crypto_openssl.c revision 9ead16e203b81d44a2d84eadc2901ceeb7daf805
1/*
2 * Wrapper functions for OpenSSL libcrypto
3 * Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9#include "includes.h"
10#include <openssl/opensslv.h>
11#include <openssl/err.h>
12#include <openssl/des.h>
13#include <openssl/aes.h>
14#include <openssl/bn.h>
15#include <openssl/evp.h>
16#include <openssl/dh.h>
17#include <openssl/hmac.h>
18#include <openssl/rand.h>
19#ifdef CONFIG_OPENSSL_CMAC
20#include <openssl/cmac.h>
21#endif /* CONFIG_OPENSSL_CMAC */
22#ifdef CONFIG_ECC
23#include <openssl/ec.h>
24#endif /* CONFIG_ECC */
25
26#include "common.h"
27#include "wpabuf.h"
28#include "dh_group5.h"
29#include "sha1.h"
30#include "sha256.h"
31#include "crypto.h"
32
33#if OPENSSL_VERSION_NUMBER < 0x00907000
34#define DES_key_schedule des_key_schedule
35#define DES_cblock des_cblock
36#define DES_set_key(key, schedule) des_set_key((key), *(schedule))
37#define DES_ecb_encrypt(input, output, ks, enc) \
38	des_ecb_encrypt((input), (output), *(ks), (enc))
39#endif /* openssl < 0.9.7 */
40
41static BIGNUM * get_group5_prime(void)
42{
43#if OPENSSL_VERSION_NUMBER < 0x00908000 || defined(OPENSSL_IS_BORINGSSL)
44	static const unsigned char RFC3526_PRIME_1536[] = {
45		0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
46		0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
47		0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
48		0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
49		0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
50		0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
51		0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
52		0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
53		0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
54		0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
55		0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
56		0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
57		0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
58		0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
59		0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
60		0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
61	};
62        return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
63#else /* openssl < 0.9.8 */
64	return get_rfc3526_prime_1536(NULL);
65#endif /* openssl < 0.9.8 */
66}
67
68#if OPENSSL_VERSION_NUMBER < 0x00908000
69#ifndef OPENSSL_NO_SHA256
70#ifndef OPENSSL_FIPS
71#define NO_SHA256_WRAPPER
72#endif
73#endif
74
75#endif /* openssl < 0.9.8 */
76
77#ifdef OPENSSL_NO_SHA256
78#define NO_SHA256_WRAPPER
79#endif
80
81static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
82				 const u8 *addr[], const size_t *len, u8 *mac)
83{
84	EVP_MD_CTX ctx;
85	size_t i;
86	unsigned int mac_len;
87
88	EVP_MD_CTX_init(&ctx);
89	if (!EVP_DigestInit_ex(&ctx, type, NULL)) {
90		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
91			   ERR_error_string(ERR_get_error(), NULL));
92		return -1;
93	}
94	for (i = 0; i < num_elem; i++) {
95		if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) {
96			wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
97				   "failed: %s",
98				   ERR_error_string(ERR_get_error(), NULL));
99			return -1;
100		}
101	}
102	if (!EVP_DigestFinal(&ctx, mac, &mac_len)) {
103		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
104			   ERR_error_string(ERR_get_error(), NULL));
105		return -1;
106	}
107
108	return 0;
109}
110
111
112int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
113{
114	return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
115}
116
117
118void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
119{
120	u8 pkey[8], next, tmp;
121	int i;
122	DES_key_schedule ks;
123
124	/* Add parity bits to the key */
125	next = 0;
126	for (i = 0; i < 7; i++) {
127		tmp = key[i];
128		pkey[i] = (tmp >> i) | next | 1;
129		next = tmp << (7 - i);
130	}
131	pkey[i] = next | 1;
132
133	DES_set_key((DES_cblock *) &pkey, &ks);
134	DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
135			DES_ENCRYPT);
136}
137
138
139int rc4_skip(const u8 *key, size_t keylen, size_t skip,
140	     u8 *data, size_t data_len)
141{
142#ifdef OPENSSL_NO_RC4
143	return -1;
144#else /* OPENSSL_NO_RC4 */
145	EVP_CIPHER_CTX ctx;
146	int outl;
147	int res = -1;
148	unsigned char skip_buf[16];
149
150	EVP_CIPHER_CTX_init(&ctx);
151	if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) ||
152	    !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
153	    !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) ||
154	    !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1))
155		goto out;
156
157	while (skip >= sizeof(skip_buf)) {
158		size_t len = skip;
159		if (len > sizeof(skip_buf))
160			len = sizeof(skip_buf);
161		if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len))
162			goto out;
163		skip -= len;
164	}
165
166	if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len))
167		res = 0;
168
169out:
170	EVP_CIPHER_CTX_cleanup(&ctx);
171	return res;
172#endif /* OPENSSL_NO_RC4 */
173}
174
175
176int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
177{
178	return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
179}
180
181
182int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
183{
184	return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
185}
186
187
188#ifndef NO_SHA256_WRAPPER
189int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
190		  u8 *mac)
191{
192	return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
193}
194#endif /* NO_SHA256_WRAPPER */
195
196
197static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
198{
199	switch (keylen) {
200	case 16:
201		return EVP_aes_128_ecb();
202#ifndef OPENSSL_IS_BORINGSSL
203	case 24:
204		return EVP_aes_192_ecb();
205#endif /* OPENSSL_IS_BORINGSSL */
206	case 32:
207		return EVP_aes_256_ecb();
208	}
209
210	return NULL;
211}
212
213
214void * aes_encrypt_init(const u8 *key, size_t len)
215{
216	EVP_CIPHER_CTX *ctx;
217	const EVP_CIPHER *type;
218
219	type = aes_get_evp_cipher(len);
220	if (type == NULL)
221		return NULL;
222
223	ctx = os_malloc(sizeof(*ctx));
224	if (ctx == NULL)
225		return NULL;
226	EVP_CIPHER_CTX_init(ctx);
227	if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
228		os_free(ctx);
229		return NULL;
230	}
231	EVP_CIPHER_CTX_set_padding(ctx, 0);
232	return ctx;
233}
234
235
236void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
237{
238	EVP_CIPHER_CTX *c = ctx;
239	int clen = 16;
240	if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
241		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
242			   ERR_error_string(ERR_get_error(), NULL));
243	}
244}
245
246
247void aes_encrypt_deinit(void *ctx)
248{
249	EVP_CIPHER_CTX *c = ctx;
250	u8 buf[16];
251	int len = sizeof(buf);
252	if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
253		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
254			   "%s", ERR_error_string(ERR_get_error(), NULL));
255	}
256	if (len != 0) {
257		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
258			   "in AES encrypt", len);
259	}
260	EVP_CIPHER_CTX_cleanup(c);
261	os_free(c);
262}
263
264
265void * aes_decrypt_init(const u8 *key, size_t len)
266{
267	EVP_CIPHER_CTX *ctx;
268	const EVP_CIPHER *type;
269
270	type = aes_get_evp_cipher(len);
271	if (type == NULL)
272		return NULL;
273
274	ctx = os_malloc(sizeof(*ctx));
275	if (ctx == NULL)
276		return NULL;
277	EVP_CIPHER_CTX_init(ctx);
278	if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
279		os_free(ctx);
280		return NULL;
281	}
282	EVP_CIPHER_CTX_set_padding(ctx, 0);
283	return ctx;
284}
285
286
287void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
288{
289	EVP_CIPHER_CTX *c = ctx;
290	int plen = 16;
291	if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
292		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
293			   ERR_error_string(ERR_get_error(), NULL));
294	}
295}
296
297
298void aes_decrypt_deinit(void *ctx)
299{
300	EVP_CIPHER_CTX *c = ctx;
301	u8 buf[16];
302	int len = sizeof(buf);
303	if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
304		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
305			   "%s", ERR_error_string(ERR_get_error(), NULL));
306	}
307	if (len != 0) {
308		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
309			   "in AES decrypt", len);
310	}
311	EVP_CIPHER_CTX_cleanup(c);
312	os_free(ctx);
313}
314
315
316int crypto_mod_exp(const u8 *base, size_t base_len,
317		   const u8 *power, size_t power_len,
318		   const u8 *modulus, size_t modulus_len,
319		   u8 *result, size_t *result_len)
320{
321	BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
322	int ret = -1;
323	BN_CTX *ctx;
324
325	ctx = BN_CTX_new();
326	if (ctx == NULL)
327		return -1;
328
329	bn_base = BN_bin2bn(base, base_len, NULL);
330	bn_exp = BN_bin2bn(power, power_len, NULL);
331	bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
332	bn_result = BN_new();
333
334	if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
335	    bn_result == NULL)
336		goto error;
337
338	if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
339		goto error;
340
341	*result_len = BN_bn2bin(bn_result, result);
342	ret = 0;
343
344error:
345	BN_clear_free(bn_base);
346	BN_clear_free(bn_exp);
347	BN_clear_free(bn_modulus);
348	BN_clear_free(bn_result);
349	BN_CTX_free(ctx);
350	return ret;
351}
352
353
354struct crypto_cipher {
355	EVP_CIPHER_CTX enc;
356	EVP_CIPHER_CTX dec;
357};
358
359
360struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
361					  const u8 *iv, const u8 *key,
362					  size_t key_len)
363{
364	struct crypto_cipher *ctx;
365	const EVP_CIPHER *cipher;
366
367	ctx = os_zalloc(sizeof(*ctx));
368	if (ctx == NULL)
369		return NULL;
370
371	switch (alg) {
372#ifndef OPENSSL_NO_RC4
373	case CRYPTO_CIPHER_ALG_RC4:
374		cipher = EVP_rc4();
375		break;
376#endif /* OPENSSL_NO_RC4 */
377#ifndef OPENSSL_NO_AES
378	case CRYPTO_CIPHER_ALG_AES:
379		switch (key_len) {
380		case 16:
381			cipher = EVP_aes_128_cbc();
382			break;
383#ifndef OPENSSL_IS_BORINGSSL
384		case 24:
385			cipher = EVP_aes_192_cbc();
386			break;
387#endif /* OPENSSL_IS_BORINGSSL */
388		case 32:
389			cipher = EVP_aes_256_cbc();
390			break;
391		default:
392			os_free(ctx);
393			return NULL;
394		}
395		break;
396#endif /* OPENSSL_NO_AES */
397#ifndef OPENSSL_NO_DES
398	case CRYPTO_CIPHER_ALG_3DES:
399		cipher = EVP_des_ede3_cbc();
400		break;
401	case CRYPTO_CIPHER_ALG_DES:
402		cipher = EVP_des_cbc();
403		break;
404#endif /* OPENSSL_NO_DES */
405#ifndef OPENSSL_NO_RC2
406	case CRYPTO_CIPHER_ALG_RC2:
407		cipher = EVP_rc2_ecb();
408		break;
409#endif /* OPENSSL_NO_RC2 */
410	default:
411		os_free(ctx);
412		return NULL;
413	}
414
415	EVP_CIPHER_CTX_init(&ctx->enc);
416	EVP_CIPHER_CTX_set_padding(&ctx->enc, 0);
417	if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) ||
418	    !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) ||
419	    !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) {
420		EVP_CIPHER_CTX_cleanup(&ctx->enc);
421		os_free(ctx);
422		return NULL;
423	}
424
425	EVP_CIPHER_CTX_init(&ctx->dec);
426	EVP_CIPHER_CTX_set_padding(&ctx->dec, 0);
427	if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) ||
428	    !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) ||
429	    !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) {
430		EVP_CIPHER_CTX_cleanup(&ctx->enc);
431		EVP_CIPHER_CTX_cleanup(&ctx->dec);
432		os_free(ctx);
433		return NULL;
434	}
435
436	return ctx;
437}
438
439
440int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
441			  u8 *crypt, size_t len)
442{
443	int outl;
444	if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len))
445		return -1;
446	return 0;
447}
448
449
450int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
451			  u8 *plain, size_t len)
452{
453	int outl;
454	outl = len;
455	if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len))
456		return -1;
457	return 0;
458}
459
460
461void crypto_cipher_deinit(struct crypto_cipher *ctx)
462{
463	EVP_CIPHER_CTX_cleanup(&ctx->enc);
464	EVP_CIPHER_CTX_cleanup(&ctx->dec);
465	os_free(ctx);
466}
467
468
469void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
470{
471	DH *dh;
472	struct wpabuf *pubkey = NULL, *privkey = NULL;
473	size_t publen, privlen;
474
475	*priv = NULL;
476	*publ = NULL;
477
478	dh = DH_new();
479	if (dh == NULL)
480		return NULL;
481
482	dh->g = BN_new();
483	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
484		goto err;
485
486	dh->p = get_group5_prime();
487	if (dh->p == NULL)
488		goto err;
489
490	if (DH_generate_key(dh) != 1)
491		goto err;
492
493	publen = BN_num_bytes(dh->pub_key);
494	pubkey = wpabuf_alloc(publen);
495	if (pubkey == NULL)
496		goto err;
497	privlen = BN_num_bytes(dh->priv_key);
498	privkey = wpabuf_alloc(privlen);
499	if (privkey == NULL)
500		goto err;
501
502	BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
503	BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
504
505	*priv = privkey;
506	*publ = pubkey;
507	return dh;
508
509err:
510	wpabuf_free(pubkey);
511	wpabuf_free(privkey);
512	DH_free(dh);
513	return NULL;
514}
515
516
517void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
518{
519	DH *dh;
520
521	dh = DH_new();
522	if (dh == NULL)
523		return NULL;
524
525	dh->g = BN_new();
526	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
527		goto err;
528
529	dh->p = get_group5_prime();
530	if (dh->p == NULL)
531		goto err;
532
533	dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
534	if (dh->priv_key == NULL)
535		goto err;
536
537	dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
538	if (dh->pub_key == NULL)
539		goto err;
540
541	if (DH_generate_key(dh) != 1)
542		goto err;
543
544	return dh;
545
546err:
547	DH_free(dh);
548	return NULL;
549}
550
551
552struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
553				  const struct wpabuf *own_private)
554{
555	BIGNUM *pub_key;
556	struct wpabuf *res = NULL;
557	size_t rlen;
558	DH *dh = ctx;
559	int keylen;
560
561	if (ctx == NULL)
562		return NULL;
563
564	pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
565			    NULL);
566	if (pub_key == NULL)
567		return NULL;
568
569	rlen = DH_size(dh);
570	res = wpabuf_alloc(rlen);
571	if (res == NULL)
572		goto err;
573
574	keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
575	if (keylen < 0)
576		goto err;
577	wpabuf_put(res, keylen);
578	BN_clear_free(pub_key);
579
580	return res;
581
582err:
583	BN_clear_free(pub_key);
584	wpabuf_free(res);
585	return NULL;
586}
587
588
589void dh5_free(void *ctx)
590{
591	DH *dh;
592	if (ctx == NULL)
593		return;
594	dh = ctx;
595	DH_free(dh);
596}
597
598
599struct crypto_hash {
600	HMAC_CTX ctx;
601};
602
603
604struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
605				      size_t key_len)
606{
607	struct crypto_hash *ctx;
608	const EVP_MD *md;
609
610	switch (alg) {
611#ifndef OPENSSL_NO_MD5
612	case CRYPTO_HASH_ALG_HMAC_MD5:
613		md = EVP_md5();
614		break;
615#endif /* OPENSSL_NO_MD5 */
616#ifndef OPENSSL_NO_SHA
617	case CRYPTO_HASH_ALG_HMAC_SHA1:
618		md = EVP_sha1();
619		break;
620#endif /* OPENSSL_NO_SHA */
621#ifndef OPENSSL_NO_SHA256
622#ifdef CONFIG_SHA256
623	case CRYPTO_HASH_ALG_HMAC_SHA256:
624		md = EVP_sha256();
625		break;
626#endif /* CONFIG_SHA256 */
627#endif /* OPENSSL_NO_SHA256 */
628	default:
629		return NULL;
630	}
631
632	ctx = os_zalloc(sizeof(*ctx));
633	if (ctx == NULL)
634		return NULL;
635	HMAC_CTX_init(&ctx->ctx);
636
637#if OPENSSL_VERSION_NUMBER < 0x00909000
638	HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL);
639#else /* openssl < 0.9.9 */
640	if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) {
641		os_free(ctx);
642		return NULL;
643	}
644#endif /* openssl < 0.9.9 */
645
646	return ctx;
647}
648
649
650void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
651{
652	if (ctx == NULL)
653		return;
654	HMAC_Update(&ctx->ctx, data, len);
655}
656
657
658int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
659{
660	unsigned int mdlen;
661	int res;
662
663	if (ctx == NULL)
664		return -2;
665
666	if (mac == NULL || len == NULL) {
667		os_free(ctx);
668		return 0;
669	}
670
671	mdlen = *len;
672#if OPENSSL_VERSION_NUMBER < 0x00909000
673	HMAC_Final(&ctx->ctx, mac, &mdlen);
674	res = 1;
675#else /* openssl < 0.9.9 */
676	res = HMAC_Final(&ctx->ctx, mac, &mdlen);
677#endif /* openssl < 0.9.9 */
678	HMAC_CTX_cleanup(&ctx->ctx);
679	os_free(ctx);
680
681	if (res == 1) {
682		*len = mdlen;
683		return 0;
684	}
685
686	return -1;
687}
688
689
690int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
691		int iterations, u8 *buf, size_t buflen)
692{
693#if OPENSSL_VERSION_NUMBER < 0x00908000
694	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase),
695				   (unsigned char *) ssid,
696				   ssid_len, 4096, buflen, buf) != 1)
697		return -1;
698#else /* openssl < 0.9.8 */
699	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
700				   ssid_len, 4096, buflen, buf) != 1)
701		return -1;
702#endif /* openssl < 0.9.8 */
703	return 0;
704}
705
706
707int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
708		     const u8 *addr[], const size_t *len, u8 *mac)
709{
710	HMAC_CTX ctx;
711	size_t i;
712	unsigned int mdlen;
713	int res;
714
715	HMAC_CTX_init(&ctx);
716#if OPENSSL_VERSION_NUMBER < 0x00909000
717	HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL);
718#else /* openssl < 0.9.9 */
719	if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL) != 1)
720		return -1;
721#endif /* openssl < 0.9.9 */
722
723	for (i = 0; i < num_elem; i++)
724		HMAC_Update(&ctx, addr[i], len[i]);
725
726	mdlen = 20;
727#if OPENSSL_VERSION_NUMBER < 0x00909000
728	HMAC_Final(&ctx, mac, &mdlen);
729	res = 1;
730#else /* openssl < 0.9.9 */
731	res = HMAC_Final(&ctx, mac, &mdlen);
732#endif /* openssl < 0.9.9 */
733	HMAC_CTX_cleanup(&ctx);
734
735	return res == 1 ? 0 : -1;
736}
737
738
739int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
740	       u8 *mac)
741{
742	return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
743}
744
745
746#ifdef CONFIG_SHA256
747
748int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
749		       const u8 *addr[], const size_t *len, u8 *mac)
750{
751	HMAC_CTX ctx;
752	size_t i;
753	unsigned int mdlen;
754	int res;
755
756	HMAC_CTX_init(&ctx);
757#if OPENSSL_VERSION_NUMBER < 0x00909000
758	HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL);
759#else /* openssl < 0.9.9 */
760	if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL) != 1)
761		return -1;
762#endif /* openssl < 0.9.9 */
763
764	for (i = 0; i < num_elem; i++)
765		HMAC_Update(&ctx, addr[i], len[i]);
766
767	mdlen = 32;
768#if OPENSSL_VERSION_NUMBER < 0x00909000
769	HMAC_Final(&ctx, mac, &mdlen);
770	res = 1;
771#else /* openssl < 0.9.9 */
772	res = HMAC_Final(&ctx, mac, &mdlen);
773#endif /* openssl < 0.9.9 */
774	HMAC_CTX_cleanup(&ctx);
775
776	return res == 1 ? 0 : -1;
777}
778
779
780int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
781		size_t data_len, u8 *mac)
782{
783	return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
784}
785
786#endif /* CONFIG_SHA256 */
787
788
789int crypto_get_random(void *buf, size_t len)
790{
791	if (RAND_bytes(buf, len) != 1)
792		return -1;
793	return 0;
794}
795
796
797#ifdef CONFIG_OPENSSL_CMAC
798int omac1_aes_128_vector(const u8 *key, size_t num_elem,
799			 const u8 *addr[], const size_t *len, u8 *mac)
800{
801	CMAC_CTX *ctx;
802	int ret = -1;
803	size_t outlen, i;
804
805	ctx = CMAC_CTX_new();
806	if (ctx == NULL)
807		return -1;
808
809	if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
810		goto fail;
811	for (i = 0; i < num_elem; i++) {
812		if (!CMAC_Update(ctx, addr[i], len[i]))
813			goto fail;
814	}
815	if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
816		goto fail;
817
818	ret = 0;
819fail:
820	CMAC_CTX_free(ctx);
821	return ret;
822}
823
824
825int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
826{
827	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
828}
829#endif /* CONFIG_OPENSSL_CMAC */
830
831
832struct crypto_bignum * crypto_bignum_init(void)
833{
834	return (struct crypto_bignum *) BN_new();
835}
836
837
838struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
839{
840	BIGNUM *bn = BN_bin2bn(buf, len, NULL);
841	return (struct crypto_bignum *) bn;
842}
843
844
845void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
846{
847	if (clear)
848		BN_clear_free((BIGNUM *) n);
849	else
850		BN_free((BIGNUM *) n);
851}
852
853
854int crypto_bignum_to_bin(const struct crypto_bignum *a,
855			 u8 *buf, size_t buflen, size_t padlen)
856{
857	int num_bytes, offset;
858
859	if (padlen > buflen)
860		return -1;
861
862	num_bytes = BN_num_bytes((const BIGNUM *) a);
863	if ((size_t) num_bytes > buflen)
864		return -1;
865	if (padlen > (size_t) num_bytes)
866		offset = padlen - num_bytes;
867	else
868		offset = 0;
869
870	os_memset(buf, 0, offset);
871	BN_bn2bin((const BIGNUM *) a, buf + offset);
872
873	return num_bytes + offset;
874}
875
876
877int crypto_bignum_add(const struct crypto_bignum *a,
878		      const struct crypto_bignum *b,
879		      struct crypto_bignum *c)
880{
881	return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
882		0 : -1;
883}
884
885
886int crypto_bignum_mod(const struct crypto_bignum *a,
887		      const struct crypto_bignum *b,
888		      struct crypto_bignum *c)
889{
890	int res;
891	BN_CTX *bnctx;
892
893	bnctx = BN_CTX_new();
894	if (bnctx == NULL)
895		return -1;
896	res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
897		     bnctx);
898	BN_CTX_free(bnctx);
899
900	return res ? 0 : -1;
901}
902
903
904int crypto_bignum_exptmod(const struct crypto_bignum *a,
905			  const struct crypto_bignum *b,
906			  const struct crypto_bignum *c,
907			  struct crypto_bignum *d)
908{
909	int res;
910	BN_CTX *bnctx;
911
912	bnctx = BN_CTX_new();
913	if (bnctx == NULL)
914		return -1;
915	res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
916			 (const BIGNUM *) c, bnctx);
917	BN_CTX_free(bnctx);
918
919	return res ? 0 : -1;
920}
921
922
923int crypto_bignum_inverse(const struct crypto_bignum *a,
924			  const struct crypto_bignum *b,
925			  struct crypto_bignum *c)
926{
927	BIGNUM *res;
928	BN_CTX *bnctx;
929
930	bnctx = BN_CTX_new();
931	if (bnctx == NULL)
932		return -1;
933	res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
934			     (const BIGNUM *) b, bnctx);
935	BN_CTX_free(bnctx);
936
937	return res ? 0 : -1;
938}
939
940
941int crypto_bignum_sub(const struct crypto_bignum *a,
942		      const struct crypto_bignum *b,
943		      struct crypto_bignum *c)
944{
945	return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
946		0 : -1;
947}
948
949
950int crypto_bignum_div(const struct crypto_bignum *a,
951		      const struct crypto_bignum *b,
952		      struct crypto_bignum *c)
953{
954	int res;
955
956	BN_CTX *bnctx;
957
958	bnctx = BN_CTX_new();
959	if (bnctx == NULL)
960		return -1;
961	res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
962		     (const BIGNUM *) b, bnctx);
963	BN_CTX_free(bnctx);
964
965	return res ? 0 : -1;
966}
967
968
969int crypto_bignum_mulmod(const struct crypto_bignum *a,
970			 const struct crypto_bignum *b,
971			 const struct crypto_bignum *c,
972			 struct crypto_bignum *d)
973{
974	int res;
975
976	BN_CTX *bnctx;
977
978	bnctx = BN_CTX_new();
979	if (bnctx == NULL)
980		return -1;
981	res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
982			 (const BIGNUM *) c, bnctx);
983	BN_CTX_free(bnctx);
984
985	return res ? 0 : -1;
986}
987
988
989int crypto_bignum_cmp(const struct crypto_bignum *a,
990		      const struct crypto_bignum *b)
991{
992	return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
993}
994
995
996int crypto_bignum_bits(const struct crypto_bignum *a)
997{
998	return BN_num_bits((const BIGNUM *) a);
999}
1000
1001
1002int crypto_bignum_is_zero(const struct crypto_bignum *a)
1003{
1004	return BN_is_zero((const BIGNUM *) a);
1005}
1006
1007
1008int crypto_bignum_is_one(const struct crypto_bignum *a)
1009{
1010	return BN_is_one((const BIGNUM *) a);
1011}
1012
1013
1014#ifdef CONFIG_ECC
1015
1016struct crypto_ec {
1017	EC_GROUP *group;
1018	BN_CTX *bnctx;
1019	BIGNUM *prime;
1020	BIGNUM *order;
1021};
1022
1023struct crypto_ec * crypto_ec_init(int group)
1024{
1025	struct crypto_ec *e;
1026	int nid;
1027
1028	/* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1029	switch (group) {
1030	case 19:
1031		nid = NID_X9_62_prime256v1;
1032		break;
1033	case 20:
1034		nid = NID_secp384r1;
1035		break;
1036	case 21:
1037		nid = NID_secp521r1;
1038		break;
1039	case 25:
1040		nid = NID_X9_62_prime192v1;
1041		break;
1042	case 26:
1043		nid = NID_secp224r1;
1044		break;
1045	default:
1046		return NULL;
1047	}
1048
1049	e = os_zalloc(sizeof(*e));
1050	if (e == NULL)
1051		return NULL;
1052
1053	e->bnctx = BN_CTX_new();
1054	e->group = EC_GROUP_new_by_curve_name(nid);
1055	e->prime = BN_new();
1056	e->order = BN_new();
1057	if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1058	    e->order == NULL ||
1059	    !EC_GROUP_get_curve_GFp(e->group, e->prime, NULL, NULL, e->bnctx) ||
1060	    !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1061		crypto_ec_deinit(e);
1062		e = NULL;
1063	}
1064
1065	return e;
1066}
1067
1068
1069void crypto_ec_deinit(struct crypto_ec *e)
1070{
1071	if (e == NULL)
1072		return;
1073	BN_clear_free(e->order);
1074	BN_clear_free(e->prime);
1075	EC_GROUP_free(e->group);
1076	BN_CTX_free(e->bnctx);
1077	os_free(e);
1078}
1079
1080
1081struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1082{
1083	if (e == NULL)
1084		return NULL;
1085	return (struct crypto_ec_point *) EC_POINT_new(e->group);
1086}
1087
1088
1089size_t crypto_ec_prime_len(struct crypto_ec *e)
1090{
1091	return BN_num_bytes(e->prime);
1092}
1093
1094
1095size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1096{
1097	return BN_num_bits(e->prime);
1098}
1099
1100
1101const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1102{
1103	return (const struct crypto_bignum *) e->prime;
1104}
1105
1106
1107const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1108{
1109	return (const struct crypto_bignum *) e->order;
1110}
1111
1112
1113void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1114{
1115	if (clear)
1116		EC_POINT_clear_free((EC_POINT *) p);
1117	else
1118		EC_POINT_free((EC_POINT *) p);
1119}
1120
1121
1122int crypto_ec_point_to_bin(struct crypto_ec *e,
1123			   const struct crypto_ec_point *point, u8 *x, u8 *y)
1124{
1125	BIGNUM *x_bn, *y_bn;
1126	int ret = -1;
1127	int len = BN_num_bytes(e->prime);
1128
1129	x_bn = BN_new();
1130	y_bn = BN_new();
1131
1132	if (x_bn && y_bn &&
1133	    EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1134						x_bn, y_bn, e->bnctx)) {
1135		if (x) {
1136			crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1137					     x, len, len);
1138		}
1139		if (y) {
1140			crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1141					     y, len, len);
1142		}
1143		ret = 0;
1144	}
1145
1146	BN_clear_free(x_bn);
1147	BN_clear_free(y_bn);
1148	return ret;
1149}
1150
1151
1152struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1153						  const u8 *val)
1154{
1155	BIGNUM *x, *y;
1156	EC_POINT *elem;
1157	int len = BN_num_bytes(e->prime);
1158
1159	x = BN_bin2bn(val, len, NULL);
1160	y = BN_bin2bn(val + len, len, NULL);
1161	elem = EC_POINT_new(e->group);
1162	if (x == NULL || y == NULL || elem == NULL) {
1163		BN_clear_free(x);
1164		BN_clear_free(y);
1165		EC_POINT_clear_free(elem);
1166		return NULL;
1167	}
1168
1169	if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1170						 e->bnctx)) {
1171		EC_POINT_clear_free(elem);
1172		elem = NULL;
1173	}
1174
1175	BN_clear_free(x);
1176	BN_clear_free(y);
1177
1178	return (struct crypto_ec_point *) elem;
1179}
1180
1181
1182int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1183			const struct crypto_ec_point *b,
1184			struct crypto_ec_point *c)
1185{
1186	return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1187			    (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1188}
1189
1190
1191int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1192			const struct crypto_bignum *b,
1193			struct crypto_ec_point *res)
1194{
1195	return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1196			    (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1197		? 0 : -1;
1198}
1199
1200
1201int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1202{
1203	return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1204}
1205
1206
1207int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1208				  struct crypto_ec_point *p,
1209				  const struct crypto_bignum *x, int y_bit)
1210{
1211	if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1212						     (const BIGNUM *) x, y_bit,
1213						     e->bnctx) ||
1214	    !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1215		return -1;
1216	return 0;
1217}
1218
1219
1220int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1221				   const struct crypto_ec_point *p)
1222{
1223	return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1224}
1225
1226
1227int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1228				const struct crypto_ec_point *p)
1229{
1230	return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p, e->bnctx);
1231}
1232
1233#endif /* CONFIG_ECC */
1234