crypto.h revision bd14a57187b024f49f5b9ace55ef457d8d04650a
1/*
2 * Wrapper functions for crypto libraries
3 * Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 *
8 * This file defines the cryptographic functions that need to be implemented
9 * for wpa_supplicant and hostapd. When TLS is not used, internal
10 * implementation of MD5, SHA1, and AES is used and no external libraries are
11 * required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the
12 * crypto library used by the TLS implementation is expected to be used for
13 * non-TLS needs, too, in order to save space by not implementing these
14 * functions twice.
15 *
16 * Wrapper code for using each crypto library is in its own file (crypto*.c)
17 * and one of these files is build and linked in to provide the functions
18 * defined here.
19 */
20
21#ifndef CRYPTO_H
22#define CRYPTO_H
23
24/**
25 * md4_vector - MD4 hash for data vector
26 * @num_elem: Number of elements in the data vector
27 * @addr: Pointers to the data areas
28 * @len: Lengths of the data blocks
29 * @mac: Buffer for the hash
30 * Returns: 0 on success, -1 on failure
31 */
32int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
33
34/**
35 * md5_vector - MD5 hash for data vector
36 * @num_elem: Number of elements in the data vector
37 * @addr: Pointers to the data areas
38 * @len: Lengths of the data blocks
39 * @mac: Buffer for the hash
40 * Returns: 0 on success, -1 on failure
41 */
42int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
43
44
45/**
46 * sha1_vector - SHA-1 hash for data vector
47 * @num_elem: Number of elements in the data vector
48 * @addr: Pointers to the data areas
49 * @len: Lengths of the data blocks
50 * @mac: Buffer for the hash
51 * Returns: 0 on success, -1 on failure
52 */
53int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len,
54		u8 *mac);
55
56/**
57 * fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF
58 * @seed: Seed/key for the PRF
59 * @seed_len: Seed length in bytes
60 * @x: Buffer for PRF output
61 * @xlen: Output length in bytes
62 * Returns: 0 on success, -1 on failure
63 *
64 * This function implements random number generation specified in NIST FIPS
65 * Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to
66 * SHA-1, but has different message padding.
67 */
68int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x,
69			       size_t xlen);
70
71/**
72 * sha256_vector - SHA256 hash for data vector
73 * @num_elem: Number of elements in the data vector
74 * @addr: Pointers to the data areas
75 * @len: Lengths of the data blocks
76 * @mac: Buffer for the hash
77 * Returns: 0 on success, -1 on failure
78 */
79int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
80		  u8 *mac);
81
82/**
83 * des_encrypt - Encrypt one block with DES
84 * @clear: 8 octets (in)
85 * @key: 7 octets (in) (no parity bits included)
86 * @cypher: 8 octets (out)
87 */
88void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher);
89
90/**
91 * aes_encrypt_init - Initialize AES for encryption
92 * @key: Encryption key
93 * @len: Key length in bytes (usually 16, i.e., 128 bits)
94 * Returns: Pointer to context data or %NULL on failure
95 */
96void * aes_encrypt_init(const u8 *key, size_t len);
97
98/**
99 * aes_encrypt - Encrypt one AES block
100 * @ctx: Context pointer from aes_encrypt_init()
101 * @plain: Plaintext data to be encrypted (16 bytes)
102 * @crypt: Buffer for the encrypted data (16 bytes)
103 */
104void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt);
105
106/**
107 * aes_encrypt_deinit - Deinitialize AES encryption
108 * @ctx: Context pointer from aes_encrypt_init()
109 */
110void aes_encrypt_deinit(void *ctx);
111
112/**
113 * aes_decrypt_init - Initialize AES for decryption
114 * @key: Decryption key
115 * @len: Key length in bytes (usually 16, i.e., 128 bits)
116 * Returns: Pointer to context data or %NULL on failure
117 */
118void * aes_decrypt_init(const u8 *key, size_t len);
119
120/**
121 * aes_decrypt - Decrypt one AES block
122 * @ctx: Context pointer from aes_encrypt_init()
123 * @crypt: Encrypted data (16 bytes)
124 * @plain: Buffer for the decrypted data (16 bytes)
125 */
126void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain);
127
128/**
129 * aes_decrypt_deinit - Deinitialize AES decryption
130 * @ctx: Context pointer from aes_encrypt_init()
131 */
132void aes_decrypt_deinit(void *ctx);
133
134
135enum crypto_hash_alg {
136	CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1,
137	CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1,
138	CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256
139};
140
141struct crypto_hash;
142
143/**
144 * crypto_hash_init - Initialize hash/HMAC function
145 * @alg: Hash algorithm
146 * @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed
147 * @key_len: Length of the key in bytes
148 * Returns: Pointer to hash context to use with other hash functions or %NULL
149 * on failure
150 *
151 * This function is only used with internal TLSv1 implementation
152 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
153 * to implement this.
154 */
155struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
156				      size_t key_len);
157
158/**
159 * crypto_hash_update - Add data to hash calculation
160 * @ctx: Context pointer from crypto_hash_init()
161 * @data: Data buffer to add
162 * @len: Length of the buffer
163 *
164 * This function is only used with internal TLSv1 implementation
165 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
166 * to implement this.
167 */
168void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len);
169
170/**
171 * crypto_hash_finish - Complete hash calculation
172 * @ctx: Context pointer from crypto_hash_init()
173 * @hash: Buffer for hash value or %NULL if caller is just freeing the hash
174 * context
175 * @len: Pointer to length of the buffer or %NULL if caller is just freeing the
176 * hash context; on return, this is set to the actual length of the hash value
177 * Returns: 0 on success, -1 if buffer is too small (len set to needed length),
178 * or -2 on other failures (including failed crypto_hash_update() operations)
179 *
180 * This function calculates the hash value and frees the context buffer that
181 * was used for hash calculation.
182 *
183 * This function is only used with internal TLSv1 implementation
184 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
185 * to implement this.
186 */
187int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len);
188
189
190enum crypto_cipher_alg {
191	CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES,
192	CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4
193};
194
195struct crypto_cipher;
196
197/**
198 * crypto_cipher_init - Initialize block/stream cipher function
199 * @alg: Cipher algorithm
200 * @iv: Initialization vector for block ciphers or %NULL for stream ciphers
201 * @key: Cipher key
202 * @key_len: Length of key in bytes
203 * Returns: Pointer to cipher context to use with other cipher functions or
204 * %NULL on failure
205 *
206 * This function is only used with internal TLSv1 implementation
207 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
208 * to implement this.
209 */
210struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
211					  const u8 *iv, const u8 *key,
212					  size_t key_len);
213
214/**
215 * crypto_cipher_encrypt - Cipher encrypt
216 * @ctx: Context pointer from crypto_cipher_init()
217 * @plain: Plaintext to cipher
218 * @crypt: Resulting ciphertext
219 * @len: Length of the plaintext
220 * Returns: 0 on success, -1 on failure
221 *
222 * This function is only used with internal TLSv1 implementation
223 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
224 * to implement this.
225 */
226int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx,
227				       const u8 *plain, u8 *crypt, size_t len);
228
229/**
230 * crypto_cipher_decrypt - Cipher decrypt
231 * @ctx: Context pointer from crypto_cipher_init()
232 * @crypt: Ciphertext to decrypt
233 * @plain: Resulting plaintext
234 * @len: Length of the cipher text
235 * Returns: 0 on success, -1 on failure
236 *
237 * This function is only used with internal TLSv1 implementation
238 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
239 * to implement this.
240 */
241int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx,
242				       const u8 *crypt, u8 *plain, size_t len);
243
244/**
245 * crypto_cipher_decrypt - Free cipher context
246 * @ctx: Context pointer from crypto_cipher_init()
247 *
248 * This function is only used with internal TLSv1 implementation
249 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
250 * to implement this.
251 */
252void crypto_cipher_deinit(struct crypto_cipher *ctx);
253
254
255struct crypto_public_key;
256struct crypto_private_key;
257
258/**
259 * crypto_public_key_import - Import an RSA public key
260 * @key: Key buffer (DER encoded RSA public key)
261 * @len: Key buffer length in bytes
262 * Returns: Pointer to the public key or %NULL on failure
263 *
264 * This function can just return %NULL if the crypto library supports X.509
265 * parsing. In that case, crypto_public_key_from_cert() is used to import the
266 * public key from a certificate.
267 *
268 * This function is only used with internal TLSv1 implementation
269 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
270 * to implement this.
271 */
272struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len);
273
274/**
275 * crypto_private_key_import - Import an RSA private key
276 * @key: Key buffer (DER encoded RSA private key)
277 * @len: Key buffer length in bytes
278 * @passwd: Key encryption password or %NULL if key is not encrypted
279 * Returns: Pointer to the private key or %NULL on failure
280 *
281 * This function is only used with internal TLSv1 implementation
282 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
283 * to implement this.
284 */
285struct crypto_private_key * crypto_private_key_import(const u8 *key,
286						      size_t len,
287						      const char *passwd);
288
289/**
290 * crypto_public_key_from_cert - Import an RSA public key from a certificate
291 * @buf: DER encoded X.509 certificate
292 * @len: Certificate buffer length in bytes
293 * Returns: Pointer to public key or %NULL on failure
294 *
295 * This function can just return %NULL if the crypto library does not support
296 * X.509 parsing. In that case, internal code will be used to parse the
297 * certificate and public key is imported using crypto_public_key_import().
298 *
299 * This function is only used with internal TLSv1 implementation
300 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
301 * to implement this.
302 */
303struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf,
304						       size_t len);
305
306/**
307 * crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5)
308 * @key: Public key
309 * @in: Plaintext buffer
310 * @inlen: Length of plaintext buffer in bytes
311 * @out: Output buffer for encrypted data
312 * @outlen: Length of output buffer in bytes; set to used length on success
313 * Returns: 0 on success, -1 on failure
314 *
315 * This function is only used with internal TLSv1 implementation
316 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
317 * to implement this.
318 */
319int __must_check crypto_public_key_encrypt_pkcs1_v15(
320	struct crypto_public_key *key, const u8 *in, size_t inlen,
321	u8 *out, size_t *outlen);
322
323/**
324 * crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5)
325 * @key: Private key
326 * @in: Encrypted buffer
327 * @inlen: Length of encrypted buffer in bytes
328 * @out: Output buffer for encrypted data
329 * @outlen: Length of output buffer in bytes; set to used length on success
330 * Returns: 0 on success, -1 on failure
331 *
332 * This function is only used with internal TLSv1 implementation
333 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
334 * to implement this.
335 */
336int __must_check crypto_private_key_decrypt_pkcs1_v15(
337	struct crypto_private_key *key, const u8 *in, size_t inlen,
338	u8 *out, size_t *outlen);
339
340/**
341 * crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1)
342 * @key: Private key from crypto_private_key_import()
343 * @in: Plaintext buffer
344 * @inlen: Length of plaintext buffer in bytes
345 * @out: Output buffer for encrypted (signed) data
346 * @outlen: Length of output buffer in bytes; set to used length on success
347 * Returns: 0 on success, -1 on failure
348 *
349 * This function is only used with internal TLSv1 implementation
350 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
351 * to implement this.
352 */
353int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key,
354					       const u8 *in, size_t inlen,
355					       u8 *out, size_t *outlen);
356
357/**
358 * crypto_public_key_free - Free public key
359 * @key: Public key
360 *
361 * This function is only used with internal TLSv1 implementation
362 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
363 * to implement this.
364 */
365void crypto_public_key_free(struct crypto_public_key *key);
366
367/**
368 * crypto_private_key_free - Free private key
369 * @key: Private key from crypto_private_key_import()
370 *
371 * This function is only used with internal TLSv1 implementation
372 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
373 * to implement this.
374 */
375void crypto_private_key_free(struct crypto_private_key *key);
376
377/**
378 * crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature
379 * @key: Public key
380 * @crypt: Encrypted signature data (using the private key)
381 * @crypt_len: Encrypted signature data length
382 * @plain: Buffer for plaintext (at least crypt_len bytes)
383 * @plain_len: Plaintext length (max buffer size on input, real len on output);
384 * Returns: 0 on success, -1 on failure
385 */
386int __must_check crypto_public_key_decrypt_pkcs1(
387	struct crypto_public_key *key, const u8 *crypt, size_t crypt_len,
388	u8 *plain, size_t *plain_len);
389
390/**
391 * crypto_global_init - Initialize crypto wrapper
392 *
393 * This function is only used with internal TLSv1 implementation
394 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
395 * to implement this.
396 */
397int __must_check crypto_global_init(void);
398
399/**
400 * crypto_global_deinit - Deinitialize crypto wrapper
401 *
402 * This function is only used with internal TLSv1 implementation
403 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
404 * to implement this.
405 */
406void crypto_global_deinit(void);
407
408/**
409 * crypto_mod_exp - Modular exponentiation of large integers
410 * @base: Base integer (big endian byte array)
411 * @base_len: Length of base integer in bytes
412 * @power: Power integer (big endian byte array)
413 * @power_len: Length of power integer in bytes
414 * @modulus: Modulus integer (big endian byte array)
415 * @modulus_len: Length of modulus integer in bytes
416 * @result: Buffer for the result
417 * @result_len: Result length (max buffer size on input, real len on output)
418 * Returns: 0 on success, -1 on failure
419 *
420 * This function calculates result = base ^ power mod modulus. modules_len is
421 * used as the maximum size of modulus buffer. It is set to the used size on
422 * success.
423 *
424 * This function is only used with internal TLSv1 implementation
425 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
426 * to implement this.
427 */
428int __must_check crypto_mod_exp(const u8 *base, size_t base_len,
429				const u8 *power, size_t power_len,
430				const u8 *modulus, size_t modulus_len,
431				u8 *result, size_t *result_len);
432
433/**
434 * rc4_skip - XOR RC4 stream to given data with skip-stream-start
435 * @key: RC4 key
436 * @keylen: RC4 key length
437 * @skip: number of bytes to skip from the beginning of the RC4 stream
438 * @data: data to be XOR'ed with RC4 stream
439 * @data_len: buf length
440 * Returns: 0 on success, -1 on failure
441 *
442 * Generate RC4 pseudo random stream for the given key, skip beginning of the
443 * stream, and XOR the end result with the data buffer to perform RC4
444 * encryption/decryption.
445 */
446int rc4_skip(const u8 *key, size_t keylen, size_t skip,
447	     u8 *data, size_t data_len);
448
449/**
450 * crypto_get_random - Generate cryptographically strong pseudy-random bytes
451 * @buf: Buffer for data
452 * @len: Number of bytes to generate
453 * Returns: 0 on success, -1 on failure
454 *
455 * If the PRNG does not have enough entropy to ensure unpredictable byte
456 * sequence, this functions must return -1.
457 */
458int crypto_get_random(void *buf, size_t len);
459
460
461/**
462 * struct crypto_bignum - bignum
463 *
464 * Internal data structure for bignum implementation. The contents is specific
465 * to the used crypto library.
466 */
467struct crypto_bignum;
468
469/**
470 * crypto_bignum_init - Allocate memory for bignum
471 * Returns: Pointer to allocated bignum or %NULL on failure
472 */
473struct crypto_bignum * crypto_bignum_init(void);
474
475/**
476 * crypto_bignum_init_set - Allocate memory for bignum and set the value
477 * @buf: Buffer with unsigned binary value
478 * @len: Length of buf in octets
479 * Returns: Pointer to allocated bignum or %NULL on failure
480 */
481struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len);
482
483/**
484 * crypto_bignum_deinit - Free bignum
485 * @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set()
486 * @clear: Whether to clear the value from memory
487 */
488void crypto_bignum_deinit(struct crypto_bignum *n, int clear);
489
490/**
491 * crypto_bignum_to_bin - Set binary buffer to unsigned bignum
492 * @a: Bignum
493 * @buf: Buffer for the binary number
494 * @len: Length of @buf in octets
495 * @padlen: Length in octets to pad the result to or 0 to indicate no padding
496 * Returns: Number of octets written on success, -1 on failure
497 */
498int crypto_bignum_to_bin(const struct crypto_bignum *a,
499			 u8 *buf, size_t buflen, size_t padlen);
500
501/**
502 * crypto_bignum_add - c = a + b
503 * @a: Bignum
504 * @b: Bignum
505 * @c: Bignum; used to store the result of a + b
506 * Returns: 0 on success, -1 on failure
507 */
508int crypto_bignum_add(const struct crypto_bignum *a,
509		      const struct crypto_bignum *b,
510		      struct crypto_bignum *c);
511
512/**
513 * crypto_bignum_mod - c = a % b
514 * @a: Bignum
515 * @b: Bignum
516 * @c: Bignum; used to store the result of a % b
517 * Returns: 0 on success, -1 on failure
518 */
519int crypto_bignum_mod(const struct crypto_bignum *a,
520		      const struct crypto_bignum *b,
521		      struct crypto_bignum *c);
522
523/**
524 * crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c)
525 * @a: Bignum; base
526 * @b: Bignum; exponent
527 * @c: Bignum; modulus
528 * @d: Bignum; used to store the result of a^b (mod c)
529 * Returns: 0 on success, -1 on failure
530 */
531int crypto_bignum_exptmod(const struct crypto_bignum *a,
532			  const struct crypto_bignum *b,
533			  const struct crypto_bignum *c,
534			  struct crypto_bignum *d);
535
536/**
537 * crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b)
538 * @a: Bignum
539 * @b: Bignum
540 * @c: Bignum; used to store the result
541 * Returns: 0 on success, -1 on failure
542 */
543int crypto_bignum_inverse(const struct crypto_bignum *a,
544			  const struct crypto_bignum *b,
545			  struct crypto_bignum *c);
546
547/**
548 * crypto_bignum_sub - c = a - b
549 * @a: Bignum
550 * @b: Bignum
551 * @c: Bignum; used to store the result of a - b
552 * Returns: 0 on success, -1 on failure
553 */
554int crypto_bignum_sub(const struct crypto_bignum *a,
555		      const struct crypto_bignum *b,
556		      struct crypto_bignum *c);
557
558/**
559 * crypto_bignum_div - c = a / b
560 * @a: Bignum
561 * @b: Bignum
562 * @c: Bignum; used to store the result of a / b
563 * Returns: 0 on success, -1 on failure
564 */
565int crypto_bignum_div(const struct crypto_bignum *a,
566		      const struct crypto_bignum *b,
567		      struct crypto_bignum *c);
568
569/**
570 * crypto_bignum_mulmod - d = a * b (mod c)
571 * @a: Bignum
572 * @b: Bignum
573 * @c: Bignum
574 * @d: Bignum; used to store the result of (a * b) % c
575 * Returns: 0 on success, -1 on failure
576 */
577int crypto_bignum_mulmod(const struct crypto_bignum *a,
578			 const struct crypto_bignum *b,
579			 const struct crypto_bignum *c,
580			 struct crypto_bignum *d);
581
582/**
583 * crypto_bignum_cmp - Compare two bignums
584 * @a: Bignum
585 * @b: Bignum
586 * Returns: -1 if a < b, 0 if a == b, or 1 if a > b
587 */
588int crypto_bignum_cmp(const struct crypto_bignum *a,
589		      const struct crypto_bignum *b);
590
591/**
592 * crypto_bignum_bits - Get size of a bignum in bits
593 * @a: Bignum
594 * Returns: Number of bits in the bignum
595 */
596int crypto_bignum_bits(const struct crypto_bignum *a);
597
598/**
599 * crypto_bignum_is_zero - Is the given bignum zero
600 * @a: Bignum
601 * Returns: 1 if @a is zero or 0 if not
602 */
603int crypto_bignum_is_zero(const struct crypto_bignum *a);
604
605/**
606 * crypto_bignum_is_one - Is the given bignum one
607 * @a: Bignum
608 * Returns: 1 if @a is one or 0 if not
609 */
610int crypto_bignum_is_one(const struct crypto_bignum *a);
611
612/**
613 * struct crypto_ec - Elliptic curve context
614 *
615 * Internal data structure for EC implementation. The contents is specific
616 * to the used crypto library.
617 */
618struct crypto_ec;
619
620/**
621 * crypto_ec_init - Initialize elliptic curve context
622 * @group: Identifying number for the ECC group (IANA "Group Description"
623 *	attribute registrty for RFC 2409)
624 * Returns: Pointer to EC context or %NULL on failure
625 */
626struct crypto_ec * crypto_ec_init(int group);
627
628/**
629 * crypto_ec_deinit - Deinitialize elliptic curve context
630 * @e: EC context from crypto_ec_init()
631 */
632void crypto_ec_deinit(struct crypto_ec *e);
633
634/**
635 * crypto_ec_prime_len - Get length of the prime in octets
636 * @e: EC context from crypto_ec_init()
637 * Returns: Length of the prime defining the group
638 */
639size_t crypto_ec_prime_len(struct crypto_ec *e);
640
641/**
642 * crypto_ec_prime_len_bits - Get length of the prime in bits
643 * @e: EC context from crypto_ec_init()
644 * Returns: Length of the prime defining the group in bits
645 */
646size_t crypto_ec_prime_len_bits(struct crypto_ec *e);
647
648/**
649 * crypto_ec_get_prime - Get prime defining an EC group
650 * @e: EC context from crypto_ec_init()
651 * Returns: Prime (bignum) defining the group
652 */
653const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e);
654
655/**
656 * crypto_ec_get_order - Get order of an EC group
657 * @e: EC context from crypto_ec_init()
658 * Returns: Order (bignum) of the group
659 */
660const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e);
661
662/**
663 * struct crypto_ec_point - Elliptic curve point
664 *
665 * Internal data structure for EC implementation to represent a point. The
666 * contents is specific to the used crypto library.
667 */
668struct crypto_ec_point;
669
670/**
671 * crypto_ec_point_init - Initialize data for an EC point
672 * @e: EC context from crypto_ec_init()
673 * Returns: Pointer to EC point data or %NULL on failure
674 */
675struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e);
676
677/**
678 * crypto_ec_point_deinit - Deinitialize EC point data
679 * @p: EC point data from crypto_ec_point_init()
680 * @clear: Whether to clear the EC point value from memory
681 */
682void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear);
683
684/**
685 * crypto_ec_point_to_bin - Write EC point value as binary data
686 * @e: EC context from crypto_ec_init()
687 * @p: EC point data from crypto_ec_point_init()
688 * @x: Buffer for writing the binary data for x coordinate or %NULL if not used
689 * @y: Buffer for writing the binary data for y coordinate or %NULL if not used
690 * Returns: 0 on success, -1 on failure
691 *
692 * This function can be used to write an EC point as binary data in a format
693 * that has the x and y coordinates in big endian byte order fields padded to
694 * the length of the prime defining the group.
695 */
696int crypto_ec_point_to_bin(struct crypto_ec *e,
697			   const struct crypto_ec_point *point, u8 *x, u8 *y);
698
699/**
700 * crypto_ec_point_from_bin - Create EC point from binary data
701 * @e: EC context from crypto_ec_init()
702 * @val: Binary data to read the EC point from
703 * Returns: Pointer to EC point data or %NULL on failure
704 *
705 * This function readers x and y coordinates of the EC point from the provided
706 * buffer assuming the values are in big endian byte order with fields padded to
707 * the length of the prime defining the group.
708 */
709struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
710						  const u8 *val);
711
712/**
713 * crypto_bignum_add - c = a + b
714 * @e: EC context from crypto_ec_init()
715 * @a: Bignum
716 * @b: Bignum
717 * @c: Bignum; used to store the result of a + b
718 * Returns: 0 on success, -1 on failure
719 */
720int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
721			const struct crypto_ec_point *b,
722			struct crypto_ec_point *c);
723
724/**
725 * crypto_bignum_mul - res = b * p
726 * @e: EC context from crypto_ec_init()
727 * @p: EC point
728 * @b: Bignum
729 * @res: EC point; used to store the result of b * p
730 * Returns: 0 on success, -1 on failure
731 */
732int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
733			const struct crypto_bignum *b,
734			struct crypto_ec_point *res);
735
736/**
737 * crypto_ec_point_invert - Compute inverse of an EC point
738 * @e: EC context from crypto_ec_init()
739 * @p: EC point to invert (and result of the operation)
740 * Returns: 0 on success, -1 on failure
741 */
742int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p);
743
744/**
745 * crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate
746 * @e: EC context from crypto_ec_init()
747 * @p: EC point to use for the returning the result
748 * @x: x coordinate
749 * @y_bit: y-bit (0 or 1) for selecting the y value to use
750 * Returns: 0 on success, -1 on failure
751 */
752int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
753				  struct crypto_ec_point *p,
754				  const struct crypto_bignum *x, int y_bit);
755
756/**
757 * crypto_ec_point_is_at_infinity - Check whether EC point is neutral element
758 * @e: EC context from crypto_ec_init()
759 * @p: EC point
760 * Returns: 1 if the specified EC point is the neutral element of the group or
761 *	0 if not
762 */
763int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
764				   const struct crypto_ec_point *p);
765
766/**
767 * crypto_ec_point_is_on_curve - Check whether EC point is on curve
768 * @e: EC context from crypto_ec_init()
769 * @p: EC point
770 * Returns: 1 if the specified EC point is on the curve or 0 if not
771 */
772int crypto_ec_point_is_on_curve(struct crypto_ec *e,
773				const struct crypto_ec_point *p);
774
775#endif /* CRYPTO_H */
776