1/*
2 * EAP peer state machines (RFC 4137)
3 * Copyright (c) 2004-2014, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 *
8 * This file implements the Peer State Machine as defined in RFC 4137. The used
9 * states and state transitions match mostly with the RFC. However, there are
10 * couple of additional transitions for working around small issues noticed
11 * during testing. These exceptions are explained in comments within the
12 * functions in this file. The method functions, m.func(), are similar to the
13 * ones used in RFC 4137, but some small changes have used here to optimize
14 * operations and to add functionality needed for fast re-authentication
15 * (session resumption).
16 */
17
18#include "includes.h"
19
20#include "common.h"
21#include "pcsc_funcs.h"
22#include "state_machine.h"
23#include "ext_password.h"
24#include "crypto/crypto.h"
25#include "crypto/tls.h"
26#include "common/wpa_ctrl.h"
27#include "eap_common/eap_wsc_common.h"
28#include "eap_i.h"
29#include "eap_config.h"
30
31#define STATE_MACHINE_DATA struct eap_sm
32#define STATE_MACHINE_DEBUG_PREFIX "EAP"
33
34#define EAP_MAX_AUTH_ROUNDS 50
35#define EAP_CLIENT_TIMEOUT_DEFAULT 60
36
37
38static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
39				  EapType method);
40static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
41static void eap_sm_processIdentity(struct eap_sm *sm,
42				   const struct wpabuf *req);
43static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
44static struct wpabuf * eap_sm_buildNotify(int id);
45static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
46#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
47static const char * eap_sm_method_state_txt(EapMethodState state);
48static const char * eap_sm_decision_txt(EapDecision decision);
49#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
50
51
52
53static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
54{
55	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
56}
57
58
59static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
60			   Boolean value)
61{
62	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
63}
64
65
66static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
67{
68	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
69}
70
71
72static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
73			  unsigned int value)
74{
75	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
76}
77
78
79static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
80{
81	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
82}
83
84
85static void eap_notify_status(struct eap_sm *sm, const char *status,
86				      const char *parameter)
87{
88	wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
89		   status, parameter);
90	if (sm->eapol_cb->notify_status)
91		sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
92}
93
94
95static void eap_sm_free_key(struct eap_sm *sm)
96{
97	if (sm->eapKeyData) {
98		bin_clear_free(sm->eapKeyData, sm->eapKeyDataLen);
99		sm->eapKeyData = NULL;
100	}
101}
102
103
104static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
105{
106	ext_password_free(sm->ext_pw_buf);
107	sm->ext_pw_buf = NULL;
108
109	if (sm->m == NULL || sm->eap_method_priv == NULL)
110		return;
111
112	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
113		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
114	sm->m->deinit(sm, sm->eap_method_priv);
115	sm->eap_method_priv = NULL;
116	sm->m = NULL;
117}
118
119
120/**
121 * eap_allowed_method - Check whether EAP method is allowed
122 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
123 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
124 * @method: EAP type
125 * Returns: 1 = allowed EAP method, 0 = not allowed
126 */
127int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
128{
129	struct eap_peer_config *config = eap_get_config(sm);
130	int i;
131	struct eap_method_type *m;
132
133	if (config == NULL || config->eap_methods == NULL)
134		return 1;
135
136	m = config->eap_methods;
137	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
138		     m[i].method != EAP_TYPE_NONE; i++) {
139		if (m[i].vendor == vendor && m[i].method == method)
140			return 1;
141	}
142	return 0;
143}
144
145
146/*
147 * This state initializes state machine variables when the machine is
148 * activated (portEnabled = TRUE). This is also used when re-starting
149 * authentication (eapRestart == TRUE).
150 */
151SM_STATE(EAP, INITIALIZE)
152{
153	SM_ENTRY(EAP, INITIALIZE);
154	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
155	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
156	    !sm->prev_failure &&
157	    sm->last_config == eap_get_config(sm)) {
158		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
159			   "fast reauthentication");
160		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
161	} else {
162		sm->last_config = eap_get_config(sm);
163		eap_deinit_prev_method(sm, "INITIALIZE");
164	}
165	sm->selectedMethod = EAP_TYPE_NONE;
166	sm->methodState = METHOD_NONE;
167	sm->allowNotifications = TRUE;
168	sm->decision = DECISION_FAIL;
169	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
170	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
171	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
172	eapol_set_bool(sm, EAPOL_eapFail, FALSE);
173	eap_sm_free_key(sm);
174	os_free(sm->eapSessionId);
175	sm->eapSessionId = NULL;
176	sm->eapKeyAvailable = FALSE;
177	eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
178	sm->lastId = -1; /* new session - make sure this does not match with
179			  * the first EAP-Packet */
180	/*
181	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
182	 * seemed to be able to trigger cases where both were set and if EAPOL
183	 * state machine uses eapNoResp first, it may end up not sending a real
184	 * reply correctly. This occurred when the workaround in FAIL state set
185	 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
186	 * something else(?)
187	 */
188	eapol_set_bool(sm, EAPOL_eapResp, FALSE);
189	eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
190	sm->num_rounds = 0;
191	sm->prev_failure = 0;
192	sm->expected_failure = 0;
193}
194
195
196/*
197 * This state is reached whenever service from the lower layer is interrupted
198 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
199 * occurs when the port becomes enabled.
200 */
201SM_STATE(EAP, DISABLED)
202{
203	SM_ENTRY(EAP, DISABLED);
204	sm->num_rounds = 0;
205	/*
206	 * RFC 4137 does not describe clearing of idleWhile here, but doing so
207	 * allows the timer tick to be stopped more quickly when EAP is not in
208	 * use.
209	 */
210	eapol_set_int(sm, EAPOL_idleWhile, 0);
211}
212
213
214/*
215 * The state machine spends most of its time here, waiting for something to
216 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
217 * SEND_RESPONSE states.
218 */
219SM_STATE(EAP, IDLE)
220{
221	SM_ENTRY(EAP, IDLE);
222}
223
224
225/*
226 * This state is entered when an EAP packet is received (eapReq == TRUE) to
227 * parse the packet header.
228 */
229SM_STATE(EAP, RECEIVED)
230{
231	const struct wpabuf *eapReqData;
232
233	SM_ENTRY(EAP, RECEIVED);
234	eapReqData = eapol_get_eapReqData(sm);
235	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
236	eap_sm_parseEapReq(sm, eapReqData);
237	sm->num_rounds++;
238}
239
240
241/*
242 * This state is entered when a request for a new type comes in. Either the
243 * correct method is started, or a Nak response is built.
244 */
245SM_STATE(EAP, GET_METHOD)
246{
247	int reinit;
248	EapType method;
249	const struct eap_method *eap_method;
250
251	SM_ENTRY(EAP, GET_METHOD);
252
253	if (sm->reqMethod == EAP_TYPE_EXPANDED)
254		method = sm->reqVendorMethod;
255	else
256		method = sm->reqMethod;
257
258	eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
259
260	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
261		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
262			   sm->reqVendor, method);
263		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
264			"vendor=%u method=%u -> NAK",
265			sm->reqVendor, method);
266		eap_notify_status(sm, "refuse proposed method",
267				  eap_method ?  eap_method->name : "unknown");
268		goto nak;
269	}
270
271	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
272		"vendor=%u method=%u", sm->reqVendor, method);
273
274	eap_notify_status(sm, "accept proposed method",
275			  eap_method ?  eap_method->name : "unknown");
276	/*
277	 * RFC 4137 does not define specific operation for fast
278	 * re-authentication (session resumption). The design here is to allow
279	 * the previously used method data to be maintained for
280	 * re-authentication if the method support session resumption.
281	 * Otherwise, the previously used method data is freed and a new method
282	 * is allocated here.
283	 */
284	if (sm->fast_reauth &&
285	    sm->m && sm->m->vendor == sm->reqVendor &&
286	    sm->m->method == method &&
287	    sm->m->has_reauth_data &&
288	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
289		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
290			   " for fast re-authentication");
291		reinit = 1;
292	} else {
293		eap_deinit_prev_method(sm, "GET_METHOD");
294		reinit = 0;
295	}
296
297	sm->selectedMethod = sm->reqMethod;
298	if (sm->m == NULL)
299		sm->m = eap_method;
300	if (!sm->m) {
301		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
302			   "vendor %d method %d",
303			   sm->reqVendor, method);
304		goto nak;
305	}
306
307	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
308
309	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
310		   "vendor %u method %u (%s)",
311		   sm->reqVendor, method, sm->m->name);
312	if (reinit)
313		sm->eap_method_priv = sm->m->init_for_reauth(
314			sm, sm->eap_method_priv);
315	else
316		sm->eap_method_priv = sm->m->init(sm);
317
318	if (sm->eap_method_priv == NULL) {
319		struct eap_peer_config *config = eap_get_config(sm);
320		wpa_msg(sm->msg_ctx, MSG_INFO,
321			"EAP: Failed to initialize EAP method: vendor %u "
322			"method %u (%s)",
323			sm->reqVendor, method, sm->m->name);
324		sm->m = NULL;
325		sm->methodState = METHOD_NONE;
326		sm->selectedMethod = EAP_TYPE_NONE;
327		if (sm->reqMethod == EAP_TYPE_TLS && config &&
328		    (config->pending_req_pin ||
329		     config->pending_req_passphrase)) {
330			/*
331			 * Return without generating Nak in order to allow
332			 * entering of PIN code or passphrase to retry the
333			 * current EAP packet.
334			 */
335			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
336				   "request - skip Nak");
337			return;
338		}
339
340		goto nak;
341	}
342
343	sm->methodState = METHOD_INIT;
344	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
345		"EAP vendor %u method %u (%s) selected",
346		sm->reqVendor, method, sm->m->name);
347	return;
348
349nak:
350	wpabuf_free(sm->eapRespData);
351	sm->eapRespData = NULL;
352	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
353}
354
355
356/*
357 * The method processing happens here. The request from the authenticator is
358 * processed, and an appropriate response packet is built.
359 */
360SM_STATE(EAP, METHOD)
361{
362	struct wpabuf *eapReqData;
363	struct eap_method_ret ret;
364	int min_len = 1;
365
366	SM_ENTRY(EAP, METHOD);
367	if (sm->m == NULL) {
368		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
369		return;
370	}
371
372	eapReqData = eapol_get_eapReqData(sm);
373	if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
374		min_len = 0; /* LEAP uses EAP-Success without payload */
375	if (!eap_hdr_len_valid(eapReqData, min_len))
376		return;
377
378	/*
379	 * Get ignore, methodState, decision, allowNotifications, and
380	 * eapRespData. RFC 4137 uses three separate method procedure (check,
381	 * process, and buildResp) in this state. These have been combined into
382	 * a single function call to m->process() in order to optimize EAP
383	 * method implementation interface a bit. These procedures are only
384	 * used from within this METHOD state, so there is no need to keep
385	 * these as separate C functions.
386	 *
387	 * The RFC 4137 procedures return values as follows:
388	 * ignore = m.check(eapReqData)
389	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
390	 * eapRespData = m.buildResp(reqId)
391	 */
392	os_memset(&ret, 0, sizeof(ret));
393	ret.ignore = sm->ignore;
394	ret.methodState = sm->methodState;
395	ret.decision = sm->decision;
396	ret.allowNotifications = sm->allowNotifications;
397	wpabuf_free(sm->eapRespData);
398	sm->eapRespData = NULL;
399	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
400					 eapReqData);
401	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
402		   "methodState=%s decision=%s eapRespData=%p",
403		   ret.ignore ? "TRUE" : "FALSE",
404		   eap_sm_method_state_txt(ret.methodState),
405		   eap_sm_decision_txt(ret.decision),
406		   sm->eapRespData);
407
408	sm->ignore = ret.ignore;
409	if (sm->ignore)
410		return;
411	sm->methodState = ret.methodState;
412	sm->decision = ret.decision;
413	sm->allowNotifications = ret.allowNotifications;
414
415	if (sm->m->isKeyAvailable && sm->m->getKey &&
416	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
417		eap_sm_free_key(sm);
418		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
419					       &sm->eapKeyDataLen);
420		os_free(sm->eapSessionId);
421		sm->eapSessionId = NULL;
422		if (sm->m->getSessionId) {
423			sm->eapSessionId = sm->m->getSessionId(
424				sm, sm->eap_method_priv,
425				&sm->eapSessionIdLen);
426			wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
427				    sm->eapSessionId, sm->eapSessionIdLen);
428		}
429	}
430}
431
432
433/*
434 * This state signals the lower layer that a response packet is ready to be
435 * sent.
436 */
437SM_STATE(EAP, SEND_RESPONSE)
438{
439	SM_ENTRY(EAP, SEND_RESPONSE);
440	wpabuf_free(sm->lastRespData);
441	if (sm->eapRespData) {
442		if (sm->workaround)
443			os_memcpy(sm->last_md5, sm->req_md5, 16);
444		sm->lastId = sm->reqId;
445		sm->lastRespData = wpabuf_dup(sm->eapRespData);
446		eapol_set_bool(sm, EAPOL_eapResp, TRUE);
447	} else {
448		wpa_printf(MSG_DEBUG, "EAP: No eapRespData available");
449		sm->lastRespData = NULL;
450	}
451	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
452	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
453}
454
455
456/*
457 * This state signals the lower layer that the request was discarded, and no
458 * response packet will be sent at this time.
459 */
460SM_STATE(EAP, DISCARD)
461{
462	SM_ENTRY(EAP, DISCARD);
463	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
464	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
465}
466
467
468/*
469 * Handles requests for Identity method and builds a response.
470 */
471SM_STATE(EAP, IDENTITY)
472{
473	const struct wpabuf *eapReqData;
474
475	SM_ENTRY(EAP, IDENTITY);
476	eapReqData = eapol_get_eapReqData(sm);
477	if (!eap_hdr_len_valid(eapReqData, 1))
478		return;
479	eap_sm_processIdentity(sm, eapReqData);
480	wpabuf_free(sm->eapRespData);
481	sm->eapRespData = NULL;
482	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
483}
484
485
486/*
487 * Handles requests for Notification method and builds a response.
488 */
489SM_STATE(EAP, NOTIFICATION)
490{
491	const struct wpabuf *eapReqData;
492
493	SM_ENTRY(EAP, NOTIFICATION);
494	eapReqData = eapol_get_eapReqData(sm);
495	if (!eap_hdr_len_valid(eapReqData, 1))
496		return;
497	eap_sm_processNotify(sm, eapReqData);
498	wpabuf_free(sm->eapRespData);
499	sm->eapRespData = NULL;
500	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
501}
502
503
504/*
505 * This state retransmits the previous response packet.
506 */
507SM_STATE(EAP, RETRANSMIT)
508{
509	SM_ENTRY(EAP, RETRANSMIT);
510	wpabuf_free(sm->eapRespData);
511	if (sm->lastRespData)
512		sm->eapRespData = wpabuf_dup(sm->lastRespData);
513	else
514		sm->eapRespData = NULL;
515}
516
517
518/*
519 * This state is entered in case of a successful completion of authentication
520 * and state machine waits here until port is disabled or EAP authentication is
521 * restarted.
522 */
523SM_STATE(EAP, SUCCESS)
524{
525	SM_ENTRY(EAP, SUCCESS);
526	if (sm->eapKeyData != NULL)
527		sm->eapKeyAvailable = TRUE;
528	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
529
530	/*
531	 * RFC 4137 does not clear eapReq here, but this seems to be required
532	 * to avoid processing the same request twice when state machine is
533	 * initialized.
534	 */
535	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
536
537	/*
538	 * RFC 4137 does not set eapNoResp here, but this seems to be required
539	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
540	 * addition, either eapResp or eapNoResp is required to be set after
541	 * processing the received EAP frame.
542	 */
543	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
544
545	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
546		"EAP authentication completed successfully");
547}
548
549
550/*
551 * This state is entered in case of a failure and state machine waits here
552 * until port is disabled or EAP authentication is restarted.
553 */
554SM_STATE(EAP, FAILURE)
555{
556	SM_ENTRY(EAP, FAILURE);
557	eapol_set_bool(sm, EAPOL_eapFail, TRUE);
558
559	/*
560	 * RFC 4137 does not clear eapReq here, but this seems to be required
561	 * to avoid processing the same request twice when state machine is
562	 * initialized.
563	 */
564	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
565
566	/*
567	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
568	 * eapNoResp is required to be set after processing the received EAP
569	 * frame.
570	 */
571	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
572
573	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
574		"EAP authentication failed");
575
576	sm->prev_failure = 1;
577}
578
579
580static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
581{
582	/*
583	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
584	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
585	 * RFC 4137 require that reqId == lastId. In addition, it looks like
586	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
587	 *
588	 * Accept this kind of Id if EAP workarounds are enabled. These are
589	 * unauthenticated plaintext messages, so this should have minimal
590	 * security implications (bit easier to fake EAP-Success/Failure).
591	 */
592	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
593			       reqId == ((lastId + 2) & 0xff))) {
594		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
595			   "identifier field in EAP Success: "
596			   "reqId=%d lastId=%d (these are supposed to be "
597			   "same)", reqId, lastId);
598		return 1;
599	}
600	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
601		   "lastId=%d", reqId, lastId);
602	return 0;
603}
604
605
606/*
607 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
608 */
609
610static void eap_peer_sm_step_idle(struct eap_sm *sm)
611{
612	/*
613	 * The first three transitions are from RFC 4137. The last two are
614	 * local additions to handle special cases with LEAP and PEAP server
615	 * not sending EAP-Success in some cases.
616	 */
617	if (eapol_get_bool(sm, EAPOL_eapReq))
618		SM_ENTER(EAP, RECEIVED);
619	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
620		  sm->decision != DECISION_FAIL) ||
621		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
622		  sm->decision == DECISION_UNCOND_SUCC))
623		SM_ENTER(EAP, SUCCESS);
624	else if (eapol_get_bool(sm, EAPOL_altReject) ||
625		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
626		  sm->decision != DECISION_UNCOND_SUCC) ||
627		 (eapol_get_bool(sm, EAPOL_altAccept) &&
628		  sm->methodState != METHOD_CONT &&
629		  sm->decision == DECISION_FAIL))
630		SM_ENTER(EAP, FAILURE);
631	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
632		 sm->leap_done && sm->decision != DECISION_FAIL &&
633		 sm->methodState == METHOD_DONE)
634		SM_ENTER(EAP, SUCCESS);
635	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
636		 sm->peap_done && sm->decision != DECISION_FAIL &&
637		 sm->methodState == METHOD_DONE)
638		SM_ENTER(EAP, SUCCESS);
639}
640
641
642static int eap_peer_req_is_duplicate(struct eap_sm *sm)
643{
644	int duplicate;
645
646	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
647	if (sm->workaround && duplicate &&
648	    os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
649		/*
650		 * RFC 4137 uses (reqId == lastId) as the only verification for
651		 * duplicate EAP requests. However, this misses cases where the
652		 * AS is incorrectly using the same id again; and
653		 * unfortunately, such implementations exist. Use MD5 hash as
654		 * an extra verification for the packets being duplicate to
655		 * workaround these issues.
656		 */
657		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
658			   "EAP packets were not identical");
659		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
660			   "duplicate packet");
661		duplicate = 0;
662	}
663
664	return duplicate;
665}
666
667
668static void eap_peer_sm_step_received(struct eap_sm *sm)
669{
670	int duplicate = eap_peer_req_is_duplicate(sm);
671
672	/*
673	 * Two special cases below for LEAP are local additions to work around
674	 * odd LEAP behavior (EAP-Success in the middle of authentication and
675	 * then swapped roles). Other transitions are based on RFC 4137.
676	 */
677	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
678	    (sm->reqId == sm->lastId ||
679	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
680		SM_ENTER(EAP, SUCCESS);
681	else if (sm->methodState != METHOD_CONT &&
682		 ((sm->rxFailure &&
683		   sm->decision != DECISION_UNCOND_SUCC) ||
684		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
685		   (sm->selectedMethod != EAP_TYPE_LEAP ||
686		    sm->methodState != METHOD_MAY_CONT))) &&
687		 (sm->reqId == sm->lastId ||
688		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
689		SM_ENTER(EAP, FAILURE);
690	else if (sm->rxReq && duplicate)
691		SM_ENTER(EAP, RETRANSMIT);
692	else if (sm->rxReq && !duplicate &&
693		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
694		 sm->allowNotifications)
695		SM_ENTER(EAP, NOTIFICATION);
696	else if (sm->rxReq && !duplicate &&
697		 sm->selectedMethod == EAP_TYPE_NONE &&
698		 sm->reqMethod == EAP_TYPE_IDENTITY)
699		SM_ENTER(EAP, IDENTITY);
700	else if (sm->rxReq && !duplicate &&
701		 sm->selectedMethod == EAP_TYPE_NONE &&
702		 sm->reqMethod != EAP_TYPE_IDENTITY &&
703		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
704		SM_ENTER(EAP, GET_METHOD);
705	else if (sm->rxReq && !duplicate &&
706		 sm->reqMethod == sm->selectedMethod &&
707		 sm->methodState != METHOD_DONE)
708		SM_ENTER(EAP, METHOD);
709	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
710		 (sm->rxSuccess || sm->rxResp))
711		SM_ENTER(EAP, METHOD);
712	else
713		SM_ENTER(EAP, DISCARD);
714}
715
716
717static void eap_peer_sm_step_local(struct eap_sm *sm)
718{
719	switch (sm->EAP_state) {
720	case EAP_INITIALIZE:
721		SM_ENTER(EAP, IDLE);
722		break;
723	case EAP_DISABLED:
724		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
725		    !sm->force_disabled)
726			SM_ENTER(EAP, INITIALIZE);
727		break;
728	case EAP_IDLE:
729		eap_peer_sm_step_idle(sm);
730		break;
731	case EAP_RECEIVED:
732		eap_peer_sm_step_received(sm);
733		break;
734	case EAP_GET_METHOD:
735		if (sm->selectedMethod == sm->reqMethod)
736			SM_ENTER(EAP, METHOD);
737		else
738			SM_ENTER(EAP, SEND_RESPONSE);
739		break;
740	case EAP_METHOD:
741		/*
742		 * Note: RFC 4137 uses methodState == DONE && decision == FAIL
743		 * as the condition. eapRespData == NULL here is used to allow
744		 * final EAP method response to be sent without having to change
745		 * all methods to either use methodState MAY_CONT or leaving
746		 * decision to something else than FAIL in cases where the only
747		 * expected response is EAP-Failure.
748		 */
749		if (sm->ignore)
750			SM_ENTER(EAP, DISCARD);
751		else if (sm->methodState == METHOD_DONE &&
752			 sm->decision == DECISION_FAIL && !sm->eapRespData)
753			SM_ENTER(EAP, FAILURE);
754		else
755			SM_ENTER(EAP, SEND_RESPONSE);
756		break;
757	case EAP_SEND_RESPONSE:
758		SM_ENTER(EAP, IDLE);
759		break;
760	case EAP_DISCARD:
761		SM_ENTER(EAP, IDLE);
762		break;
763	case EAP_IDENTITY:
764		SM_ENTER(EAP, SEND_RESPONSE);
765		break;
766	case EAP_NOTIFICATION:
767		SM_ENTER(EAP, SEND_RESPONSE);
768		break;
769	case EAP_RETRANSMIT:
770		SM_ENTER(EAP, SEND_RESPONSE);
771		break;
772	case EAP_SUCCESS:
773		break;
774	case EAP_FAILURE:
775		break;
776	}
777}
778
779
780SM_STEP(EAP)
781{
782	/* Global transitions */
783	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
784	    eapol_get_bool(sm, EAPOL_portEnabled))
785		SM_ENTER_GLOBAL(EAP, INITIALIZE);
786	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
787		SM_ENTER_GLOBAL(EAP, DISABLED);
788	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
789		/* RFC 4137 does not place any limit on number of EAP messages
790		 * in an authentication session. However, some error cases have
791		 * ended up in a state were EAP messages were sent between the
792		 * peer and server in a loop (e.g., TLS ACK frame in both
793		 * direction). Since this is quite undesired outcome, limit the
794		 * total number of EAP round-trips and abort authentication if
795		 * this limit is exceeded.
796		 */
797		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
798			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
799				"authentication rounds - abort",
800				EAP_MAX_AUTH_ROUNDS);
801			sm->num_rounds++;
802			SM_ENTER_GLOBAL(EAP, FAILURE);
803		}
804	} else {
805		/* Local transitions */
806		eap_peer_sm_step_local(sm);
807	}
808}
809
810
811static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
812				  EapType method)
813{
814	if (!eap_allowed_method(sm, vendor, method)) {
815		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
816			   "vendor %u method %u", vendor, method);
817		return FALSE;
818	}
819	if (eap_peer_get_eap_method(vendor, method))
820		return TRUE;
821	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
822		   "vendor %u method %u", vendor, method);
823	return FALSE;
824}
825
826
827static struct wpabuf * eap_sm_build_expanded_nak(
828	struct eap_sm *sm, int id, const struct eap_method *methods,
829	size_t count)
830{
831	struct wpabuf *resp;
832	int found = 0;
833	const struct eap_method *m;
834
835	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
836
837	/* RFC 3748 - 5.3.2: Expanded Nak */
838	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
839			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
840	if (resp == NULL)
841		return NULL;
842
843	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
844	wpabuf_put_be32(resp, EAP_TYPE_NAK);
845
846	for (m = methods; m; m = m->next) {
847		if (sm->reqVendor == m->vendor &&
848		    sm->reqVendorMethod == m->method)
849			continue; /* do not allow the current method again */
850		if (eap_allowed_method(sm, m->vendor, m->method)) {
851			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
852				   "vendor=%u method=%u",
853				   m->vendor, m->method);
854			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
855			wpabuf_put_be24(resp, m->vendor);
856			wpabuf_put_be32(resp, m->method);
857
858			found++;
859		}
860	}
861	if (!found) {
862		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
863		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
864		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
865		wpabuf_put_be32(resp, EAP_TYPE_NONE);
866	}
867
868	eap_update_len(resp);
869
870	return resp;
871}
872
873
874static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
875{
876	struct wpabuf *resp;
877	u8 *start;
878	int found = 0, expanded_found = 0;
879	size_t count;
880	const struct eap_method *methods, *m;
881
882	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
883		   "vendor=%u method=%u not allowed)", sm->reqMethod,
884		   sm->reqVendor, sm->reqVendorMethod);
885	methods = eap_peer_get_methods(&count);
886	if (methods == NULL)
887		return NULL;
888	if (sm->reqMethod == EAP_TYPE_EXPANDED)
889		return eap_sm_build_expanded_nak(sm, id, methods, count);
890
891	/* RFC 3748 - 5.3.1: Legacy Nak */
892	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
893			     sizeof(struct eap_hdr) + 1 + count + 1,
894			     EAP_CODE_RESPONSE, id);
895	if (resp == NULL)
896		return NULL;
897
898	start = wpabuf_put(resp, 0);
899	for (m = methods; m; m = m->next) {
900		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
901			continue; /* do not allow the current method again */
902		if (eap_allowed_method(sm, m->vendor, m->method)) {
903			if (m->vendor != EAP_VENDOR_IETF) {
904				if (expanded_found)
905					continue;
906				expanded_found = 1;
907				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
908			} else
909				wpabuf_put_u8(resp, m->method);
910			found++;
911		}
912	}
913	if (!found)
914		wpabuf_put_u8(resp, EAP_TYPE_NONE);
915	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
916
917	eap_update_len(resp);
918
919	return resp;
920}
921
922
923static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
924{
925	const u8 *pos;
926	size_t msg_len;
927
928	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
929		"EAP authentication started");
930	eap_notify_status(sm, "started", "");
931
932	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
933			       &msg_len);
934	if (pos == NULL)
935		return;
936
937	/*
938	 * RFC 3748 - 5.1: Identity
939	 * Data field may contain a displayable message in UTF-8. If this
940	 * includes NUL-character, only the data before that should be
941	 * displayed. Some EAP implementasitons may piggy-back additional
942	 * options after the NUL.
943	 */
944	/* TODO: could save displayable message so that it can be shown to the
945	 * user in case of interaction is required */
946	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
947			  pos, msg_len);
948}
949
950
951#ifdef PCSC_FUNCS
952
953/*
954 * Rules for figuring out MNC length based on IMSI for SIM cards that do not
955 * include MNC length field.
956 */
957static int mnc_len_from_imsi(const char *imsi)
958{
959	char mcc_str[4];
960	unsigned int mcc;
961
962	os_memcpy(mcc_str, imsi, 3);
963	mcc_str[3] = '\0';
964	mcc = atoi(mcc_str);
965
966	if (mcc == 228)
967		return 2; /* Networks in Switzerland use 2-digit MNC */
968	if (mcc == 244)
969		return 2; /* Networks in Finland use 2-digit MNC */
970
971	return -1;
972}
973
974
975static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
976				    size_t max_len, size_t *imsi_len)
977{
978	int mnc_len;
979	char *pos, mnc[4];
980
981	if (*imsi_len + 36 > max_len) {
982		wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
983		return -1;
984	}
985
986	/* MNC (2 or 3 digits) */
987	mnc_len = scard_get_mnc_len(sm->scard_ctx);
988	if (mnc_len < 0)
989		mnc_len = mnc_len_from_imsi(imsi);
990	if (mnc_len < 0) {
991		wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
992			   "assuming 3");
993		mnc_len = 3;
994	}
995
996	if (mnc_len == 2) {
997		mnc[0] = '0';
998		mnc[1] = imsi[3];
999		mnc[2] = imsi[4];
1000	} else if (mnc_len == 3) {
1001		mnc[0] = imsi[3];
1002		mnc[1] = imsi[4];
1003		mnc[2] = imsi[5];
1004	}
1005	mnc[3] = '\0';
1006
1007	pos = imsi + *imsi_len;
1008	pos += os_snprintf(pos, imsi + max_len - pos,
1009			   "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
1010			   mnc, imsi[0], imsi[1], imsi[2]);
1011	*imsi_len = pos - imsi;
1012
1013	return 0;
1014}
1015
1016
1017static int eap_sm_imsi_identity(struct eap_sm *sm,
1018				struct eap_peer_config *conf)
1019{
1020	enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
1021	char imsi[100];
1022	size_t imsi_len;
1023	struct eap_method_type *m = conf->eap_methods;
1024	int i;
1025
1026	imsi_len = sizeof(imsi);
1027	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
1028		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
1029		return -1;
1030	}
1031
1032	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
1033
1034	if (imsi_len < 7) {
1035		wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
1036		return -1;
1037	}
1038
1039	if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
1040		wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
1041		return -1;
1042	}
1043	wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
1044
1045	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
1046			  m[i].method != EAP_TYPE_NONE); i++) {
1047		if (m[i].vendor == EAP_VENDOR_IETF &&
1048		    m[i].method == EAP_TYPE_AKA_PRIME) {
1049			method = EAP_SM_AKA_PRIME;
1050			break;
1051		}
1052
1053		if (m[i].vendor == EAP_VENDOR_IETF &&
1054		    m[i].method == EAP_TYPE_AKA) {
1055			method = EAP_SM_AKA;
1056			break;
1057		}
1058	}
1059
1060	os_free(conf->identity);
1061	conf->identity = os_malloc(1 + imsi_len);
1062	if (conf->identity == NULL) {
1063		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
1064			   "IMSI-based identity");
1065		return -1;
1066	}
1067
1068	switch (method) {
1069	case EAP_SM_SIM:
1070		conf->identity[0] = '1';
1071		break;
1072	case EAP_SM_AKA:
1073		conf->identity[0] = '0';
1074		break;
1075	case EAP_SM_AKA_PRIME:
1076		conf->identity[0] = '6';
1077		break;
1078	}
1079	os_memcpy(conf->identity + 1, imsi, imsi_len);
1080	conf->identity_len = 1 + imsi_len;
1081
1082	return 0;
1083}
1084
1085#endif /* PCSC_FUNCS */
1086
1087
1088static int eap_sm_set_scard_pin(struct eap_sm *sm,
1089				struct eap_peer_config *conf)
1090{
1091#ifdef PCSC_FUNCS
1092	if (scard_set_pin(sm->scard_ctx, conf->pin)) {
1093		/*
1094		 * Make sure the same PIN is not tried again in order to avoid
1095		 * blocking SIM.
1096		 */
1097		os_free(conf->pin);
1098		conf->pin = NULL;
1099
1100		wpa_printf(MSG_WARNING, "PIN validation failed");
1101		eap_sm_request_pin(sm);
1102		return -1;
1103	}
1104	return 0;
1105#else /* PCSC_FUNCS */
1106	return -1;
1107#endif /* PCSC_FUNCS */
1108}
1109
1110static int eap_sm_get_scard_identity(struct eap_sm *sm,
1111				     struct eap_peer_config *conf)
1112{
1113#ifdef PCSC_FUNCS
1114	if (eap_sm_set_scard_pin(sm, conf))
1115		return -1;
1116
1117	return eap_sm_imsi_identity(sm, conf);
1118#else /* PCSC_FUNCS */
1119	return -1;
1120#endif /* PCSC_FUNCS */
1121}
1122
1123
1124/**
1125 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1126 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1127 * @id: EAP identifier for the packet
1128 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1129 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1130 * failure
1131 *
1132 * This function allocates and builds an EAP-Identity/Response packet for the
1133 * current network. The caller is responsible for freeing the returned data.
1134 */
1135struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1136{
1137	struct eap_peer_config *config = eap_get_config(sm);
1138	struct wpabuf *resp;
1139	const u8 *identity;
1140	size_t identity_len;
1141
1142	if (config == NULL) {
1143		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1144			   "was not available");
1145		return NULL;
1146	}
1147
1148	if (sm->m && sm->m->get_identity &&
1149	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1150					    &identity_len)) != NULL) {
1151		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1152				  "identity", identity, identity_len);
1153	} else if (!encrypted && config->anonymous_identity) {
1154		identity = config->anonymous_identity;
1155		identity_len = config->anonymous_identity_len;
1156		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1157				  identity, identity_len);
1158	} else {
1159		identity = config->identity;
1160		identity_len = config->identity_len;
1161		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1162				  identity, identity_len);
1163	}
1164
1165	if (identity == NULL) {
1166		wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
1167			   "configuration was not available");
1168		if (config->pcsc) {
1169			if (eap_sm_get_scard_identity(sm, config) < 0)
1170				return NULL;
1171			identity = config->identity;
1172			identity_len = config->identity_len;
1173			wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
1174					  "IMSI", identity, identity_len);
1175		} else {
1176			eap_sm_request_identity(sm);
1177			return NULL;
1178		}
1179	} else if (config->pcsc) {
1180		if (eap_sm_set_scard_pin(sm, config) < 0)
1181			return NULL;
1182	}
1183
1184	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1185			     EAP_CODE_RESPONSE, id);
1186	if (resp == NULL)
1187		return NULL;
1188
1189	wpabuf_put_data(resp, identity, identity_len);
1190
1191	return resp;
1192}
1193
1194
1195static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1196{
1197	const u8 *pos;
1198	char *msg;
1199	size_t i, msg_len;
1200
1201	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1202			       &msg_len);
1203	if (pos == NULL)
1204		return;
1205	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1206			  pos, msg_len);
1207
1208	msg = os_malloc(msg_len + 1);
1209	if (msg == NULL)
1210		return;
1211	for (i = 0; i < msg_len; i++)
1212		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1213	msg[msg_len] = '\0';
1214	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1215		WPA_EVENT_EAP_NOTIFICATION, msg);
1216	os_free(msg);
1217}
1218
1219
1220static struct wpabuf * eap_sm_buildNotify(int id)
1221{
1222	struct wpabuf *resp;
1223
1224	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1225	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1226			     EAP_CODE_RESPONSE, id);
1227	if (resp == NULL)
1228		return NULL;
1229
1230	return resp;
1231}
1232
1233
1234static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1235{
1236	const struct eap_hdr *hdr;
1237	size_t plen;
1238	const u8 *pos;
1239
1240	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1241	sm->reqId = 0;
1242	sm->reqMethod = EAP_TYPE_NONE;
1243	sm->reqVendor = EAP_VENDOR_IETF;
1244	sm->reqVendorMethod = EAP_TYPE_NONE;
1245
1246	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1247		return;
1248
1249	hdr = wpabuf_head(req);
1250	plen = be_to_host16(hdr->length);
1251	if (plen > wpabuf_len(req)) {
1252		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1253			   "(len=%lu plen=%lu)",
1254			   (unsigned long) wpabuf_len(req),
1255			   (unsigned long) plen);
1256		return;
1257	}
1258
1259	sm->reqId = hdr->identifier;
1260
1261	if (sm->workaround) {
1262		const u8 *addr[1];
1263		addr[0] = wpabuf_head(req);
1264		md5_vector(1, addr, &plen, sm->req_md5);
1265	}
1266
1267	switch (hdr->code) {
1268	case EAP_CODE_REQUEST:
1269		if (plen < sizeof(*hdr) + 1) {
1270			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1271				   "no Type field");
1272			return;
1273		}
1274		sm->rxReq = TRUE;
1275		pos = (const u8 *) (hdr + 1);
1276		sm->reqMethod = *pos++;
1277		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1278			if (plen < sizeof(*hdr) + 8) {
1279				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1280					   "expanded EAP-Packet (plen=%lu)",
1281					   (unsigned long) plen);
1282				return;
1283			}
1284			sm->reqVendor = WPA_GET_BE24(pos);
1285			pos += 3;
1286			sm->reqVendorMethod = WPA_GET_BE32(pos);
1287		}
1288		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1289			   "method=%u vendor=%u vendorMethod=%u",
1290			   sm->reqId, sm->reqMethod, sm->reqVendor,
1291			   sm->reqVendorMethod);
1292		break;
1293	case EAP_CODE_RESPONSE:
1294		if (sm->selectedMethod == EAP_TYPE_LEAP) {
1295			/*
1296			 * LEAP differs from RFC 4137 by using reversed roles
1297			 * for mutual authentication and because of this, we
1298			 * need to accept EAP-Response frames if LEAP is used.
1299			 */
1300			if (plen < sizeof(*hdr) + 1) {
1301				wpa_printf(MSG_DEBUG, "EAP: Too short "
1302					   "EAP-Response - no Type field");
1303				return;
1304			}
1305			sm->rxResp = TRUE;
1306			pos = (const u8 *) (hdr + 1);
1307			sm->reqMethod = *pos;
1308			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1309				   "LEAP method=%d id=%d",
1310				   sm->reqMethod, sm->reqId);
1311			break;
1312		}
1313		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1314		break;
1315	case EAP_CODE_SUCCESS:
1316		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1317		eap_notify_status(sm, "completion", "success");
1318		sm->rxSuccess = TRUE;
1319		break;
1320	case EAP_CODE_FAILURE:
1321		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1322		eap_notify_status(sm, "completion", "failure");
1323		sm->rxFailure = TRUE;
1324		break;
1325	default:
1326		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1327			   "code %d", hdr->code);
1328		break;
1329	}
1330}
1331
1332
1333static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
1334				  union tls_event_data *data)
1335{
1336	struct eap_sm *sm = ctx;
1337	char *hash_hex = NULL;
1338
1339	switch (ev) {
1340	case TLS_CERT_CHAIN_SUCCESS:
1341		eap_notify_status(sm, "remote certificate verification",
1342				  "success");
1343		break;
1344	case TLS_CERT_CHAIN_FAILURE:
1345		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
1346			"reason=%d depth=%d subject='%s' err='%s'",
1347			data->cert_fail.reason,
1348			data->cert_fail.depth,
1349			data->cert_fail.subject,
1350			data->cert_fail.reason_txt);
1351		eap_notify_status(sm, "remote certificate verification",
1352				  data->cert_fail.reason_txt);
1353		break;
1354	case TLS_PEER_CERTIFICATE:
1355		if (!sm->eapol_cb->notify_cert)
1356			break;
1357
1358		if (data->peer_cert.hash) {
1359			size_t len = data->peer_cert.hash_len * 2 + 1;
1360			hash_hex = os_malloc(len);
1361			if (hash_hex) {
1362				wpa_snprintf_hex(hash_hex, len,
1363						 data->peer_cert.hash,
1364						 data->peer_cert.hash_len);
1365			}
1366		}
1367
1368		sm->eapol_cb->notify_cert(sm->eapol_ctx,
1369					  data->peer_cert.depth,
1370					  data->peer_cert.subject,
1371					  hash_hex, data->peer_cert.cert);
1372		break;
1373	case TLS_ALERT:
1374		if (data->alert.is_local)
1375			eap_notify_status(sm, "local TLS alert",
1376					  data->alert.description);
1377		else
1378			eap_notify_status(sm, "remote TLS alert",
1379					  data->alert.description);
1380		break;
1381	}
1382
1383	os_free(hash_hex);
1384}
1385
1386
1387/**
1388 * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1389 * @eapol_ctx: Context data to be used with eapol_cb calls
1390 * @eapol_cb: Pointer to EAPOL callback functions
1391 * @msg_ctx: Context data for wpa_msg() calls
1392 * @conf: EAP configuration
1393 * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1394 *
1395 * This function allocates and initializes an EAP state machine. In addition,
1396 * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1397 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1398 * state machine. Consequently, the caller must make sure that this data
1399 * structure remains alive while the EAP state machine is active.
1400 */
1401struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1402				 struct eapol_callbacks *eapol_cb,
1403				 void *msg_ctx, struct eap_config *conf)
1404{
1405	struct eap_sm *sm;
1406	struct tls_config tlsconf;
1407
1408	sm = os_zalloc(sizeof(*sm));
1409	if (sm == NULL)
1410		return NULL;
1411	sm->eapol_ctx = eapol_ctx;
1412	sm->eapol_cb = eapol_cb;
1413	sm->msg_ctx = msg_ctx;
1414	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
1415	sm->wps = conf->wps;
1416
1417	os_memset(&tlsconf, 0, sizeof(tlsconf));
1418	tlsconf.opensc_engine_path = conf->opensc_engine_path;
1419	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1420	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1421#ifdef CONFIG_FIPS
1422	tlsconf.fips_mode = 1;
1423#endif /* CONFIG_FIPS */
1424	tlsconf.event_cb = eap_peer_sm_tls_event;
1425	tlsconf.cb_ctx = sm;
1426	tlsconf.cert_in_cb = conf->cert_in_cb;
1427	sm->ssl_ctx = tls_init(&tlsconf);
1428	if (sm->ssl_ctx == NULL) {
1429		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1430			   "context.");
1431		os_free(sm);
1432		return NULL;
1433	}
1434
1435	sm->ssl_ctx2 = tls_init(&tlsconf);
1436	if (sm->ssl_ctx2 == NULL) {
1437		wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
1438			   "context (2).");
1439		/* Run without separate TLS context within TLS tunnel */
1440	}
1441
1442	return sm;
1443}
1444
1445
1446/**
1447 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1448 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1449 *
1450 * This function deinitializes EAP state machine and frees all allocated
1451 * resources.
1452 */
1453void eap_peer_sm_deinit(struct eap_sm *sm)
1454{
1455	if (sm == NULL)
1456		return;
1457	eap_deinit_prev_method(sm, "EAP deinit");
1458	eap_sm_abort(sm);
1459	if (sm->ssl_ctx2)
1460		tls_deinit(sm->ssl_ctx2);
1461	tls_deinit(sm->ssl_ctx);
1462	os_free(sm);
1463}
1464
1465
1466/**
1467 * eap_peer_sm_step - Step EAP peer state machine
1468 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1469 * Returns: 1 if EAP state was changed or 0 if not
1470 *
1471 * This function advances EAP state machine to a new state to match with the
1472 * current variables. This should be called whenever variables used by the EAP
1473 * state machine have changed.
1474 */
1475int eap_peer_sm_step(struct eap_sm *sm)
1476{
1477	int res = 0;
1478	do {
1479		sm->changed = FALSE;
1480		SM_STEP_RUN(EAP);
1481		if (sm->changed)
1482			res = 1;
1483	} while (sm->changed);
1484	return res;
1485}
1486
1487
1488/**
1489 * eap_sm_abort - Abort EAP authentication
1490 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1491 *
1492 * Release system resources that have been allocated for the authentication
1493 * session without fully deinitializing the EAP state machine.
1494 */
1495void eap_sm_abort(struct eap_sm *sm)
1496{
1497	wpabuf_free(sm->lastRespData);
1498	sm->lastRespData = NULL;
1499	wpabuf_free(sm->eapRespData);
1500	sm->eapRespData = NULL;
1501	eap_sm_free_key(sm);
1502	os_free(sm->eapSessionId);
1503	sm->eapSessionId = NULL;
1504
1505	/* This is not clearly specified in the EAP statemachines draft, but
1506	 * it seems necessary to make sure that some of the EAPOL variables get
1507	 * cleared for the next authentication. */
1508	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
1509}
1510
1511
1512#ifdef CONFIG_CTRL_IFACE
1513static const char * eap_sm_state_txt(int state)
1514{
1515	switch (state) {
1516	case EAP_INITIALIZE:
1517		return "INITIALIZE";
1518	case EAP_DISABLED:
1519		return "DISABLED";
1520	case EAP_IDLE:
1521		return "IDLE";
1522	case EAP_RECEIVED:
1523		return "RECEIVED";
1524	case EAP_GET_METHOD:
1525		return "GET_METHOD";
1526	case EAP_METHOD:
1527		return "METHOD";
1528	case EAP_SEND_RESPONSE:
1529		return "SEND_RESPONSE";
1530	case EAP_DISCARD:
1531		return "DISCARD";
1532	case EAP_IDENTITY:
1533		return "IDENTITY";
1534	case EAP_NOTIFICATION:
1535		return "NOTIFICATION";
1536	case EAP_RETRANSMIT:
1537		return "RETRANSMIT";
1538	case EAP_SUCCESS:
1539		return "SUCCESS";
1540	case EAP_FAILURE:
1541		return "FAILURE";
1542	default:
1543		return "UNKNOWN";
1544	}
1545}
1546#endif /* CONFIG_CTRL_IFACE */
1547
1548
1549#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1550static const char * eap_sm_method_state_txt(EapMethodState state)
1551{
1552	switch (state) {
1553	case METHOD_NONE:
1554		return "NONE";
1555	case METHOD_INIT:
1556		return "INIT";
1557	case METHOD_CONT:
1558		return "CONT";
1559	case METHOD_MAY_CONT:
1560		return "MAY_CONT";
1561	case METHOD_DONE:
1562		return "DONE";
1563	default:
1564		return "UNKNOWN";
1565	}
1566}
1567
1568
1569static const char * eap_sm_decision_txt(EapDecision decision)
1570{
1571	switch (decision) {
1572	case DECISION_FAIL:
1573		return "FAIL";
1574	case DECISION_COND_SUCC:
1575		return "COND_SUCC";
1576	case DECISION_UNCOND_SUCC:
1577		return "UNCOND_SUCC";
1578	default:
1579		return "UNKNOWN";
1580	}
1581}
1582#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1583
1584
1585#ifdef CONFIG_CTRL_IFACE
1586
1587/**
1588 * eap_sm_get_status - Get EAP state machine status
1589 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1590 * @buf: Buffer for status information
1591 * @buflen: Maximum buffer length
1592 * @verbose: Whether to include verbose status information
1593 * Returns: Number of bytes written to buf.
1594 *
1595 * Query EAP state machine for status information. This function fills in a
1596 * text area with current status information from the EAPOL state machine. If
1597 * the buffer (buf) is not large enough, status information will be truncated
1598 * to fit the buffer.
1599 */
1600int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
1601{
1602	int len, ret;
1603
1604	if (sm == NULL)
1605		return 0;
1606
1607	len = os_snprintf(buf, buflen,
1608			  "EAP state=%s\n",
1609			  eap_sm_state_txt(sm->EAP_state));
1610	if (len < 0 || (size_t) len >= buflen)
1611		return 0;
1612
1613	if (sm->selectedMethod != EAP_TYPE_NONE) {
1614		const char *name;
1615		if (sm->m) {
1616			name = sm->m->name;
1617		} else {
1618			const struct eap_method *m =
1619				eap_peer_get_eap_method(EAP_VENDOR_IETF,
1620							sm->selectedMethod);
1621			if (m)
1622				name = m->name;
1623			else
1624				name = "?";
1625		}
1626		ret = os_snprintf(buf + len, buflen - len,
1627				  "selectedMethod=%d (EAP-%s)\n",
1628				  sm->selectedMethod, name);
1629		if (ret < 0 || (size_t) ret >= buflen - len)
1630			return len;
1631		len += ret;
1632
1633		if (sm->m && sm->m->get_status) {
1634			len += sm->m->get_status(sm, sm->eap_method_priv,
1635						 buf + len, buflen - len,
1636						 verbose);
1637		}
1638	}
1639
1640	if (verbose) {
1641		ret = os_snprintf(buf + len, buflen - len,
1642				  "reqMethod=%d\n"
1643				  "methodState=%s\n"
1644				  "decision=%s\n"
1645				  "ClientTimeout=%d\n",
1646				  sm->reqMethod,
1647				  eap_sm_method_state_txt(sm->methodState),
1648				  eap_sm_decision_txt(sm->decision),
1649				  sm->ClientTimeout);
1650		if (ret < 0 || (size_t) ret >= buflen - len)
1651			return len;
1652		len += ret;
1653	}
1654
1655	return len;
1656}
1657#endif /* CONFIG_CTRL_IFACE */
1658
1659
1660#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1661static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
1662			   const char *msg, size_t msglen)
1663{
1664	struct eap_peer_config *config;
1665	const char *txt = NULL;
1666	char *tmp;
1667
1668	if (sm == NULL)
1669		return;
1670	config = eap_get_config(sm);
1671	if (config == NULL)
1672		return;
1673
1674	switch (field) {
1675	case WPA_CTRL_REQ_EAP_IDENTITY:
1676		config->pending_req_identity++;
1677		break;
1678	case WPA_CTRL_REQ_EAP_PASSWORD:
1679		config->pending_req_password++;
1680		break;
1681	case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
1682		config->pending_req_new_password++;
1683		break;
1684	case WPA_CTRL_REQ_EAP_PIN:
1685		config->pending_req_pin++;
1686		break;
1687	case WPA_CTRL_REQ_EAP_OTP:
1688		if (msg) {
1689			tmp = os_malloc(msglen + 3);
1690			if (tmp == NULL)
1691				return;
1692			tmp[0] = '[';
1693			os_memcpy(tmp + 1, msg, msglen);
1694			tmp[msglen + 1] = ']';
1695			tmp[msglen + 2] = '\0';
1696			txt = tmp;
1697			os_free(config->pending_req_otp);
1698			config->pending_req_otp = tmp;
1699			config->pending_req_otp_len = msglen + 3;
1700		} else {
1701			if (config->pending_req_otp == NULL)
1702				return;
1703			txt = config->pending_req_otp;
1704		}
1705		break;
1706	case WPA_CTRL_REQ_EAP_PASSPHRASE:
1707		config->pending_req_passphrase++;
1708		break;
1709	case WPA_CTRL_REQ_SIM:
1710		txt = msg;
1711		break;
1712	default:
1713		return;
1714	}
1715
1716	if (sm->eapol_cb->eap_param_needed)
1717		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
1718}
1719#else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1720#define eap_sm_request(sm, type, msg, msglen) do { } while (0)
1721#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1722
1723const char * eap_sm_get_method_name(struct eap_sm *sm)
1724{
1725	if (sm->m == NULL)
1726		return "UNKNOWN";
1727	return sm->m->name;
1728}
1729
1730
1731/**
1732 * eap_sm_request_identity - Request identity from user (ctrl_iface)
1733 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1734 *
1735 * EAP methods can call this function to request identity information for the
1736 * current network. This is normally called when the identity is not included
1737 * in the network configuration. The request will be sent to monitor programs
1738 * through the control interface.
1739 */
1740void eap_sm_request_identity(struct eap_sm *sm)
1741{
1742	eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
1743}
1744
1745
1746/**
1747 * eap_sm_request_password - Request password from user (ctrl_iface)
1748 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1749 *
1750 * EAP methods can call this function to request password information for the
1751 * current network. This is normally called when the password is not included
1752 * in the network configuration. The request will be sent to monitor programs
1753 * through the control interface.
1754 */
1755void eap_sm_request_password(struct eap_sm *sm)
1756{
1757	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
1758}
1759
1760
1761/**
1762 * eap_sm_request_new_password - Request new password from user (ctrl_iface)
1763 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1764 *
1765 * EAP methods can call this function to request new password information for
1766 * the current network. This is normally called when the EAP method indicates
1767 * that the current password has expired and password change is required. The
1768 * request will be sent to monitor programs through the control interface.
1769 */
1770void eap_sm_request_new_password(struct eap_sm *sm)
1771{
1772	eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
1773}
1774
1775
1776/**
1777 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
1778 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1779 *
1780 * EAP methods can call this function to request SIM or smart card PIN
1781 * information for the current network. This is normally called when the PIN is
1782 * not included in the network configuration. The request will be sent to
1783 * monitor programs through the control interface.
1784 */
1785void eap_sm_request_pin(struct eap_sm *sm)
1786{
1787	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
1788}
1789
1790
1791/**
1792 * eap_sm_request_otp - Request one time password from user (ctrl_iface)
1793 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1794 * @msg: Message to be displayed to the user when asking for OTP
1795 * @msg_len: Length of the user displayable message
1796 *
1797 * EAP methods can call this function to request open time password (OTP) for
1798 * the current network. The request will be sent to monitor programs through
1799 * the control interface.
1800 */
1801void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
1802{
1803	eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
1804}
1805
1806
1807/**
1808 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
1809 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1810 *
1811 * EAP methods can call this function to request passphrase for a private key
1812 * for the current network. This is normally called when the passphrase is not
1813 * included in the network configuration. The request will be sent to monitor
1814 * programs through the control interface.
1815 */
1816void eap_sm_request_passphrase(struct eap_sm *sm)
1817{
1818	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
1819}
1820
1821
1822/**
1823 * eap_sm_request_sim - Request external SIM processing
1824 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1825 * @req: EAP method specific request
1826 */
1827void eap_sm_request_sim(struct eap_sm *sm, const char *req)
1828{
1829	eap_sm_request(sm, WPA_CTRL_REQ_SIM, req, os_strlen(req));
1830}
1831
1832
1833/**
1834 * eap_sm_notify_ctrl_attached - Notification of attached monitor
1835 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1836 *
1837 * Notify EAP state machines that a monitor was attached to the control
1838 * interface to trigger re-sending of pending requests for user input.
1839 */
1840void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
1841{
1842	struct eap_peer_config *config = eap_get_config(sm);
1843
1844	if (config == NULL)
1845		return;
1846
1847	/* Re-send any pending requests for user data since a new control
1848	 * interface was added. This handles cases where the EAP authentication
1849	 * starts immediately after system startup when the user interface is
1850	 * not yet running. */
1851	if (config->pending_req_identity)
1852		eap_sm_request_identity(sm);
1853	if (config->pending_req_password)
1854		eap_sm_request_password(sm);
1855	if (config->pending_req_new_password)
1856		eap_sm_request_new_password(sm);
1857	if (config->pending_req_otp)
1858		eap_sm_request_otp(sm, NULL, 0);
1859	if (config->pending_req_pin)
1860		eap_sm_request_pin(sm);
1861	if (config->pending_req_passphrase)
1862		eap_sm_request_passphrase(sm);
1863}
1864
1865
1866static int eap_allowed_phase2_type(int vendor, int type)
1867{
1868	if (vendor != EAP_VENDOR_IETF)
1869		return 0;
1870	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
1871		type != EAP_TYPE_FAST;
1872}
1873
1874
1875/**
1876 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
1877 * @name: EAP method name, e.g., MD5
1878 * @vendor: Buffer for returning EAP Vendor-Id
1879 * Returns: EAP method type or %EAP_TYPE_NONE if not found
1880 *
1881 * This function maps EAP type names into EAP type numbers that are allowed for
1882 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
1883 * EAP-PEAP, EAP-TTLS, and EAP-FAST.
1884 */
1885u32 eap_get_phase2_type(const char *name, int *vendor)
1886{
1887	int v;
1888	u8 type = eap_peer_get_type(name, &v);
1889	if (eap_allowed_phase2_type(v, type)) {
1890		*vendor = v;
1891		return type;
1892	}
1893	*vendor = EAP_VENDOR_IETF;
1894	return EAP_TYPE_NONE;
1895}
1896
1897
1898/**
1899 * eap_get_phase2_types - Get list of allowed EAP phase 2 types
1900 * @config: Pointer to a network configuration
1901 * @count: Pointer to a variable to be filled with number of returned EAP types
1902 * Returns: Pointer to allocated type list or %NULL on failure
1903 *
1904 * This function generates an array of allowed EAP phase 2 (tunneled) types for
1905 * the given network configuration.
1906 */
1907struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
1908					      size_t *count)
1909{
1910	struct eap_method_type *buf;
1911	u32 method;
1912	int vendor;
1913	size_t mcount;
1914	const struct eap_method *methods, *m;
1915
1916	methods = eap_peer_get_methods(&mcount);
1917	if (methods == NULL)
1918		return NULL;
1919	*count = 0;
1920	buf = os_malloc(mcount * sizeof(struct eap_method_type));
1921	if (buf == NULL)
1922		return NULL;
1923
1924	for (m = methods; m; m = m->next) {
1925		vendor = m->vendor;
1926		method = m->method;
1927		if (eap_allowed_phase2_type(vendor, method)) {
1928			if (vendor == EAP_VENDOR_IETF &&
1929			    method == EAP_TYPE_TLS && config &&
1930			    config->private_key2 == NULL)
1931				continue;
1932			buf[*count].vendor = vendor;
1933			buf[*count].method = method;
1934			(*count)++;
1935		}
1936	}
1937
1938	return buf;
1939}
1940
1941
1942/**
1943 * eap_set_fast_reauth - Update fast_reauth setting
1944 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1945 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
1946 */
1947void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
1948{
1949	sm->fast_reauth = enabled;
1950}
1951
1952
1953/**
1954 * eap_set_workaround - Update EAP workarounds setting
1955 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1956 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
1957 */
1958void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
1959{
1960	sm->workaround = workaround;
1961}
1962
1963
1964/**
1965 * eap_get_config - Get current network configuration
1966 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1967 * Returns: Pointer to the current network configuration or %NULL if not found
1968 *
1969 * EAP peer methods should avoid using this function if they can use other
1970 * access functions, like eap_get_config_identity() and
1971 * eap_get_config_password(), that do not require direct access to
1972 * struct eap_peer_config.
1973 */
1974struct eap_peer_config * eap_get_config(struct eap_sm *sm)
1975{
1976	return sm->eapol_cb->get_config(sm->eapol_ctx);
1977}
1978
1979
1980/**
1981 * eap_get_config_identity - Get identity from the network configuration
1982 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1983 * @len: Buffer for the length of the identity
1984 * Returns: Pointer to the identity or %NULL if not found
1985 */
1986const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
1987{
1988	struct eap_peer_config *config = eap_get_config(sm);
1989	if (config == NULL)
1990		return NULL;
1991	*len = config->identity_len;
1992	return config->identity;
1993}
1994
1995
1996static int eap_get_ext_password(struct eap_sm *sm,
1997				struct eap_peer_config *config)
1998{
1999	char *name;
2000
2001	if (config->password == NULL)
2002		return -1;
2003
2004	name = os_zalloc(config->password_len + 1);
2005	if (name == NULL)
2006		return -1;
2007	os_memcpy(name, config->password, config->password_len);
2008
2009	ext_password_free(sm->ext_pw_buf);
2010	sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
2011	os_free(name);
2012
2013	return sm->ext_pw_buf == NULL ? -1 : 0;
2014}
2015
2016
2017/**
2018 * eap_get_config_password - Get password from the network configuration
2019 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2020 * @len: Buffer for the length of the password
2021 * Returns: Pointer to the password or %NULL if not found
2022 */
2023const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
2024{
2025	struct eap_peer_config *config = eap_get_config(sm);
2026	if (config == NULL)
2027		return NULL;
2028
2029	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2030		if (eap_get_ext_password(sm, config) < 0)
2031			return NULL;
2032		*len = wpabuf_len(sm->ext_pw_buf);
2033		return wpabuf_head(sm->ext_pw_buf);
2034	}
2035
2036	*len = config->password_len;
2037	return config->password;
2038}
2039
2040
2041/**
2042 * eap_get_config_password2 - Get password from the network configuration
2043 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2044 * @len: Buffer for the length of the password
2045 * @hash: Buffer for returning whether the password is stored as a
2046 * NtPasswordHash instead of plaintext password; can be %NULL if this
2047 * information is not needed
2048 * Returns: Pointer to the password or %NULL if not found
2049 */
2050const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
2051{
2052	struct eap_peer_config *config = eap_get_config(sm);
2053	if (config == NULL)
2054		return NULL;
2055
2056	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2057		if (eap_get_ext_password(sm, config) < 0)
2058			return NULL;
2059		if (hash)
2060			*hash = 0;
2061		*len = wpabuf_len(sm->ext_pw_buf);
2062		return wpabuf_head(sm->ext_pw_buf);
2063	}
2064
2065	*len = config->password_len;
2066	if (hash)
2067		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
2068	return config->password;
2069}
2070
2071
2072/**
2073 * eap_get_config_new_password - Get new password from network configuration
2074 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2075 * @len: Buffer for the length of the new password
2076 * Returns: Pointer to the new password or %NULL if not found
2077 */
2078const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
2079{
2080	struct eap_peer_config *config = eap_get_config(sm);
2081	if (config == NULL)
2082		return NULL;
2083	*len = config->new_password_len;
2084	return config->new_password;
2085}
2086
2087
2088/**
2089 * eap_get_config_otp - Get one-time password from the network configuration
2090 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2091 * @len: Buffer for the length of the one-time password
2092 * Returns: Pointer to the one-time password or %NULL if not found
2093 */
2094const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
2095{
2096	struct eap_peer_config *config = eap_get_config(sm);
2097	if (config == NULL)
2098		return NULL;
2099	*len = config->otp_len;
2100	return config->otp;
2101}
2102
2103
2104/**
2105 * eap_clear_config_otp - Clear used one-time password
2106 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2107 *
2108 * This function clears a used one-time password (OTP) from the current network
2109 * configuration. This should be called when the OTP has been used and is not
2110 * needed anymore.
2111 */
2112void eap_clear_config_otp(struct eap_sm *sm)
2113{
2114	struct eap_peer_config *config = eap_get_config(sm);
2115	if (config == NULL)
2116		return;
2117	os_memset(config->otp, 0, config->otp_len);
2118	os_free(config->otp);
2119	config->otp = NULL;
2120	config->otp_len = 0;
2121}
2122
2123
2124/**
2125 * eap_get_config_phase1 - Get phase1 data from the network configuration
2126 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2127 * Returns: Pointer to the phase1 data or %NULL if not found
2128 */
2129const char * eap_get_config_phase1(struct eap_sm *sm)
2130{
2131	struct eap_peer_config *config = eap_get_config(sm);
2132	if (config == NULL)
2133		return NULL;
2134	return config->phase1;
2135}
2136
2137
2138/**
2139 * eap_get_config_phase2 - Get phase2 data from the network configuration
2140 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2141 * Returns: Pointer to the phase1 data or %NULL if not found
2142 */
2143const char * eap_get_config_phase2(struct eap_sm *sm)
2144{
2145	struct eap_peer_config *config = eap_get_config(sm);
2146	if (config == NULL)
2147		return NULL;
2148	return config->phase2;
2149}
2150
2151
2152int eap_get_config_fragment_size(struct eap_sm *sm)
2153{
2154	struct eap_peer_config *config = eap_get_config(sm);
2155	if (config == NULL)
2156		return -1;
2157	return config->fragment_size;
2158}
2159
2160
2161/**
2162 * eap_key_available - Get key availability (eapKeyAvailable variable)
2163 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2164 * Returns: 1 if EAP keying material is available, 0 if not
2165 */
2166int eap_key_available(struct eap_sm *sm)
2167{
2168	return sm ? sm->eapKeyAvailable : 0;
2169}
2170
2171
2172/**
2173 * eap_notify_success - Notify EAP state machine about external success trigger
2174 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2175 *
2176 * This function is called when external event, e.g., successful completion of
2177 * WPA-PSK key handshake, is indicating that EAP state machine should move to
2178 * success state. This is mainly used with security modes that do not use EAP
2179 * state machine (e.g., WPA-PSK).
2180 */
2181void eap_notify_success(struct eap_sm *sm)
2182{
2183	if (sm) {
2184		sm->decision = DECISION_COND_SUCC;
2185		sm->EAP_state = EAP_SUCCESS;
2186	}
2187}
2188
2189
2190/**
2191 * eap_notify_lower_layer_success - Notification of lower layer success
2192 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2193 *
2194 * Notify EAP state machines that a lower layer has detected a successful
2195 * authentication. This is used to recover from dropped EAP-Success messages.
2196 */
2197void eap_notify_lower_layer_success(struct eap_sm *sm)
2198{
2199	if (sm == NULL)
2200		return;
2201
2202	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
2203	    sm->decision == DECISION_FAIL ||
2204	    (sm->methodState != METHOD_MAY_CONT &&
2205	     sm->methodState != METHOD_DONE))
2206		return;
2207
2208	if (sm->eapKeyData != NULL)
2209		sm->eapKeyAvailable = TRUE;
2210	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
2211	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2212		"EAP authentication completed successfully (based on lower "
2213		"layer success)");
2214}
2215
2216
2217/**
2218 * eap_get_eapSessionId - Get Session-Id from EAP state machine
2219 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2220 * @len: Pointer to variable that will be set to number of bytes in the session
2221 * Returns: Pointer to the EAP Session-Id or %NULL on failure
2222 *
2223 * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
2224 * only after a successful authentication. EAP state machine continues to manage
2225 * the Session-Id and the caller must not change or free the returned data.
2226 */
2227const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
2228{
2229	if (sm == NULL || sm->eapSessionId == NULL) {
2230		*len = 0;
2231		return NULL;
2232	}
2233
2234	*len = sm->eapSessionIdLen;
2235	return sm->eapSessionId;
2236}
2237
2238
2239/**
2240 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
2241 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2242 * @len: Pointer to variable that will be set to number of bytes in the key
2243 * Returns: Pointer to the EAP keying data or %NULL on failure
2244 *
2245 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
2246 * key is available only after a successful authentication. EAP state machine
2247 * continues to manage the key data and the caller must not change or free the
2248 * returned data.
2249 */
2250const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2251{
2252	if (sm == NULL || sm->eapKeyData == NULL) {
2253		*len = 0;
2254		return NULL;
2255	}
2256
2257	*len = sm->eapKeyDataLen;
2258	return sm->eapKeyData;
2259}
2260
2261
2262/**
2263 * eap_get_eapKeyData - Get EAP response data
2264 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2265 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
2266 *
2267 * Fetch EAP response (eapRespData) from the EAP state machine. This data is
2268 * available when EAP state machine has processed an incoming EAP request. The
2269 * EAP state machine does not maintain a reference to the response after this
2270 * function is called and the caller is responsible for freeing the data.
2271 */
2272struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
2273{
2274	struct wpabuf *resp;
2275
2276	if (sm == NULL || sm->eapRespData == NULL)
2277		return NULL;
2278
2279	resp = sm->eapRespData;
2280	sm->eapRespData = NULL;
2281
2282	return resp;
2283}
2284
2285
2286/**
2287 * eap_sm_register_scard_ctx - Notification of smart card context
2288 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2289 * @ctx: Context data for smart card operations
2290 *
2291 * Notify EAP state machines of context data for smart card operations. This
2292 * context data will be used as a parameter for scard_*() functions.
2293 */
2294void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
2295{
2296	if (sm)
2297		sm->scard_ctx = ctx;
2298}
2299
2300
2301/**
2302 * eap_set_config_blob - Set or add a named configuration blob
2303 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2304 * @blob: New value for the blob
2305 *
2306 * Adds a new configuration blob or replaces the current value of an existing
2307 * blob.
2308 */
2309void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
2310{
2311#ifndef CONFIG_NO_CONFIG_BLOBS
2312	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
2313#endif /* CONFIG_NO_CONFIG_BLOBS */
2314}
2315
2316
2317/**
2318 * eap_get_config_blob - Get a named configuration blob
2319 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2320 * @name: Name of the blob
2321 * Returns: Pointer to blob data or %NULL if not found
2322 */
2323const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2324						   const char *name)
2325{
2326#ifndef CONFIG_NO_CONFIG_BLOBS
2327	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2328#else /* CONFIG_NO_CONFIG_BLOBS */
2329	return NULL;
2330#endif /* CONFIG_NO_CONFIG_BLOBS */
2331}
2332
2333
2334/**
2335 * eap_set_force_disabled - Set force_disabled flag
2336 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2337 * @disabled: 1 = EAP disabled, 0 = EAP enabled
2338 *
2339 * This function is used to force EAP state machine to be disabled when it is
2340 * not in use (e.g., with WPA-PSK or plaintext connections).
2341 */
2342void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2343{
2344	sm->force_disabled = disabled;
2345}
2346
2347
2348/**
2349 * eap_set_external_sim - Set external_sim flag
2350 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2351 * @external_sim: Whether external SIM/USIM processing is used
2352 */
2353void eap_set_external_sim(struct eap_sm *sm, int external_sim)
2354{
2355	sm->external_sim = external_sim;
2356}
2357
2358
2359 /**
2360 * eap_notify_pending - Notify that EAP method is ready to re-process a request
2361 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2362 *
2363 * An EAP method can perform a pending operation (e.g., to get a response from
2364 * an external process). Once the response is available, this function can be
2365 * used to request EAPOL state machine to retry delivering the previously
2366 * received (and still unanswered) EAP request to EAP state machine.
2367 */
2368void eap_notify_pending(struct eap_sm *sm)
2369{
2370	sm->eapol_cb->notify_pending(sm->eapol_ctx);
2371}
2372
2373
2374/**
2375 * eap_invalidate_cached_session - Mark cached session data invalid
2376 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2377 */
2378void eap_invalidate_cached_session(struct eap_sm *sm)
2379{
2380	if (sm)
2381		eap_deinit_prev_method(sm, "invalidate");
2382}
2383
2384
2385int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2386{
2387	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2388	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2389		return 0; /* Not a WPS Enrollee */
2390
2391	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2392		return 0; /* Not using PBC */
2393
2394	return 1;
2395}
2396
2397
2398int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2399{
2400	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2401	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2402		return 0; /* Not a WPS Enrollee */
2403
2404	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2405		return 0; /* Not using PIN */
2406
2407	return 1;
2408}
2409
2410
2411void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
2412{
2413	ext_password_free(sm->ext_pw_buf);
2414	sm->ext_pw_buf = NULL;
2415	sm->ext_pw = ext;
2416}
2417
2418
2419/**
2420 * eap_set_anon_id - Set or add anonymous identity
2421 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2422 * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
2423 * @len: Length of anonymous identity in octets
2424 */
2425void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
2426{
2427	if (sm->eapol_cb->set_anon_id)
2428		sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
2429}
2430
2431
2432int eap_peer_was_failure_expected(struct eap_sm *sm)
2433{
2434	return sm->expected_failure;
2435}
2436