crypto_openssl.c revision 7f0b69e88015ca077ef7a417fde0a76c10df23a5
1/*
2 * Wrapper functions for OpenSSL libcrypto
3 * Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9#include "includes.h"
10#include <openssl/opensslv.h>
11#include <openssl/err.h>
12#include <openssl/des.h>
13#include <openssl/aes.h>
14#include <openssl/bn.h>
15#include <openssl/evp.h>
16#include <openssl/dh.h>
17#include <openssl/hmac.h>
18#include <openssl/rand.h>
19#ifdef CONFIG_OPENSSL_CMAC
20#include <openssl/cmac.h>
21#endif /* CONFIG_OPENSSL_CMAC */
22#ifdef CONFIG_ECC
23#include <openssl/ec.h>
24#endif /* CONFIG_ECC */
25
26#include "common.h"
27#include "wpabuf.h"
28#include "dh_group5.h"
29#include "sha1.h"
30#include "sha256.h"
31#include "crypto.h"
32
33#if OPENSSL_VERSION_NUMBER < 0x00907000
34#define DES_key_schedule des_key_schedule
35#define DES_cblock des_cblock
36#define DES_set_key(key, schedule) des_set_key((key), *(schedule))
37#define DES_ecb_encrypt(input, output, ks, enc) \
38	des_ecb_encrypt((input), (output), *(ks), (enc))
39#endif /* openssl < 0.9.7 */
40
41static BIGNUM * get_group5_prime(void)
42{
43#if OPENSSL_VERSION_NUMBER < 0x00908000
44	static const unsigned char RFC3526_PRIME_1536[] = {
45		0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
46		0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
47		0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
48		0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
49		0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
50		0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
51		0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
52		0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
53		0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
54		0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
55		0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
56		0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
57		0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
58		0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
59		0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
60		0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
61	};
62        return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
63#else /* openssl < 0.9.8 */
64	return get_rfc3526_prime_1536(NULL);
65#endif /* openssl < 0.9.8 */
66}
67
68#if OPENSSL_VERSION_NUMBER < 0x00908000
69#ifndef OPENSSL_NO_SHA256
70#ifndef OPENSSL_FIPS
71#define NO_SHA256_WRAPPER
72#endif
73#endif
74
75#endif /* openssl < 0.9.8 */
76
77#ifdef OPENSSL_NO_SHA256
78#define NO_SHA256_WRAPPER
79#endif
80
81static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
82				 const u8 *addr[], const size_t *len, u8 *mac)
83{
84	EVP_MD_CTX ctx;
85	size_t i;
86	unsigned int mac_len;
87
88	EVP_MD_CTX_init(&ctx);
89	if (!EVP_DigestInit_ex(&ctx, type, NULL)) {
90		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
91			   ERR_error_string(ERR_get_error(), NULL));
92		return -1;
93	}
94	for (i = 0; i < num_elem; i++) {
95		if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) {
96			wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
97				   "failed: %s",
98				   ERR_error_string(ERR_get_error(), NULL));
99			return -1;
100		}
101	}
102	if (!EVP_DigestFinal(&ctx, mac, &mac_len)) {
103		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
104			   ERR_error_string(ERR_get_error(), NULL));
105		return -1;
106	}
107
108	return 0;
109}
110
111
112int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
113{
114	return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
115}
116
117
118void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
119{
120	u8 pkey[8], next, tmp;
121	int i;
122	DES_key_schedule ks;
123
124	/* Add parity bits to the key */
125	next = 0;
126	for (i = 0; i < 7; i++) {
127		tmp = key[i];
128		pkey[i] = (tmp >> i) | next | 1;
129		next = tmp << (7 - i);
130	}
131	pkey[i] = next | 1;
132
133	DES_set_key(&pkey, &ks);
134	DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
135			DES_ENCRYPT);
136}
137
138
139int rc4_skip(const u8 *key, size_t keylen, size_t skip,
140	     u8 *data, size_t data_len)
141{
142#ifdef OPENSSL_NO_RC4
143	return -1;
144#else /* OPENSSL_NO_RC4 */
145	EVP_CIPHER_CTX ctx;
146	int outl;
147	int res = -1;
148	unsigned char skip_buf[16];
149
150	EVP_CIPHER_CTX_init(&ctx);
151	if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) ||
152	    !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
153	    !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) ||
154	    !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1))
155		goto out;
156
157	while (skip >= sizeof(skip_buf)) {
158		size_t len = skip;
159		if (len > sizeof(skip_buf))
160			len = sizeof(skip_buf);
161		if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len))
162			goto out;
163		skip -= len;
164	}
165
166	if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len))
167		res = 0;
168
169out:
170	EVP_CIPHER_CTX_cleanup(&ctx);
171	return res;
172#endif /* OPENSSL_NO_RC4 */
173}
174
175
176int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
177{
178	return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
179}
180
181
182int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
183{
184	return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
185}
186
187
188#ifndef NO_SHA256_WRAPPER
189int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
190		  u8 *mac)
191{
192	return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
193}
194#endif /* NO_SHA256_WRAPPER */
195
196
197static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
198{
199	switch (keylen) {
200	case 16:
201		return EVP_aes_128_ecb();
202	case 24:
203		return EVP_aes_192_ecb();
204	case 32:
205		return EVP_aes_256_ecb();
206	}
207
208	return NULL;
209}
210
211
212void * aes_encrypt_init(const u8 *key, size_t len)
213{
214	EVP_CIPHER_CTX *ctx;
215	const EVP_CIPHER *type;
216
217	type = aes_get_evp_cipher(len);
218	if (type == NULL)
219		return NULL;
220
221	ctx = os_malloc(sizeof(*ctx));
222	if (ctx == NULL)
223		return NULL;
224	EVP_CIPHER_CTX_init(ctx);
225	if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
226		os_free(ctx);
227		return NULL;
228	}
229	EVP_CIPHER_CTX_set_padding(ctx, 0);
230	return ctx;
231}
232
233
234void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
235{
236	EVP_CIPHER_CTX *c = ctx;
237	int clen = 16;
238	if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
239		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
240			   ERR_error_string(ERR_get_error(), NULL));
241	}
242}
243
244
245void aes_encrypt_deinit(void *ctx)
246{
247	EVP_CIPHER_CTX *c = ctx;
248	u8 buf[16];
249	int len = sizeof(buf);
250	if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
251		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
252			   "%s", ERR_error_string(ERR_get_error(), NULL));
253	}
254	if (len != 0) {
255		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
256			   "in AES encrypt", len);
257	}
258	EVP_CIPHER_CTX_cleanup(c);
259	os_free(c);
260}
261
262
263void * aes_decrypt_init(const u8 *key, size_t len)
264{
265	EVP_CIPHER_CTX *ctx;
266	const EVP_CIPHER *type;
267
268	type = aes_get_evp_cipher(len);
269	if (type == NULL)
270		return NULL;
271
272	ctx = os_malloc(sizeof(*ctx));
273	if (ctx == NULL)
274		return NULL;
275	EVP_CIPHER_CTX_init(ctx);
276	if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
277		os_free(ctx);
278		return NULL;
279	}
280	EVP_CIPHER_CTX_set_padding(ctx, 0);
281	return ctx;
282}
283
284
285void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
286{
287	EVP_CIPHER_CTX *c = ctx;
288	int plen = 16;
289	if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
290		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
291			   ERR_error_string(ERR_get_error(), NULL));
292	}
293}
294
295
296void aes_decrypt_deinit(void *ctx)
297{
298	EVP_CIPHER_CTX *c = ctx;
299	u8 buf[16];
300	int len = sizeof(buf);
301	if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
302		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
303			   "%s", ERR_error_string(ERR_get_error(), NULL));
304	}
305	if (len != 0) {
306		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
307			   "in AES decrypt", len);
308	}
309	EVP_CIPHER_CTX_cleanup(c);
310	os_free(ctx);
311}
312
313
314int crypto_mod_exp(const u8 *base, size_t base_len,
315		   const u8 *power, size_t power_len,
316		   const u8 *modulus, size_t modulus_len,
317		   u8 *result, size_t *result_len)
318{
319	BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
320	int ret = -1;
321	BN_CTX *ctx;
322
323	ctx = BN_CTX_new();
324	if (ctx == NULL)
325		return -1;
326
327	bn_base = BN_bin2bn(base, base_len, NULL);
328	bn_exp = BN_bin2bn(power, power_len, NULL);
329	bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
330	bn_result = BN_new();
331
332	if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
333	    bn_result == NULL)
334		goto error;
335
336	if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
337		goto error;
338
339	*result_len = BN_bn2bin(bn_result, result);
340	ret = 0;
341
342error:
343	BN_clear_free(bn_base);
344	BN_clear_free(bn_exp);
345	BN_clear_free(bn_modulus);
346	BN_clear_free(bn_result);
347	BN_CTX_free(ctx);
348	return ret;
349}
350
351
352struct crypto_cipher {
353	EVP_CIPHER_CTX enc;
354	EVP_CIPHER_CTX dec;
355};
356
357
358struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
359					  const u8 *iv, const u8 *key,
360					  size_t key_len)
361{
362	struct crypto_cipher *ctx;
363	const EVP_CIPHER *cipher;
364
365	ctx = os_zalloc(sizeof(*ctx));
366	if (ctx == NULL)
367		return NULL;
368
369	switch (alg) {
370#ifndef OPENSSL_NO_RC4
371	case CRYPTO_CIPHER_ALG_RC4:
372		cipher = EVP_rc4();
373		break;
374#endif /* OPENSSL_NO_RC4 */
375#ifndef OPENSSL_NO_AES
376	case CRYPTO_CIPHER_ALG_AES:
377		switch (key_len) {
378		case 16:
379			cipher = EVP_aes_128_cbc();
380			break;
381		case 24:
382			cipher = EVP_aes_192_cbc();
383			break;
384		case 32:
385			cipher = EVP_aes_256_cbc();
386			break;
387		default:
388			os_free(ctx);
389			return NULL;
390		}
391		break;
392#endif /* OPENSSL_NO_AES */
393#ifndef OPENSSL_NO_DES
394	case CRYPTO_CIPHER_ALG_3DES:
395		cipher = EVP_des_ede3_cbc();
396		break;
397	case CRYPTO_CIPHER_ALG_DES:
398		cipher = EVP_des_cbc();
399		break;
400#endif /* OPENSSL_NO_DES */
401#ifndef OPENSSL_NO_RC2
402	case CRYPTO_CIPHER_ALG_RC2:
403		cipher = EVP_rc2_ecb();
404		break;
405#endif /* OPENSSL_NO_RC2 */
406	default:
407		os_free(ctx);
408		return NULL;
409	}
410
411	EVP_CIPHER_CTX_init(&ctx->enc);
412	EVP_CIPHER_CTX_set_padding(&ctx->enc, 0);
413	if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) ||
414	    !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) ||
415	    !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) {
416		EVP_CIPHER_CTX_cleanup(&ctx->enc);
417		os_free(ctx);
418		return NULL;
419	}
420
421	EVP_CIPHER_CTX_init(&ctx->dec);
422	EVP_CIPHER_CTX_set_padding(&ctx->dec, 0);
423	if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) ||
424	    !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) ||
425	    !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) {
426		EVP_CIPHER_CTX_cleanup(&ctx->enc);
427		EVP_CIPHER_CTX_cleanup(&ctx->dec);
428		os_free(ctx);
429		return NULL;
430	}
431
432	return ctx;
433}
434
435
436int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
437			  u8 *crypt, size_t len)
438{
439	int outl;
440	if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len))
441		return -1;
442	return 0;
443}
444
445
446int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
447			  u8 *plain, size_t len)
448{
449	int outl;
450	outl = len;
451	if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len))
452		return -1;
453	return 0;
454}
455
456
457void crypto_cipher_deinit(struct crypto_cipher *ctx)
458{
459	EVP_CIPHER_CTX_cleanup(&ctx->enc);
460	EVP_CIPHER_CTX_cleanup(&ctx->dec);
461	os_free(ctx);
462}
463
464
465void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
466{
467	DH *dh;
468	struct wpabuf *pubkey = NULL, *privkey = NULL;
469	size_t publen, privlen;
470
471	*priv = NULL;
472	*publ = NULL;
473
474	dh = DH_new();
475	if (dh == NULL)
476		return NULL;
477
478	dh->g = BN_new();
479	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
480		goto err;
481
482	dh->p = get_group5_prime();
483	if (dh->p == NULL)
484		goto err;
485
486	if (DH_generate_key(dh) != 1)
487		goto err;
488
489	publen = BN_num_bytes(dh->pub_key);
490	pubkey = wpabuf_alloc(publen);
491	if (pubkey == NULL)
492		goto err;
493	privlen = BN_num_bytes(dh->priv_key);
494	privkey = wpabuf_alloc(privlen);
495	if (privkey == NULL)
496		goto err;
497
498	BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
499	BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
500
501	*priv = privkey;
502	*publ = pubkey;
503	return dh;
504
505err:
506	wpabuf_free(pubkey);
507	wpabuf_free(privkey);
508	DH_free(dh);
509	return NULL;
510}
511
512
513void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
514{
515	DH *dh;
516
517	dh = DH_new();
518	if (dh == NULL)
519		return NULL;
520
521	dh->g = BN_new();
522	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
523		goto err;
524
525	dh->p = get_group5_prime();
526	if (dh->p == NULL)
527		goto err;
528
529	dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
530	if (dh->priv_key == NULL)
531		goto err;
532
533	dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
534	if (dh->pub_key == NULL)
535		goto err;
536
537	if (DH_generate_key(dh) != 1)
538		goto err;
539
540	return dh;
541
542err:
543	DH_free(dh);
544	return NULL;
545}
546
547
548struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
549				  const struct wpabuf *own_private)
550{
551	BIGNUM *pub_key;
552	struct wpabuf *res = NULL;
553	size_t rlen;
554	DH *dh = ctx;
555	int keylen;
556
557	if (ctx == NULL)
558		return NULL;
559
560	pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
561			    NULL);
562	if (pub_key == NULL)
563		return NULL;
564
565	rlen = DH_size(dh);
566	res = wpabuf_alloc(rlen);
567	if (res == NULL)
568		goto err;
569
570	keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
571	if (keylen < 0)
572		goto err;
573	wpabuf_put(res, keylen);
574	BN_clear_free(pub_key);
575
576	return res;
577
578err:
579	BN_clear_free(pub_key);
580	wpabuf_free(res);
581	return NULL;
582}
583
584
585void dh5_free(void *ctx)
586{
587	DH *dh;
588	if (ctx == NULL)
589		return;
590	dh = ctx;
591	DH_free(dh);
592}
593
594
595struct crypto_hash {
596	HMAC_CTX ctx;
597};
598
599
600struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
601				      size_t key_len)
602{
603	struct crypto_hash *ctx;
604	const EVP_MD *md;
605
606	switch (alg) {
607#ifndef OPENSSL_NO_MD5
608	case CRYPTO_HASH_ALG_HMAC_MD5:
609		md = EVP_md5();
610		break;
611#endif /* OPENSSL_NO_MD5 */
612#ifndef OPENSSL_NO_SHA
613	case CRYPTO_HASH_ALG_HMAC_SHA1:
614		md = EVP_sha1();
615		break;
616#endif /* OPENSSL_NO_SHA */
617#ifndef OPENSSL_NO_SHA256
618#ifdef CONFIG_SHA256
619	case CRYPTO_HASH_ALG_HMAC_SHA256:
620		md = EVP_sha256();
621		break;
622#endif /* CONFIG_SHA256 */
623#endif /* OPENSSL_NO_SHA256 */
624	default:
625		return NULL;
626	}
627
628	ctx = os_zalloc(sizeof(*ctx));
629	if (ctx == NULL)
630		return NULL;
631	HMAC_CTX_init(&ctx->ctx);
632
633#if OPENSSL_VERSION_NUMBER < 0x00909000
634	HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL);
635#else /* openssl < 0.9.9 */
636	if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) {
637		os_free(ctx);
638		return NULL;
639	}
640#endif /* openssl < 0.9.9 */
641
642	return ctx;
643}
644
645
646void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
647{
648	if (ctx == NULL)
649		return;
650	HMAC_Update(&ctx->ctx, data, len);
651}
652
653
654int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
655{
656	unsigned int mdlen;
657	int res;
658
659	if (ctx == NULL)
660		return -2;
661
662	if (mac == NULL || len == NULL) {
663		os_free(ctx);
664		return 0;
665	}
666
667	mdlen = *len;
668#if OPENSSL_VERSION_NUMBER < 0x00909000
669	HMAC_Final(&ctx->ctx, mac, &mdlen);
670	res = 1;
671#else /* openssl < 0.9.9 */
672	res = HMAC_Final(&ctx->ctx, mac, &mdlen);
673#endif /* openssl < 0.9.9 */
674	HMAC_CTX_cleanup(&ctx->ctx);
675	os_free(ctx);
676
677	if (res == 1) {
678		*len = mdlen;
679		return 0;
680	}
681
682	return -1;
683}
684
685
686int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
687		int iterations, u8 *buf, size_t buflen)
688{
689#if OPENSSL_VERSION_NUMBER < 0x00908000
690	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase),
691				   (unsigned char *) ssid,
692				   ssid_len, 4096, buflen, buf) != 1)
693		return -1;
694#else /* openssl < 0.9.8 */
695	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
696				   ssid_len, 4096, buflen, buf) != 1)
697		return -1;
698#endif /* openssl < 0.9.8 */
699	return 0;
700}
701
702
703int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
704		     const u8 *addr[], const size_t *len, u8 *mac)
705{
706	HMAC_CTX ctx;
707	size_t i;
708	unsigned int mdlen;
709	int res;
710
711	HMAC_CTX_init(&ctx);
712#if OPENSSL_VERSION_NUMBER < 0x00909000
713	HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL);
714#else /* openssl < 0.9.9 */
715	if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL) != 1)
716		return -1;
717#endif /* openssl < 0.9.9 */
718
719	for (i = 0; i < num_elem; i++)
720		HMAC_Update(&ctx, addr[i], len[i]);
721
722	mdlen = 20;
723#if OPENSSL_VERSION_NUMBER < 0x00909000
724	HMAC_Final(&ctx, mac, &mdlen);
725	res = 1;
726#else /* openssl < 0.9.9 */
727	res = HMAC_Final(&ctx, mac, &mdlen);
728#endif /* openssl < 0.9.9 */
729	HMAC_CTX_cleanup(&ctx);
730
731	return res == 1 ? 0 : -1;
732}
733
734
735int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
736	       u8 *mac)
737{
738	return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
739}
740
741
742#ifdef CONFIG_SHA256
743
744int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
745		       const u8 *addr[], const size_t *len, u8 *mac)
746{
747	HMAC_CTX ctx;
748	size_t i;
749	unsigned int mdlen;
750	int res;
751
752	HMAC_CTX_init(&ctx);
753#if OPENSSL_VERSION_NUMBER < 0x00909000
754	HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL);
755#else /* openssl < 0.9.9 */
756	if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL) != 1)
757		return -1;
758#endif /* openssl < 0.9.9 */
759
760	for (i = 0; i < num_elem; i++)
761		HMAC_Update(&ctx, addr[i], len[i]);
762
763	mdlen = 32;
764#if OPENSSL_VERSION_NUMBER < 0x00909000
765	HMAC_Final(&ctx, mac, &mdlen);
766	res = 1;
767#else /* openssl < 0.9.9 */
768	res = HMAC_Final(&ctx, mac, &mdlen);
769#endif /* openssl < 0.9.9 */
770	HMAC_CTX_cleanup(&ctx);
771
772	return res == 1 ? 0 : -1;
773}
774
775
776int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
777		size_t data_len, u8 *mac)
778{
779	return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
780}
781
782#endif /* CONFIG_SHA256 */
783
784
785int crypto_get_random(void *buf, size_t len)
786{
787	if (RAND_bytes(buf, len) != 1)
788		return -1;
789	return 0;
790}
791
792
793#ifdef CONFIG_OPENSSL_CMAC
794int omac1_aes_128_vector(const u8 *key, size_t num_elem,
795			 const u8 *addr[], const size_t *len, u8 *mac)
796{
797	CMAC_CTX *ctx;
798	int ret = -1;
799	size_t outlen, i;
800
801	ctx = CMAC_CTX_new();
802	if (ctx == NULL)
803		return -1;
804
805	if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
806		goto fail;
807	for (i = 0; i < num_elem; i++) {
808		if (!CMAC_Update(ctx, addr[i], len[i]))
809			goto fail;
810	}
811	if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
812		goto fail;
813
814	ret = 0;
815fail:
816	CMAC_CTX_free(ctx);
817	return ret;
818}
819
820
821int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
822{
823	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
824}
825#endif /* CONFIG_OPENSSL_CMAC */
826
827
828struct crypto_bignum * crypto_bignum_init(void)
829{
830	return (struct crypto_bignum *) BN_new();
831}
832
833
834struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
835{
836	BIGNUM *bn = BN_bin2bn(buf, len, NULL);
837	return (struct crypto_bignum *) bn;
838}
839
840
841void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
842{
843	if (clear)
844		BN_clear_free((BIGNUM *) n);
845	else
846		BN_free((BIGNUM *) n);
847}
848
849
850int crypto_bignum_to_bin(const struct crypto_bignum *a,
851			 u8 *buf, size_t buflen, size_t padlen)
852{
853	int num_bytes, offset;
854
855	if (padlen > buflen)
856		return -1;
857
858	num_bytes = BN_num_bytes((const BIGNUM *) a);
859	if ((size_t) num_bytes > buflen)
860		return -1;
861	if (padlen > (size_t) num_bytes)
862		offset = padlen - num_bytes;
863	else
864		offset = 0;
865
866	os_memset(buf, 0, offset);
867	BN_bn2bin((const BIGNUM *) a, buf + offset);
868
869	return num_bytes + offset;
870}
871
872
873int crypto_bignum_add(const struct crypto_bignum *a,
874		      const struct crypto_bignum *b,
875		      struct crypto_bignum *c)
876{
877	return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
878		0 : -1;
879}
880
881
882int crypto_bignum_mod(const struct crypto_bignum *a,
883		      const struct crypto_bignum *b,
884		      struct crypto_bignum *c)
885{
886	int res;
887	BN_CTX *bnctx;
888
889	bnctx = BN_CTX_new();
890	if (bnctx == NULL)
891		return -1;
892	res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
893		     bnctx);
894	BN_CTX_free(bnctx);
895
896	return res ? 0 : -1;
897}
898
899
900int crypto_bignum_exptmod(const struct crypto_bignum *a,
901			  const struct crypto_bignum *b,
902			  const struct crypto_bignum *c,
903			  struct crypto_bignum *d)
904{
905	int res;
906	BN_CTX *bnctx;
907
908	bnctx = BN_CTX_new();
909	if (bnctx == NULL)
910		return -1;
911	res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
912			 (const BIGNUM *) c, bnctx);
913	BN_CTX_free(bnctx);
914
915	return res ? 0 : -1;
916}
917
918
919int crypto_bignum_inverse(const struct crypto_bignum *a,
920			  const struct crypto_bignum *b,
921			  struct crypto_bignum *c)
922{
923	BIGNUM *res;
924	BN_CTX *bnctx;
925
926	bnctx = BN_CTX_new();
927	if (bnctx == NULL)
928		return -1;
929	res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
930			     (const BIGNUM *) b, bnctx);
931	BN_CTX_free(bnctx);
932
933	return res ? 0 : -1;
934}
935
936
937int crypto_bignum_sub(const struct crypto_bignum *a,
938		      const struct crypto_bignum *b,
939		      struct crypto_bignum *c)
940{
941	return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
942		0 : -1;
943}
944
945
946int crypto_bignum_div(const struct crypto_bignum *a,
947		      const struct crypto_bignum *b,
948		      struct crypto_bignum *c)
949{
950	int res;
951
952	BN_CTX *bnctx;
953
954	bnctx = BN_CTX_new();
955	if (bnctx == NULL)
956		return -1;
957	res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
958		     (const BIGNUM *) b, bnctx);
959	BN_CTX_free(bnctx);
960
961	return res ? 0 : -1;
962}
963
964
965int crypto_bignum_mulmod(const struct crypto_bignum *a,
966			 const struct crypto_bignum *b,
967			 const struct crypto_bignum *c,
968			 struct crypto_bignum *d)
969{
970	int res;
971
972	BN_CTX *bnctx;
973
974	bnctx = BN_CTX_new();
975	if (bnctx == NULL)
976		return -1;
977	res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
978			 (const BIGNUM *) c, bnctx);
979	BN_CTX_free(bnctx);
980
981	return res ? 0 : -1;
982}
983
984
985int crypto_bignum_cmp(const struct crypto_bignum *a,
986		      const struct crypto_bignum *b)
987{
988	return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
989}
990
991
992int crypto_bignum_bits(const struct crypto_bignum *a)
993{
994	return BN_num_bits((const BIGNUM *) a);
995}
996
997
998int crypto_bignum_is_zero(const struct crypto_bignum *a)
999{
1000	return BN_is_zero((const BIGNUM *) a);
1001}
1002
1003
1004int crypto_bignum_is_one(const struct crypto_bignum *a)
1005{
1006	return BN_is_one((const BIGNUM *) a);
1007}
1008
1009
1010#ifdef CONFIG_ECC
1011
1012struct crypto_ec {
1013	EC_GROUP *group;
1014	BN_CTX *bnctx;
1015	BIGNUM *prime;
1016	BIGNUM *order;
1017};
1018
1019struct crypto_ec * crypto_ec_init(int group)
1020{
1021	struct crypto_ec *e;
1022	int nid;
1023
1024	/* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1025	switch (group) {
1026	case 19:
1027		nid = NID_X9_62_prime256v1;
1028		break;
1029	case 20:
1030		nid = NID_secp384r1;
1031		break;
1032	case 21:
1033		nid = NID_secp521r1;
1034		break;
1035	case 25:
1036		nid = NID_X9_62_prime192v1;
1037		break;
1038	case 26:
1039		nid = NID_secp224r1;
1040		break;
1041	default:
1042		return NULL;
1043	}
1044
1045	e = os_zalloc(sizeof(*e));
1046	if (e == NULL)
1047		return NULL;
1048
1049	e->bnctx = BN_CTX_new();
1050	e->group = EC_GROUP_new_by_curve_name(nid);
1051	e->prime = BN_new();
1052	e->order = BN_new();
1053	if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1054	    e->order == NULL ||
1055	    !EC_GROUP_get_curve_GFp(e->group, e->prime, NULL, NULL, e->bnctx) ||
1056	    !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1057		crypto_ec_deinit(e);
1058		e = NULL;
1059	}
1060
1061	return e;
1062}
1063
1064
1065void crypto_ec_deinit(struct crypto_ec *e)
1066{
1067	if (e == NULL)
1068		return;
1069	BN_clear_free(e->order);
1070	EC_GROUP_free(e->group);
1071	BN_CTX_free(e->bnctx);
1072	os_free(e);
1073}
1074
1075
1076struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1077{
1078	if (e == NULL)
1079		return NULL;
1080	return (struct crypto_ec_point *) EC_POINT_new(e->group);
1081}
1082
1083
1084size_t crypto_ec_prime_len(struct crypto_ec *e)
1085{
1086	return BN_num_bytes(e->prime);
1087}
1088
1089
1090size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1091{
1092	return BN_num_bits(e->prime);
1093}
1094
1095
1096const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1097{
1098	return (const struct crypto_bignum *) e->prime;
1099}
1100
1101
1102const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1103{
1104	return (const struct crypto_bignum *) e->order;
1105}
1106
1107
1108void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1109{
1110	if (clear)
1111		EC_POINT_clear_free((EC_POINT *) p);
1112	else
1113		EC_POINT_free((EC_POINT *) p);
1114}
1115
1116
1117int crypto_ec_point_to_bin(struct crypto_ec *e,
1118			   const struct crypto_ec_point *point, u8 *x, u8 *y)
1119{
1120	BIGNUM *x_bn, *y_bn;
1121	int ret = -1;
1122	int len = BN_num_bytes(e->prime);
1123
1124	x_bn = BN_new();
1125	y_bn = BN_new();
1126
1127	if (x_bn && y_bn &&
1128	    EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1129						x_bn, y_bn, e->bnctx)) {
1130		if (x) {
1131			crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1132					     x, len, len);
1133		}
1134		if (y) {
1135			crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1136					     y, len, len);
1137		}
1138		ret = 0;
1139	}
1140
1141	BN_clear_free(x_bn);
1142	BN_clear_free(y_bn);
1143	return ret;
1144}
1145
1146
1147struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1148						  const u8 *val)
1149{
1150	BIGNUM *x, *y;
1151	EC_POINT *elem;
1152	int len = BN_num_bytes(e->prime);
1153
1154	x = BN_bin2bn(val, len, NULL);
1155	y = BN_bin2bn(val + len, len, NULL);
1156	elem = EC_POINT_new(e->group);
1157	if (x == NULL || y == NULL || elem == NULL) {
1158		BN_clear_free(x);
1159		BN_clear_free(y);
1160		EC_POINT_clear_free(elem);
1161		return NULL;
1162	}
1163
1164	if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1165						 e->bnctx)) {
1166		EC_POINT_clear_free(elem);
1167		elem = NULL;
1168	}
1169
1170	BN_clear_free(x);
1171	BN_clear_free(y);
1172
1173	return (struct crypto_ec_point *) elem;
1174}
1175
1176
1177int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1178			const struct crypto_ec_point *b,
1179			struct crypto_ec_point *c)
1180{
1181	return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1182			    (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1183}
1184
1185
1186int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1187			const struct crypto_bignum *b,
1188			struct crypto_ec_point *res)
1189{
1190	return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1191			    (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1192		? 0 : -1;
1193}
1194
1195
1196int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1197{
1198	return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1199}
1200
1201
1202int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1203				  struct crypto_ec_point *p,
1204				  const struct crypto_bignum *x, int y_bit)
1205{
1206	if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1207						     (const BIGNUM *) x, y_bit,
1208						     e->bnctx) ||
1209	    !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1210		return -1;
1211	return 0;
1212}
1213
1214
1215int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1216				   const struct crypto_ec_point *p)
1217{
1218	return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1219}
1220
1221
1222int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1223				const struct crypto_ec_point *p)
1224{
1225	return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p, e->bnctx);
1226}
1227
1228#endif /* CONFIG_ECC */
1229