  //   - t_analyze is the time a frame is passed to AnalyzeReverseStream() and
182  //     t_render is the time the first sample of the same frame is rendered by
183  //     the audio hardware.
184  //   - t_capture is the time the first sample of a frame is captured by the
185  //     audio hardware and t_pull is the time the same frame is passed to
186  //     ProcessStream().
187  virtual int set_stream_delay_ms(int delay) = 0;
188  virtual int stream_delay_ms() const = 0;
189
190  // Starts recording debugging information to a file specified by |filename|,
191  // a NULL-terminated string. If there is an ongoing recording, the old file
192  // will be closed, and recording will continue in the newly specified file.
193  // An already existing file will be overwritten without warning.
194  static const size_t kMaxFilenameSize = 1024;
195  virtual int StartDebugRecording(const char filename[kMaxFilenameSize]) = 0;
196
197  // Stops recording debugging information, and closes the file. Recording
198  // cannot be resumed in the same file (without overwriting it).
199  virtual int StopDebugRecording() = 0;
200
201  // These provide access to the component interfaces and should never return
202  // NULL. The pointers will be valid for the lifetime of the APM instance.
203  // The memory for these objects is entirely managed internally.
204  virtual EchoCancellation* echo_cancellation() const = 0;
205  virtual EchoControlMobile* echo_control_mobile() const = 0;
206  virtual GainControl* gain_control() const = 0;
207  virtual HighPassFilter* high_pass_filter() const = 0;
208  virtual LevelEstimator* level_estimator() const = 0;
209  virtual NoiseSuppression* noise_suppression() const = 0;
210  virtual VoiceDetection* voice_detection() const = 0;
211
212  struct Statistic {
213    int instant;  // Instantaneous value.
214    int average;  // Long-term average.
215    int maximum;  // Long-term maximum.
216    int minimum;  // Long-term minimum.
217  };
218
219  // Fatal errors.
220  enum Errors {
221    kNoError = 0,
222    kUnspecifiedError = -1,
223    kCreationFailedError = -2,
224    kUnsupportedComponentError = -3,
225    kUnsupportedFunctionError = -4,
226    kNullPointerError = -5,
227    kBadParameterError = -6,
228    kBadSampleRateError = -7,
229    kBadDataLengthError = -8,
230    kBadNumberChannelsError = -9,
231    kFileError = -10,
232    kStreamParameterNotSetError = -11,
233    kNotEnabledError = -12
234  };
235
236  // Warnings are non-fatal.
237  enum Warnings {
238    // This results when a set_stream_ parameter is out of range. Processing
239    // will continue, but the parameter may have been truncated.
240    kBadStreamParameterWarning = -13,
241  };
242
243  // Inherited from Module.
244  virtual WebRtc_Word32 TimeUntilNextProcess() { return -1; };
245  virtual WebRtc_Word32 Process() { return -1; };
246};
247
248// The acoustic echo cancellation (AEC) component provides better performance
249// than AECM but also requires more processing power and is dependent on delay
250// stability and reporting accuracy. As such it is well-suited and recommended
251// for PC and IP phone applications.
252//
253// Not recommended to be enabled on the server-side.
254class EchoCancellation {
255 public:
256  // EchoCancellation and EchoControlMobile may not be enabled simultaneously.
257  // Enabling one will disable the other.
258  virtual int Enable(bool enable) = 0;
259  virtual bool is_enabled() const = 0;
260
261  // Differences in clock speed on the primary and reverse streams can impact
262  // the AEC performance. On the client-side, this could be seen when different
263  // render and capture devices are used, particularly with webcams.
264  //
265  // This enables a compensation mechanism, and requires that
266  // |set_device_sample_rate_hz()| and |set_stream_drift_samples()| be called.
267  virtual int enable_drift_compensation(bool enable) = 0;
268  virtual bool is_drift_compensation_enabled() const = 0;
269
270  // Provides the sampling rate of the audio devices. It is assumed the render
271  // and capture devices use the same nominal sample rate. Required if and only
272  // if drift compensation is enabled.
273  virtual int set_device_sample_rate_hz(int rate) = 0;
274  virtual int device_sample_rate_hz() const = 0;
275
276  // Sets the difference between the number of samples rendered and captured by
277  // the audio devices since the last call to |ProcessStream()|. Must be called
278  // if and only if drift compensation is enabled, prior to |ProcessStream()|.
279  virtual int set_stream_drift_samples(int drift) = 0;
280  virtual int stream_drift_samples() const = 0;
281
282  enum SuppressionLevel {
283    kLowSuppression,
284    kModerateSuppression,
285    kHighSuppression
286  };
287
288  // Sets the aggressiveness of the suppressor. A higher level trades off
289  // double-talk performance for increased echo suppression.
290  virtual int set_suppression_level(SuppressionLevel level) = 0;
291  virtual SuppressionLevel suppression_level() const = 0;
292
293  // Returns false if the current frame almost certainly contains no echo
294  // and true if it _might_ contain echo.
295  virtual bool stream_has_echo() const = 0;
296
297  // Enables the computation of various echo metrics. These are obtained
298  // through |GetMetrics()|.
299  virtual int enable_metrics(bool enable) = 0;
300  virtual bool are_metrics_enabled() const = 0;
301
302  // Each statistic is reported in dB.
303  // P_far:  Far-end (render) signal power.
304  // P_echo: Near-end (capture) echo signal power.
305  // P_out:  Signal power at the output of the AEC.
306  // P_a:    Internal signal power at the point before the AEC's non-linear
307  //         processor.
308  struct Metrics {
309    // RERL = ERL + ERLE
310    AudioProcessing::Statistic residual_echo_return_loss;
311
312    // ERL = 10log_10(P_far / P_echo)
313    AudioProcessing::Statistic echo_return_loss;
314
315    // ERLE = 10log_10(P_echo / P_out)
316    AudioProcessing::Statistic echo_return_loss_enhancement;
317
318    // (Pre non-linear processing suppression) A_NLP = 10log_10(P_echo / P_a)
319    AudioProcessing::Statistic a_nlp;
320  };
321
322  // TODO(ajm): discuss the metrics update period.
323  virtual int GetMetrics(Metrics* metrics) = 0;
324
325  // Enables computation and logging of delay values. Statistics are obtained
326  // through |GetDelayMetrics()|.
327  virtual int enable_delay_logging(bool enable) = 0;
328  virtual bool is_delay_logging_enabled() const = 0;
329
330  // The delay metrics consists of the delay |median| and the delay standard
331  // deviation |std|. The values are averaged over the time period since the
332  // last call to |GetDelayMetrics()|.
333  virtual int GetDelayMetrics(int* median, int* std) = 0;
334
335 protected:
336  virtual ~EchoCancellation() {};
337};
338
339// The acoustic echo control for mobile (AECM) component is a low complexity
340// robust option intended for use on mobile devices.
341//
342// Not recommended to be enabled on the server-side.
343class EchoControlMobile {
344 public:
345  // EchoCancellation and EchoControlMobile may not be enabled simultaneously.
346  // Enabling one will disable the other.
347  virtual int Enable(bool enable) = 0;
348  virtual bool is_enabled() const = 0;
349
350  // Recommended settings for particular audio routes. In general, the louder
351  // the echo is expected to be, the higher this value should be set. The
352  // preferred setting may vary from device to device.
353  enum RoutingMode {
354    kQuietEarpieceOrHeadset,
355    kEarpiece,
356    kLoudEarpiece,
357    kSpeakerphone,
358    kLoudSpeakerphone
359  };
360
361  // Sets echo control appropriate for the audio routing |mode| on the device.
362  // It can and should be updated during a call if the audio routing changes.
363  virtual int set_routing_mode(RoutingMode mode) = 0;
364  virtual RoutingMode routing_mode() const = 0;
365
366  // Comfort noise replaces suppressed background noise to maintain a
367  // consistent signal level.
368  virtual int enable_comfort_noise(bool enable) = 0;
369  virtual bool is_comfort_noise_enabled() const = 0;
370
371  // A typical use case is to initialize the component with an echo path from a
372  // previous call. The echo path is retrieved using |GetEchoPath()|, typically
373  // at the end of a call. The data can then be stored for later use as an
374  // initializer before the next call, using |SetEchoPath()|.
375  //
376  // Controlling the echo path this way requires the data |size_bytes| to match
377  // the internal echo path size. This size can be acquired using
378  // |echo_path_size_bytes()|. |SetEchoPath()| causes an entire reset, worth
379  // noting if it is to be called during an ongoing call.
380  //
381  // It is possible that version incompatibilities may result in a stored echo
382  // path of the incorrect size. In this case, the stored path should be
383  // discarded.
384  virtual int SetEchoPath(const void* echo_path, size_t size_bytes) = 0;
385  virtual int GetEchoPath(void* echo_path, size_t size_bytes) const = 0;
386
387  // The returned path size is guaranteed not to change for the lifetime of
388  // the application.
389  static size_t echo_path_size_bytes();
390
391 protected:
392  virtual ~EchoControlMobile() {};
393};
394
395// The automatic gain control (AGC) component brings the signal to an
396// appropriate range. This is done by applying a digital gain directly and, in
397// the analog mode, prescribing an analog gain to be applied at the audio HAL.
398//
399// Recommended to be enabled on the client-side.
400class GainControl {
401 public:
402  virtual int Enable(bool enable) = 0;
403  virtual bool is_enabled() const = 0;
404
405  // When an analog mode is set, this must be called prior to |ProcessStream()|
406  // to pass the current analog level from the audio HAL. Must be within the
407  // range provided to |set_analog_level_limits()|.
408  virtual int set_stream_analog_level(int level) = 0;
409
410  // When an analog mode is set, this should be called after |ProcessStream()|
411  // to obtain the recommended new analog level for the audio HAL. It is the
412  // users responsibility to apply this level.
413  virtual int stream_analog_level() = 0;
414
415  enum Mode {
416    // Adaptive mode intended for use if an analog volume control is available
417    // on the capture device. It will require the user to provide coupling
418    // between the OS mixer controls and AGC through the |stream_analog_level()|
419    // functions.
420    //
421    // It consists of an analog gain prescription for the audio device and a
422    // digital compression stage.
423    kAdaptiveAnalog,
424
425    // Adaptive mode intended for situations in which an analog volume control
426    // is unavailable. It operates in a similar fashion to the adaptive analog
427    // mode, but with scaling instead applied in the digital domain. As with
428    // the analog mode, it additionally uses a digital compression stage.
429    kAdaptiveDigital,
430
431    // Fixed mode which enables only the digital compression stage also used by
432    // the two adaptive modes.
433    //
434    // It is distinguished from the adaptive modes by considering only a
435    // short time-window of the input signal. It applies a fixed gain through
436    // most of the input level range, and compresses (gradually reduces gain
437    // with increasing level) the input signal at higher levels. This mode is
438    // preferred on embedded devices where the capture signal level is
439    // predictable, so that a known gain can be applied.
440    kFixedDigital
441  };
442
443  virtual int set_mode(Mode mode) = 0;
444  virtual Mode mode() const = 0;
445
446  // Sets the target peak |level| (or envelope) of the AGC in dBFs (decibels
447  // from digital full-scale). The convention is to use positive values. For
448  // instance, passing in a value of 3 corresponds to -3 dBFs, or a target
449  // level 3 dB below full-scale. Limited to [0, 31].
450  //
451  // TODO(ajm): use a negative value here instead, if/when VoE will similarly
452  //            update its interface.
453  virtual int set_target_level_dbfs(int level) = 0;
454  virtual int target_level_dbfs() const = 0;
455
456  // Sets the maximum |gain| the digital compression stage may apply, in dB. A
457  // higher number corresponds to greater compression, while a value of 0 will
458  // leave the signal uncompressed. Limited to [0, 90].
459  virtual int set_compression_gain_db(int gain) = 0;
460  virtual int compression_gain_db() const = 0;
461
462  // When enabled, the compression stage will hard limit the signal to the
463  // target level. Otherwise, the signal will be compressed but not limited
464  // above the target level.
465  virtual int enable_limiter(bool enable) = 0;
466  virtual bool is_limiter_enabled() const = 0;
467
468  // Sets the |minimum| and |maximum| analog levels of the audio capture device.
469  // Must be set if and only if an analog mode is used. Limited to [0, 65535].
470  virtual int set_analog_level_limits(int minimum,
471                                      int maximum) = 0;
472  virtual int analog_level_minimum() const = 0;
473  virtual int analog_level_maximum() const = 0;
474
475  // Returns true if the AGC has detected a saturation event (period where the
476  // signal reaches digital full-scale) in the current frame and the analog
477  // level cannot be reduced.
478  //
479  // This could be used as an indicator to reduce or disable analog mic gain at
480  // the audio HAL.
481  virtual bool stream_is_saturated() const = 0;
482
483 protected:
484  virtual ~GainControl() {};
485};
486
487// A filtering component which removes DC offset and low-frequency noise.
488// Recommended to be enabled on the client-side.
489class HighPassFilter {
490 public:
491  virtual int Enable(bool enable) = 0;
492  virtual bool is_enabled() const = 0;
493
494 protected:
495  virtual ~HighPassFilter() {};
496};
497
498// An estimation component used to retrieve level metrics.
499class LevelEstimator {
500 public:
501  virtual int Enable(bool enable) = 0;
502  virtual bool is_enabled() const = 0;
503
504  // Returns the root mean square (RMS) level in dBFs (decibels from digital
505  // full-scale), or alternately dBov. It is computed over all primary stream
506  // frames since the last call to RMS(). The returned value is positive but
507  // should be interpreted as negative. It is constrained to [0, 127].
508  //
509  // The computation follows:
510  // http://tools.ietf.org/html/draft-ietf-avtext-client-to-mixer-audio-level-05
511  // with the intent that it can provide the RTP audio level indication.
512  //
513  // Frames passed to ProcessStream() with an |_energy| of zero are considered
514  // to have been muted. The RMS of the frame will be interpreted as -127.
515  virtual int RMS() = 0;
516
517 protected:
518  virtual ~LevelEstimator() {};
519};
520
521// The noise suppression (NS) component attempts to remove noise while
522// retaining speech. Recommended to be enabled on the client-side.
523//
524// Recommended to be enabled on the client-side.
525class NoiseSuppression {
526 public:
527  virtual int Enable(bool enable) = 0;
528  virtual bool is_enabled() const = 0;
529
530  // Determines the aggressiveness of the suppression. Increasing the level
531  // will reduce the noise level at the expense of a higher speech distortion.
532  enum Level {
533    kLow,
534    kModerate,
535    kHigh,
536    kVeryHigh
537  };
538
539  virtual int set_level(Level level) = 0;
540  virtual Level level() const = 0;
541
542 protected:
543  virtual ~NoiseSuppression() {};
544};
545
546// The voice activity detection (VAD) component analyzes the stream to
547// determine if voice is present. A facility is also provided to pass in an
548// external VAD decision.
549//
550// In addition to |stream_has_voice()| the VAD decision is provided through the
551// |AudioFrame| passed to |ProcessStream()|. The |_vadActivity| member will be
552// modified to reflect the current decision.
553class VoiceDetection {
554 public:
555  virtual int Enable(bool enable) = 0;
556  virtual bool is_enabled() const = 0;
557
558  // Returns true if voice is detected in the current frame. Should be called
559  // after |ProcessStream()|.
560  virtual bool stream_has_voice() const = 0;
561
562  // Some of the APM functionality requires a VAD decision. In the case that
563  // a decision is externally available for the current frame, it can be passed
564  // in here, before |ProcessStream()| is called.
565  //
566  // VoiceDetection does _not_ need to be enabled to use this. If it happens to
567  // be enabled, detection will be skipped for any frame in which an external
568  // VAD decision is provided.
569  virtual int set_stream_has_voice(bool has_voice) = 0;
570
571  // Specifies the likelihood that a frame will be declared to contain voice.
572  // A higher value makes it more likely that speech will not be clipped, at
573  // the expense of more noise being detected as voice.
574  enum Likelihood {
575    kVeryLowLikelihood,
576    kLowLikelihood,
577    kModerateLikelihood,
578    kHighLikelihood
579  };
580
581  virtual int set_likelihood(Likelihood likelihood) = 0;
582  virtual Likelihood likelihood() const = 0;
583
584  // Sets the |size| of the frames in ms on which the VAD will operate. Larger
585  // frames will improve detection accuracy, but reduce the frequency of
586  // updates.
587  //
588  // This does not impact the size of frames passed to |ProcessStream()|.
589  virtual int set_frame_size_ms(int size) = 0;
590  virtual int frame_size_ms() const = 0;
591
592 protected:
593  virtual ~VoiceDetection() {};
594};
595}  // namespace webrtc
596
597#endif  // WEBRTC_MODULES_AUDIO_PROCESSING_MAIN_INTERFACE_AUDIO_PROCESSING_H_
598