1/*
2 * Wrapper functions for crypto libraries
3 * Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 *
8 * This file defines the cryptographic functions that need to be implemented
9 * for wpa_supplicant and hostapd. When TLS is not used, internal
10 * implementation of MD5, SHA1, and AES is used and no external libraries are
11 * required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the
12 * crypto library used by the TLS implementation is expected to be used for
13 * non-TLS needs, too, in order to save space by not implementing these
14 * functions twice.
15 *
16 * Wrapper code for using each crypto library is in its own file (crypto*.c)
17 * and one of these files is build and linked in to provide the functions
18 * defined here.
19 */
20
21#ifndef CRYPTO_H
22#define CRYPTO_H
23
24/**
25 * md4_vector - MD4 hash for data vector
26 * @num_elem: Number of elements in the data vector
27 * @addr: Pointers to the data areas
28 * @len: Lengths of the data blocks
29 * @mac: Buffer for the hash
30 * Returns: 0 on success, -1 on failure
31 */
32int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
33
34/**
35 * md5_vector - MD5 hash for data vector
36 * @num_elem: Number of elements in the data vector
37 * @addr: Pointers to the data areas
38 * @len: Lengths of the data blocks
39 * @mac: Buffer for the hash
40 * Returns: 0 on success, -1 on failure
41 */
42int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
43
44
45/**
46 * sha1_vector - SHA-1 hash for data vector
47 * @num_elem: Number of elements in the data vector
48 * @addr: Pointers to the data areas
49 * @len: Lengths of the data blocks
50 * @mac: Buffer for the hash
51 * Returns: 0 on success, -1 on failure
52 */
53int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len,
54		u8 *mac);
55
56/**
57 * fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF
58 * @seed: Seed/key for the PRF
59 * @seed_len: Seed length in bytes
60 * @x: Buffer for PRF output
61 * @xlen: Output length in bytes
62 * Returns: 0 on success, -1 on failure
63 *
64 * This function implements random number generation specified in NIST FIPS
65 * Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to
66 * SHA-1, but has different message padding.
67 */
68int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x,
69			       size_t xlen);
70
71/**
72 * sha256_vector - SHA256 hash for data vector
73 * @num_elem: Number of elements in the data vector
74 * @addr: Pointers to the data areas
75 * @len: Lengths of the data blocks
76 * @mac: Buffer for the hash
77 * Returns: 0 on success, -1 on failure
78 */
79int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
80		  u8 *mac);
81
82/**
83 * des_encrypt - Encrypt one block with DES
84 * @clear: 8 octets (in)
85 * @key: 7 octets (in) (no parity bits included)
86 * @cypher: 8 octets (out)
87 */
88void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher);
89
90/**
91 * aes_encrypt_init - Initialize AES for encryption
92 * @key: Encryption key
93 * @len: Key length in bytes (usually 16, i.e., 128 bits)
94 * Returns: Pointer to context data or %NULL on failure
95 */
96void * aes_encrypt_init(const u8 *key, size_t len);
97
98/**
99 * aes_encrypt - Encrypt one AES block
100 * @ctx: Context pointer from aes_encrypt_init()
101 * @plain: Plaintext data to be encrypted (16 bytes)
102 * @crypt: Buffer for the encrypted data (16 bytes)
103 */
104void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt);
105
106/**
107 * aes_encrypt_deinit - Deinitialize AES encryption
108 * @ctx: Context pointer from aes_encrypt_init()
109 */
110void aes_encrypt_deinit(void *ctx);
111
112/**
113 * aes_decrypt_init - Initialize AES for decryption
114 * @key: Decryption key
115 * @len: Key length in bytes (usually 16, i.e., 128 bits)
116 * Returns: Pointer to context data or %NULL on failure
117 */
118void * aes_decrypt_init(const u8 *key, size_t len);
119
120/**
121 * aes_decrypt - Decrypt one AES block
122 * @ctx: Context pointer from aes_encrypt_init()
123 * @crypt: Encrypted data (16 bytes)
124 * @plain: Buffer for the decrypted data (16 bytes)
125 */
126void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain);
127
128/**
129 * aes_decrypt_deinit - Deinitialize AES decryption
130 * @ctx: Context pointer from aes_encrypt_init()
131 */
132void aes_decrypt_deinit(void *ctx);
133
134
135enum crypto_hash_alg {
136	CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1,
137	CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1,
138	CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256
139};
140
141struct crypto_hash;
142
143/**
144 * crypto_hash_init - Initialize hash/HMAC function
145 * @alg: Hash algorithm
146 * @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed
147 * @key_len: Length of the key in bytes
148 * Returns: Pointer to hash context to use with other hash functions or %NULL
149 * on failure
150 *
151 * This function is only used with internal TLSv1 implementation
152 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
153 * to implement this.
154 */
155struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
156				      size_t key_len);
157
158/**
159 * crypto_hash_update - Add data to hash calculation
160 * @ctx: Context pointer from crypto_hash_init()
161 * @data: Data buffer to add
162 * @len: Length of the buffer
163 *
164 * This function is only used with internal TLSv1 implementation
165 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
166 * to implement this.
167 */
168void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len);
169
170/**
171 * crypto_hash_finish - Complete hash calculation
172 * @ctx: Context pointer from crypto_hash_init()
173 * @hash: Buffer for hash value or %NULL if caller is just freeing the hash
174 * context
175 * @len: Pointer to length of the buffer or %NULL if caller is just freeing the
176 * hash context; on return, this is set to the actual length of the hash value
177 * Returns: 0 on success, -1 if buffer is too small (len set to needed length),
178 * or -2 on other failures (including failed crypto_hash_update() operations)
179 *
180 * This function calculates the hash value and frees the context buffer that
181 * was used for hash calculation.
182 *
183 * This function is only used with internal TLSv1 implementation
184 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
185 * to implement this.
186 */
187int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len);
188
189
190enum crypto_cipher_alg {
191	CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES,
192	CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4
193};
194
195struct crypto_cipher;
196
197/**
198 * crypto_cipher_init - Initialize block/stream cipher function
199 * @alg: Cipher algorithm
200 * @iv: Initialization vector for block ciphers or %NULL for stream ciphers
201 * @key: Cipher key
202 * @key_len: Length of key in bytes
203 * Returns: Pointer to cipher context to use with other cipher functions or
204 * %NULL on failure
205 *
206 * This function is only used with internal TLSv1 implementation
207 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
208 * to implement this.
209 */
210struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
211					  const u8 *iv, const u8 *key,
212					  size_t key_len);
213
214/**
215 * crypto_cipher_encrypt - Cipher encrypt
216 * @ctx: Context pointer from crypto_cipher_init()
217 * @plain: Plaintext to cipher
218 * @crypt: Resulting ciphertext
219 * @len: Length of the plaintext
220 * Returns: 0 on success, -1 on failure
221 *
222 * This function is only used with internal TLSv1 implementation
223 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
224 * to implement this.
225 */
226int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx,
227				       const u8 *plain, u8 *crypt, size_t len);
228
229/**
230 * crypto_cipher_decrypt - Cipher decrypt
231 * @ctx: Context pointer from crypto_cipher_init()
232 * @crypt: Ciphertext to decrypt
233 * @plain: Resulting plaintext
234 * @len: Length of the cipher text
235 * Returns: 0 on success, -1 on failure
236 *
237 * This function is only used with internal TLSv1 implementation
238 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
239 * to implement this.
240 */
241int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx,
242				       const u8 *crypt, u8 *plain, size_t len);
243
244/**
245 * crypto_cipher_decrypt - Free cipher context
246 * @ctx: Context pointer from crypto_cipher_init()
247 *
248 * This function is only used with internal TLSv1 implementation
249 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
250 * to implement this.
251 */
252void crypto_cipher_deinit(struct crypto_cipher *ctx);
253
254
255struct crypto_public_key;
256struct crypto_private_key;
257
258/**
259 * crypto_public_key_import - Import an RSA public key
260 * @key: Key buffer (DER encoded RSA public key)
261 * @len: Key buffer length in bytes
262 * Returns: Pointer to the public key or %NULL on failure
263 *
264 * This function can just return %NULL if the crypto library supports X.509
265 * parsing. In that case, crypto_public_key_from_cert() is used to import the
266 * public key from a certificate.
267 *
268 * This function is only used with internal TLSv1 implementation
269 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
270 * to implement this.
271 */
272struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len);
273
274struct crypto_public_key *
275crypto_public_key_import_parts(const u8 *n, size_t n_len,
276			       const u8 *e, size_t e_len);
277
278/**
279 * crypto_private_key_import - Import an RSA private key
280 * @key: Key buffer (DER encoded RSA private key)
281 * @len: Key buffer length in bytes
282 * @passwd: Key encryption password or %NULL if key is not encrypted
283 * Returns: Pointer to the private key or %NULL on failure
284 *
285 * This function is only used with internal TLSv1 implementation
286 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
287 * to implement this.
288 */
289struct crypto_private_key * crypto_private_key_import(const u8 *key,
290						      size_t len,
291						      const char *passwd);
292
293/**
294 * crypto_public_key_from_cert - Import an RSA public key from a certificate
295 * @buf: DER encoded X.509 certificate
296 * @len: Certificate buffer length in bytes
297 * Returns: Pointer to public key or %NULL on failure
298 *
299 * This function can just return %NULL if the crypto library does not support
300 * X.509 parsing. In that case, internal code will be used to parse the
301 * certificate and public key is imported using crypto_public_key_import().
302 *
303 * This function is only used with internal TLSv1 implementation
304 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
305 * to implement this.
306 */
307struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf,
308						       size_t len);
309
310/**
311 * crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5)
312 * @key: Public key
313 * @in: Plaintext buffer
314 * @inlen: Length of plaintext buffer in bytes
315 * @out: Output buffer for encrypted data
316 * @outlen: Length of output buffer in bytes; set to used length on success
317 * Returns: 0 on success, -1 on failure
318 *
319 * This function is only used with internal TLSv1 implementation
320 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
321 * to implement this.
322 */
323int __must_check crypto_public_key_encrypt_pkcs1_v15(
324	struct crypto_public_key *key, const u8 *in, size_t inlen,
325	u8 *out, size_t *outlen);
326
327/**
328 * crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5)
329 * @key: Private key
330 * @in: Encrypted buffer
331 * @inlen: Length of encrypted buffer in bytes
332 * @out: Output buffer for encrypted data
333 * @outlen: Length of output buffer in bytes; set to used length on success
334 * Returns: 0 on success, -1 on failure
335 *
336 * This function is only used with internal TLSv1 implementation
337 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
338 * to implement this.
339 */
340int __must_check crypto_private_key_decrypt_pkcs1_v15(
341	struct crypto_private_key *key, const u8 *in, size_t inlen,
342	u8 *out, size_t *outlen);
343
344/**
345 * crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1)
346 * @key: Private key from crypto_private_key_import()
347 * @in: Plaintext buffer
348 * @inlen: Length of plaintext buffer in bytes
349 * @out: Output buffer for encrypted (signed) data
350 * @outlen: Length of output buffer in bytes; set to used length on success
351 * Returns: 0 on success, -1 on failure
352 *
353 * This function is only used with internal TLSv1 implementation
354 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
355 * to implement this.
356 */
357int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key,
358					       const u8 *in, size_t inlen,
359					       u8 *out, size_t *outlen);
360
361/**
362 * crypto_public_key_free - Free public key
363 * @key: Public key
364 *
365 * This function is only used with internal TLSv1 implementation
366 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
367 * to implement this.
368 */
369void crypto_public_key_free(struct crypto_public_key *key);
370
371/**
372 * crypto_private_key_free - Free private key
373 * @key: Private key from crypto_private_key_import()
374 *
375 * This function is only used with internal TLSv1 implementation
376 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
377 * to implement this.
378 */
379void crypto_private_key_free(struct crypto_private_key *key);
380
381/**
382 * crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature
383 * @key: Public key
384 * @crypt: Encrypted signature data (using the private key)
385 * @crypt_len: Encrypted signature data length
386 * @plain: Buffer for plaintext (at least crypt_len bytes)
387 * @plain_len: Plaintext length (max buffer size on input, real len on output);
388 * Returns: 0 on success, -1 on failure
389 */
390int __must_check crypto_public_key_decrypt_pkcs1(
391	struct crypto_public_key *key, const u8 *crypt, size_t crypt_len,
392	u8 *plain, size_t *plain_len);
393
394/**
395 * crypto_global_init - Initialize crypto wrapper
396 *
397 * This function is only used with internal TLSv1 implementation
398 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
399 * to implement this.
400 */
401int __must_check crypto_global_init(void);
402
403/**
404 * crypto_global_deinit - Deinitialize crypto wrapper
405 *
406 * This function is only used with internal TLSv1 implementation
407 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
408 * to implement this.
409 */
410void crypto_global_deinit(void);
411
412/**
413 * crypto_mod_exp - Modular exponentiation of large integers
414 * @base: Base integer (big endian byte array)
415 * @base_len: Length of base integer in bytes
416 * @power: Power integer (big endian byte array)
417 * @power_len: Length of power integer in bytes
418 * @modulus: Modulus integer (big endian byte array)
419 * @modulus_len: Length of modulus integer in bytes
420 * @result: Buffer for the result
421 * @result_len: Result length (max buffer size on input, real len on output)
422 * Returns: 0 on success, -1 on failure
423 *
424 * This function calculates result = base ^ power mod modulus. modules_len is
425 * used as the maximum size of modulus buffer. It is set to the used size on
426 * success.
427 *
428 * This function is only used with internal TLSv1 implementation
429 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
430 * to implement this.
431 */
432int __must_check crypto_mod_exp(const u8 *base, size_t base_len,
433				const u8 *power, size_t power_len,
434				const u8 *modulus, size_t modulus_len,
435				u8 *result, size_t *result_len);
436
437/**
438 * rc4_skip - XOR RC4 stream to given data with skip-stream-start
439 * @key: RC4 key
440 * @keylen: RC4 key length
441 * @skip: number of bytes to skip from the beginning of the RC4 stream
442 * @data: data to be XOR'ed with RC4 stream
443 * @data_len: buf length
444 * Returns: 0 on success, -1 on failure
445 *
446 * Generate RC4 pseudo random stream for the given key, skip beginning of the
447 * stream, and XOR the end result with the data buffer to perform RC4
448 * encryption/decryption.
449 */
450int rc4_skip(const u8 *key, size_t keylen, size_t skip,
451	     u8 *data, size_t data_len);
452
453/**
454 * crypto_get_random - Generate cryptographically strong pseudy-random bytes
455 * @buf: Buffer for data
456 * @len: Number of bytes to generate
457 * Returns: 0 on success, -1 on failure
458 *
459 * If the PRNG does not have enough entropy to ensure unpredictable byte
460 * sequence, this functions must return -1.
461 */
462int crypto_get_random(void *buf, size_t len);
463
464
465/**
466 * struct crypto_bignum - bignum
467 *
468 * Internal data structure for bignum implementation. The contents is specific
469 * to the used crypto library.
470 */
471struct crypto_bignum;
472
473/**
474 * crypto_bignum_init - Allocate memory for bignum
475 * Returns: Pointer to allocated bignum or %NULL on failure
476 */
477struct crypto_bignum * crypto_bignum_init(void);
478
479/**
480 * crypto_bignum_init_set - Allocate memory for bignum and set the value
481 * @buf: Buffer with unsigned binary value
482 * @len: Length of buf in octets
483 * Returns: Pointer to allocated bignum or %NULL on failure
484 */
485struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len);
486
487/**
488 * crypto_bignum_deinit - Free bignum
489 * @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set()
490 * @clear: Whether to clear the value from memory
491 */
492void crypto_bignum_deinit(struct crypto_bignum *n, int clear);
493
494/**
495 * crypto_bignum_to_bin - Set binary buffer to unsigned bignum
496 * @a: Bignum
497 * @buf: Buffer for the binary number
498 * @len: Length of @buf in octets
499 * @padlen: Length in octets to pad the result to or 0 to indicate no padding
500 * Returns: Number of octets written on success, -1 on failure
501 */
502int crypto_bignum_to_bin(const struct crypto_bignum *a,
503			 u8 *buf, size_t buflen, size_t padlen);
504
505/**
506 * crypto_bignum_add - c = a + b
507 * @a: Bignum
508 * @b: Bignum
509 * @c: Bignum; used to store the result of a + b
510 * Returns: 0 on success, -1 on failure
511 */
512int crypto_bignum_add(const struct crypto_bignum *a,
513		      const struct crypto_bignum *b,
514		      struct crypto_bignum *c);
515
516/**
517 * crypto_bignum_mod - c = a % b
518 * @a: Bignum
519 * @b: Bignum
520 * @c: Bignum; used to store the result of a % b
521 * Returns: 0 on success, -1 on failure
522 */
523int crypto_bignum_mod(const struct crypto_bignum *a,
524		      const struct crypto_bignum *b,
525		      struct crypto_bignum *c);
526
527/**
528 * crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c)
529 * @a: Bignum; base
530 * @b: Bignum; exponent
531 * @c: Bignum; modulus
532 * @d: Bignum; used to store the result of a^b (mod c)
533 * Returns: 0 on success, -1 on failure
534 */
535int crypto_bignum_exptmod(const struct crypto_bignum *a,
536			  const struct crypto_bignum *b,
537			  const struct crypto_bignum *c,
538			  struct crypto_bignum *d);
539
540/**
541 * crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b)
542 * @a: Bignum
543 * @b: Bignum
544 * @c: Bignum; used to store the result
545 * Returns: 0 on success, -1 on failure
546 */
547int crypto_bignum_inverse(const struct crypto_bignum *a,
548			  const struct crypto_bignum *b,
549			  struct crypto_bignum *c);
550
551/**
552 * crypto_bignum_sub - c = a - b
553 * @a: Bignum
554 * @b: Bignum
555 * @c: Bignum; used to store the result of a - b
556 * Returns: 0 on success, -1 on failure
557 */
558int crypto_bignum_sub(const struct crypto_bignum *a,
559		      const struct crypto_bignum *b,
560		      struct crypto_bignum *c);
561
562/**
563 * crypto_bignum_div - c = a / b
564 * @a: Bignum
565 * @b: Bignum
566 * @c: Bignum; used to store the result of a / b
567 * Returns: 0 on success, -1 on failure
568 */
569int crypto_bignum_div(const struct crypto_bignum *a,
570		      const struct crypto_bignum *b,
571		      struct crypto_bignum *c);
572
573/**
574 * crypto_bignum_mulmod - d = a * b (mod c)
575 * @a: Bignum
576 * @b: Bignum
577 * @c: Bignum
578 * @d: Bignum; used to store the result of (a * b) % c
579 * Returns: 0 on success, -1 on failure
580 */
581int crypto_bignum_mulmod(const struct crypto_bignum *a,
582			 const struct crypto_bignum *b,
583			 const struct crypto_bignum *c,
584			 struct crypto_bignum *d);
585
586/**
587 * crypto_bignum_cmp - Compare two bignums
588 * @a: Bignum
589 * @b: Bignum
590 * Returns: -1 if a < b, 0 if a == b, or 1 if a > b
591 */
592int crypto_bignum_cmp(const struct crypto_bignum *a,
593		      const struct crypto_bignum *b);
594
595/**
596 * crypto_bignum_bits - Get size of a bignum in bits
597 * @a: Bignum
598 * Returns: Number of bits in the bignum
599 */
600int crypto_bignum_bits(const struct crypto_bignum *a);
601
602/**
603 * crypto_bignum_is_zero - Is the given bignum zero
604 * @a: Bignum
605 * Returns: 1 if @a is zero or 0 if not
606 */
607int crypto_bignum_is_zero(const struct crypto_bignum *a);
608
609/**
610 * crypto_bignum_is_one - Is the given bignum one
611 * @a: Bignum
612 * Returns: 1 if @a is one or 0 if not
613 */
614int crypto_bignum_is_one(const struct crypto_bignum *a);
615
616/**
617 * struct crypto_ec - Elliptic curve context
618 *
619 * Internal data structure for EC implementation. The contents is specific
620 * to the used crypto library.
621 */
622struct crypto_ec;
623
624/**
625 * crypto_ec_init - Initialize elliptic curve context
626 * @group: Identifying number for the ECC group (IANA "Group Description"
627 *	attribute registrty for RFC 2409)
628 * Returns: Pointer to EC context or %NULL on failure
629 */
630struct crypto_ec * crypto_ec_init(int group);
631
632/**
633 * crypto_ec_deinit - Deinitialize elliptic curve context
634 * @e: EC context from crypto_ec_init()
635 */
636void crypto_ec_deinit(struct crypto_ec *e);
637
638/**
639 * crypto_ec_prime_len - Get length of the prime in octets
640 * @e: EC context from crypto_ec_init()
641 * Returns: Length of the prime defining the group
642 */
643size_t crypto_ec_prime_len(struct crypto_ec *e);
644
645/**
646 * crypto_ec_prime_len_bits - Get length of the prime in bits
647 * @e: EC context from crypto_ec_init()
648 * Returns: Length of the prime defining the group in bits
649 */
650size_t crypto_ec_prime_len_bits(struct crypto_ec *e);
651
652/**
653 * crypto_ec_get_prime - Get prime defining an EC group
654 * @e: EC context from crypto_ec_init()
655 * Returns: Prime (bignum) defining the group
656 */
657const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e);
658
659/**
660 * crypto_ec_get_order - Get order of an EC group
661 * @e: EC context from crypto_ec_init()
662 * Returns: Order (bignum) of the group
663 */
664const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e);
665
666/**
667 * struct crypto_ec_point - Elliptic curve point
668 *
669 * Internal data structure for EC implementation to represent a point. The
670 * contents is specific to the used crypto library.
671 */
672struct crypto_ec_point;
673
674/**
675 * crypto_ec_point_init - Initialize data for an EC point
676 * @e: EC context from crypto_ec_init()
677 * Returns: Pointer to EC point data or %NULL on failure
678 */
679struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e);
680
681/**
682 * crypto_ec_point_deinit - Deinitialize EC point data
683 * @p: EC point data from crypto_ec_point_init()
684 * @clear: Whether to clear the EC point value from memory
685 */
686void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear);
687
688/**
689 * crypto_ec_point_to_bin - Write EC point value as binary data
690 * @e: EC context from crypto_ec_init()
691 * @p: EC point data from crypto_ec_point_init()
692 * @x: Buffer for writing the binary data for x coordinate or %NULL if not used
693 * @y: Buffer for writing the binary data for y coordinate or %NULL if not used
694 * Returns: 0 on success, -1 on failure
695 *
696 * This function can be used to write an EC point as binary data in a format
697 * that has the x and y coordinates in big endian byte order fields padded to
698 * the length of the prime defining the group.
699 */
700int crypto_ec_point_to_bin(struct crypto_ec *e,
701			   const struct crypto_ec_point *point, u8 *x, u8 *y);
702
703/**
704 * crypto_ec_point_from_bin - Create EC point from binary data
705 * @e: EC context from crypto_ec_init()
706 * @val: Binary data to read the EC point from
707 * Returns: Pointer to EC point data or %NULL on failure
708 *
709 * This function readers x and y coordinates of the EC point from the provided
710 * buffer assuming the values are in big endian byte order with fields padded to
711 * the length of the prime defining the group.
712 */
713struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
714						  const u8 *val);
715
716/**
717 * crypto_bignum_add - c = a + b
718 * @e: EC context from crypto_ec_init()
719 * @a: Bignum
720 * @b: Bignum
721 * @c: Bignum; used to store the result of a + b
722 * Returns: 0 on success, -1 on failure
723 */
724int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
725			const struct crypto_ec_point *b,
726			struct crypto_ec_point *c);
727
728/**
729 * crypto_bignum_mul - res = b * p
730 * @e: EC context from crypto_ec_init()
731 * @p: EC point
732 * @b: Bignum
733 * @res: EC point; used to store the result of b * p
734 * Returns: 0 on success, -1 on failure
735 */
736int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
737			const struct crypto_bignum *b,
738			struct crypto_ec_point *res);
739
740/**
741 * crypto_ec_point_invert - Compute inverse of an EC point
742 * @e: EC context from crypto_ec_init()
743 * @p: EC point to invert (and result of the operation)
744 * Returns: 0 on success, -1 on failure
745 */
746int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p);
747
748/**
749 * crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate
750 * @e: EC context from crypto_ec_init()
751 * @p: EC point to use for the returning the result
752 * @x: x coordinate
753 * @y_bit: y-bit (0 or 1) for selecting the y value to use
754 * Returns: 0 on success, -1 on failure
755 */
756int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
757				  struct crypto_ec_point *p,
758				  const struct crypto_bignum *x, int y_bit);
759
760/**
761 * crypto_ec_point_is_at_infinity - Check whether EC point is neutral element
762 * @e: EC context from crypto_ec_init()
763 * @p: EC point
764 * Returns: 1 if the specified EC point is the neutral element of the group or
765 *	0 if not
766 */
767int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
768				   const struct crypto_ec_point *p);
769
770/**
771 * crypto_ec_point_is_on_curve - Check whether EC point is on curve
772 * @e: EC context from crypto_ec_init()
773 * @p: EC point
774 * Returns: 1 if the specified EC point is on the curve or 0 if not
775 */
776int crypto_ec_point_is_on_curve(struct crypto_ec *e,
777				const struct crypto_ec_point *p);
778
779#endif /* CRYPTO_H */
780