eap.c revision d5e4923d04122f81300fa68fb07d64ede28fd44d
1/*
2 * EAP peer state machines (RFC 4137)
3 * Copyright (c) 2004-2012, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 *
8 * This file implements the Peer State Machine as defined in RFC 4137. The used
9 * states and state transitions match mostly with the RFC. However, there are
10 * couple of additional transitions for working around small issues noticed
11 * during testing. These exceptions are explained in comments within the
12 * functions in this file. The method functions, m.func(), are similar to the
13 * ones used in RFC 4137, but some small changes have used here to optimize
14 * operations and to add functionality needed for fast re-authentication
15 * (session resumption).
16 */
17
18#include "includes.h"
19
20#include "common.h"
21#include "pcsc_funcs.h"
22#include "state_machine.h"
23#include "ext_password.h"
24#include "crypto/crypto.h"
25#include "crypto/tls.h"
26#include "common/wpa_ctrl.h"
27#include "eap_common/eap_wsc_common.h"
28#include "eap_i.h"
29#include "eap_config.h"
30
31#define STATE_MACHINE_DATA struct eap_sm
32#define STATE_MACHINE_DEBUG_PREFIX "EAP"
33
34#define EAP_MAX_AUTH_ROUNDS 50
35#define EAP_CLIENT_TIMEOUT_DEFAULT 60
36
37
38static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
39				  EapType method);
40static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
41static void eap_sm_processIdentity(struct eap_sm *sm,
42				   const struct wpabuf *req);
43static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
44static struct wpabuf * eap_sm_buildNotify(int id);
45static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
46#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
47static const char * eap_sm_method_state_txt(EapMethodState state);
48static const char * eap_sm_decision_txt(EapDecision decision);
49#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
50
51
52
53static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
54{
55	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
56}
57
58
59static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
60			   Boolean value)
61{
62	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
63}
64
65
66static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
67{
68	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
69}
70
71
72static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
73			  unsigned int value)
74{
75	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
76}
77
78
79static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
80{
81	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
82}
83
84
85static void eap_notify_status(struct eap_sm *sm, const char *status,
86				      const char *parameter)
87{
88	wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
89		   status, parameter);
90	if (sm->eapol_cb->notify_status)
91		sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
92}
93
94
95static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
96{
97	ext_password_free(sm->ext_pw_buf);
98	sm->ext_pw_buf = NULL;
99
100	if (sm->m == NULL || sm->eap_method_priv == NULL)
101		return;
102
103	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
104		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
105	sm->m->deinit(sm, sm->eap_method_priv);
106	sm->eap_method_priv = NULL;
107	sm->m = NULL;
108}
109
110
111/**
112 * eap_allowed_method - Check whether EAP method is allowed
113 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
114 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
115 * @method: EAP type
116 * Returns: 1 = allowed EAP method, 0 = not allowed
117 */
118int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
119{
120	struct eap_peer_config *config = eap_get_config(sm);
121	int i;
122	struct eap_method_type *m;
123
124	if (config == NULL || config->eap_methods == NULL)
125		return 1;
126
127	m = config->eap_methods;
128	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
129		     m[i].method != EAP_TYPE_NONE; i++) {
130		if (m[i].vendor == vendor && m[i].method == method)
131			return 1;
132	}
133	return 0;
134}
135
136
137/*
138 * This state initializes state machine variables when the machine is
139 * activated (portEnabled = TRUE). This is also used when re-starting
140 * authentication (eapRestart == TRUE).
141 */
142SM_STATE(EAP, INITIALIZE)
143{
144	SM_ENTRY(EAP, INITIALIZE);
145	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
146	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
147	    !sm->prev_failure) {
148		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
149			   "fast reauthentication");
150		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
151	} else {
152		eap_deinit_prev_method(sm, "INITIALIZE");
153	}
154	sm->selectedMethod = EAP_TYPE_NONE;
155	sm->methodState = METHOD_NONE;
156	sm->allowNotifications = TRUE;
157	sm->decision = DECISION_FAIL;
158	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
159	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
160	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
161	eapol_set_bool(sm, EAPOL_eapFail, FALSE);
162	os_free(sm->eapKeyData);
163	sm->eapKeyData = NULL;
164	sm->eapKeyAvailable = FALSE;
165	eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
166	sm->lastId = -1; /* new session - make sure this does not match with
167			  * the first EAP-Packet */
168	/*
169	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
170	 * seemed to be able to trigger cases where both were set and if EAPOL
171	 * state machine uses eapNoResp first, it may end up not sending a real
172	 * reply correctly. This occurred when the workaround in FAIL state set
173	 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
174	 * something else(?)
175	 */
176	eapol_set_bool(sm, EAPOL_eapResp, FALSE);
177	eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
178	sm->num_rounds = 0;
179	sm->prev_failure = 0;
180}
181
182
183/*
184 * This state is reached whenever service from the lower layer is interrupted
185 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
186 * occurs when the port becomes enabled.
187 */
188SM_STATE(EAP, DISABLED)
189{
190	SM_ENTRY(EAP, DISABLED);
191	sm->num_rounds = 0;
192	/*
193	 * RFC 4137 does not describe clearing of idleWhile here, but doing so
194	 * allows the timer tick to be stopped more quickly when EAP is not in
195	 * use.
196	 */
197	eapol_set_int(sm, EAPOL_idleWhile, 0);
198}
199
200
201/*
202 * The state machine spends most of its time here, waiting for something to
203 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
204 * SEND_RESPONSE states.
205 */
206SM_STATE(EAP, IDLE)
207{
208	SM_ENTRY(EAP, IDLE);
209}
210
211
212/*
213 * This state is entered when an EAP packet is received (eapReq == TRUE) to
214 * parse the packet header.
215 */
216SM_STATE(EAP, RECEIVED)
217{
218	const struct wpabuf *eapReqData;
219
220	SM_ENTRY(EAP, RECEIVED);
221	eapReqData = eapol_get_eapReqData(sm);
222	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
223	eap_sm_parseEapReq(sm, eapReqData);
224	sm->num_rounds++;
225}
226
227
228/*
229 * This state is entered when a request for a new type comes in. Either the
230 * correct method is started, or a Nak response is built.
231 */
232SM_STATE(EAP, GET_METHOD)
233{
234	int reinit;
235	EapType method;
236	const struct eap_method *eap_method;
237
238	SM_ENTRY(EAP, GET_METHOD);
239
240	if (sm->reqMethod == EAP_TYPE_EXPANDED)
241		method = sm->reqVendorMethod;
242	else
243		method = sm->reqMethod;
244
245	eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
246
247	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
248		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
249			   sm->reqVendor, method);
250		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
251			"vendor=%u method=%u -> NAK",
252			sm->reqVendor, method);
253		eap_notify_status(sm, "refuse proposed method",
254				  eap_method ?  eap_method->name : "unknown");
255		goto nak;
256	}
257
258	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
259		"vendor=%u method=%u", sm->reqVendor, method);
260
261	eap_notify_status(sm, "accept proposed method",
262			  eap_method ?  eap_method->name : "unknown");
263	/*
264	 * RFC 4137 does not define specific operation for fast
265	 * re-authentication (session resumption). The design here is to allow
266	 * the previously used method data to be maintained for
267	 * re-authentication if the method support session resumption.
268	 * Otherwise, the previously used method data is freed and a new method
269	 * is allocated here.
270	 */
271	if (sm->fast_reauth &&
272	    sm->m && sm->m->vendor == sm->reqVendor &&
273	    sm->m->method == method &&
274	    sm->m->has_reauth_data &&
275	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
276		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
277			   " for fast re-authentication");
278		reinit = 1;
279	} else {
280		eap_deinit_prev_method(sm, "GET_METHOD");
281		reinit = 0;
282	}
283
284	sm->selectedMethod = sm->reqMethod;
285	if (sm->m == NULL)
286		sm->m = eap_method;
287	if (!sm->m) {
288		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
289			   "vendor %d method %d",
290			   sm->reqVendor, method);
291		goto nak;
292	}
293
294	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
295
296	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
297		   "vendor %u method %u (%s)",
298		   sm->reqVendor, method, sm->m->name);
299	if (reinit)
300		sm->eap_method_priv = sm->m->init_for_reauth(
301			sm, sm->eap_method_priv);
302	else
303		sm->eap_method_priv = sm->m->init(sm);
304
305	if (sm->eap_method_priv == NULL) {
306		struct eap_peer_config *config = eap_get_config(sm);
307		wpa_msg(sm->msg_ctx, MSG_INFO,
308			"EAP: Failed to initialize EAP method: vendor %u "
309			"method %u (%s)",
310			sm->reqVendor, method, sm->m->name);
311		sm->m = NULL;
312		sm->methodState = METHOD_NONE;
313		sm->selectedMethod = EAP_TYPE_NONE;
314		if (sm->reqMethod == EAP_TYPE_TLS && config &&
315		    (config->pending_req_pin ||
316		     config->pending_req_passphrase)) {
317			/*
318			 * Return without generating Nak in order to allow
319			 * entering of PIN code or passphrase to retry the
320			 * current EAP packet.
321			 */
322			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
323				   "request - skip Nak");
324			return;
325		}
326
327		goto nak;
328	}
329
330	sm->methodState = METHOD_INIT;
331	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
332		"EAP vendor %u method %u (%s) selected",
333		sm->reqVendor, method, sm->m->name);
334	return;
335
336nak:
337	wpabuf_free(sm->eapRespData);
338	sm->eapRespData = NULL;
339	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
340}
341
342
343/*
344 * The method processing happens here. The request from the authenticator is
345 * processed, and an appropriate response packet is built.
346 */
347SM_STATE(EAP, METHOD)
348{
349	struct wpabuf *eapReqData;
350	struct eap_method_ret ret;
351	int min_len = 1;
352
353	SM_ENTRY(EAP, METHOD);
354	if (sm->m == NULL) {
355		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
356		return;
357	}
358
359	eapReqData = eapol_get_eapReqData(sm);
360	if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
361		min_len = 0; /* LEAP uses EAP-Success without payload */
362	if (!eap_hdr_len_valid(eapReqData, min_len))
363		return;
364
365	/*
366	 * Get ignore, methodState, decision, allowNotifications, and
367	 * eapRespData. RFC 4137 uses three separate method procedure (check,
368	 * process, and buildResp) in this state. These have been combined into
369	 * a single function call to m->process() in order to optimize EAP
370	 * method implementation interface a bit. These procedures are only
371	 * used from within this METHOD state, so there is no need to keep
372	 * these as separate C functions.
373	 *
374	 * The RFC 4137 procedures return values as follows:
375	 * ignore = m.check(eapReqData)
376	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
377	 * eapRespData = m.buildResp(reqId)
378	 */
379	os_memset(&ret, 0, sizeof(ret));
380	ret.ignore = sm->ignore;
381	ret.methodState = sm->methodState;
382	ret.decision = sm->decision;
383	ret.allowNotifications = sm->allowNotifications;
384	wpabuf_free(sm->eapRespData);
385	sm->eapRespData = NULL;
386	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
387					 eapReqData);
388	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
389		   "methodState=%s decision=%s",
390		   ret.ignore ? "TRUE" : "FALSE",
391		   eap_sm_method_state_txt(ret.methodState),
392		   eap_sm_decision_txt(ret.decision));
393
394	sm->ignore = ret.ignore;
395	if (sm->ignore)
396		return;
397	sm->methodState = ret.methodState;
398	sm->decision = ret.decision;
399	sm->allowNotifications = ret.allowNotifications;
400
401	if (sm->m->isKeyAvailable && sm->m->getKey &&
402	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
403		os_free(sm->eapKeyData);
404		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
405					       &sm->eapKeyDataLen);
406	}
407}
408
409
410/*
411 * This state signals the lower layer that a response packet is ready to be
412 * sent.
413 */
414SM_STATE(EAP, SEND_RESPONSE)
415{
416	SM_ENTRY(EAP, SEND_RESPONSE);
417	wpabuf_free(sm->lastRespData);
418	if (sm->eapRespData) {
419		if (sm->workaround)
420			os_memcpy(sm->last_md5, sm->req_md5, 16);
421		sm->lastId = sm->reqId;
422		sm->lastRespData = wpabuf_dup(sm->eapRespData);
423		eapol_set_bool(sm, EAPOL_eapResp, TRUE);
424	} else
425		sm->lastRespData = NULL;
426	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
427	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
428}
429
430
431/*
432 * This state signals the lower layer that the request was discarded, and no
433 * response packet will be sent at this time.
434 */
435SM_STATE(EAP, DISCARD)
436{
437	SM_ENTRY(EAP, DISCARD);
438	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
439	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
440}
441
442
443/*
444 * Handles requests for Identity method and builds a response.
445 */
446SM_STATE(EAP, IDENTITY)
447{
448	const struct wpabuf *eapReqData;
449
450	SM_ENTRY(EAP, IDENTITY);
451	eapReqData = eapol_get_eapReqData(sm);
452	if (!eap_hdr_len_valid(eapReqData, 1))
453		return;
454	eap_sm_processIdentity(sm, eapReqData);
455	wpabuf_free(sm->eapRespData);
456	sm->eapRespData = NULL;
457	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
458}
459
460
461/*
462 * Handles requests for Notification method and builds a response.
463 */
464SM_STATE(EAP, NOTIFICATION)
465{
466	const struct wpabuf *eapReqData;
467
468	SM_ENTRY(EAP, NOTIFICATION);
469	eapReqData = eapol_get_eapReqData(sm);
470	if (!eap_hdr_len_valid(eapReqData, 1))
471		return;
472	eap_sm_processNotify(sm, eapReqData);
473	wpabuf_free(sm->eapRespData);
474	sm->eapRespData = NULL;
475	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
476}
477
478
479/*
480 * This state retransmits the previous response packet.
481 */
482SM_STATE(EAP, RETRANSMIT)
483{
484	SM_ENTRY(EAP, RETRANSMIT);
485	wpabuf_free(sm->eapRespData);
486	if (sm->lastRespData)
487		sm->eapRespData = wpabuf_dup(sm->lastRespData);
488	else
489		sm->eapRespData = NULL;
490}
491
492
493/*
494 * This state is entered in case of a successful completion of authentication
495 * and state machine waits here until port is disabled or EAP authentication is
496 * restarted.
497 */
498SM_STATE(EAP, SUCCESS)
499{
500	SM_ENTRY(EAP, SUCCESS);
501	if (sm->eapKeyData != NULL)
502		sm->eapKeyAvailable = TRUE;
503	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
504
505	/*
506	 * RFC 4137 does not clear eapReq here, but this seems to be required
507	 * to avoid processing the same request twice when state machine is
508	 * initialized.
509	 */
510	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
511
512	/*
513	 * RFC 4137 does not set eapNoResp here, but this seems to be required
514	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
515	 * addition, either eapResp or eapNoResp is required to be set after
516	 * processing the received EAP frame.
517	 */
518	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
519
520	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
521		"EAP authentication completed successfully");
522}
523
524
525/*
526 * This state is entered in case of a failure and state machine waits here
527 * until port is disabled or EAP authentication is restarted.
528 */
529SM_STATE(EAP, FAILURE)
530{
531	SM_ENTRY(EAP, FAILURE);
532	eapol_set_bool(sm, EAPOL_eapFail, TRUE);
533
534	/*
535	 * RFC 4137 does not clear eapReq here, but this seems to be required
536	 * to avoid processing the same request twice when state machine is
537	 * initialized.
538	 */
539	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
540
541	/*
542	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
543	 * eapNoResp is required to be set after processing the received EAP
544	 * frame.
545	 */
546	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
547
548	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
549		"EAP authentication failed");
550
551	sm->prev_failure = 1;
552}
553
554
555static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
556{
557	/*
558	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
559	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
560	 * RFC 4137 require that reqId == lastId. In addition, it looks like
561	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
562	 *
563	 * Accept this kind of Id if EAP workarounds are enabled. These are
564	 * unauthenticated plaintext messages, so this should have minimal
565	 * security implications (bit easier to fake EAP-Success/Failure).
566	 */
567	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
568			       reqId == ((lastId + 2) & 0xff))) {
569		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
570			   "identifier field in EAP Success: "
571			   "reqId=%d lastId=%d (these are supposed to be "
572			   "same)", reqId, lastId);
573		return 1;
574	}
575	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
576		   "lastId=%d", reqId, lastId);
577	return 0;
578}
579
580
581/*
582 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
583 */
584
585static void eap_peer_sm_step_idle(struct eap_sm *sm)
586{
587	/*
588	 * The first three transitions are from RFC 4137. The last two are
589	 * local additions to handle special cases with LEAP and PEAP server
590	 * not sending EAP-Success in some cases.
591	 */
592	if (eapol_get_bool(sm, EAPOL_eapReq))
593		SM_ENTER(EAP, RECEIVED);
594	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
595		  sm->decision != DECISION_FAIL) ||
596		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
597		  sm->decision == DECISION_UNCOND_SUCC))
598		SM_ENTER(EAP, SUCCESS);
599	else if (eapol_get_bool(sm, EAPOL_altReject) ||
600		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
601		  sm->decision != DECISION_UNCOND_SUCC) ||
602		 (eapol_get_bool(sm, EAPOL_altAccept) &&
603		  sm->methodState != METHOD_CONT &&
604		  sm->decision == DECISION_FAIL))
605		SM_ENTER(EAP, FAILURE);
606	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
607		 sm->leap_done && sm->decision != DECISION_FAIL &&
608		 sm->methodState == METHOD_DONE)
609		SM_ENTER(EAP, SUCCESS);
610	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
611		 sm->peap_done && sm->decision != DECISION_FAIL &&
612		 sm->methodState == METHOD_DONE)
613		SM_ENTER(EAP, SUCCESS);
614}
615
616
617static int eap_peer_req_is_duplicate(struct eap_sm *sm)
618{
619	int duplicate;
620
621	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
622	if (sm->workaround && duplicate &&
623	    os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
624		/*
625		 * RFC 4137 uses (reqId == lastId) as the only verification for
626		 * duplicate EAP requests. However, this misses cases where the
627		 * AS is incorrectly using the same id again; and
628		 * unfortunately, such implementations exist. Use MD5 hash as
629		 * an extra verification for the packets being duplicate to
630		 * workaround these issues.
631		 */
632		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
633			   "EAP packets were not identical");
634		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
635			   "duplicate packet");
636		duplicate = 0;
637	}
638
639	return duplicate;
640}
641
642
643static void eap_peer_sm_step_received(struct eap_sm *sm)
644{
645	int duplicate = eap_peer_req_is_duplicate(sm);
646
647	/*
648	 * Two special cases below for LEAP are local additions to work around
649	 * odd LEAP behavior (EAP-Success in the middle of authentication and
650	 * then swapped roles). Other transitions are based on RFC 4137.
651	 */
652	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
653	    (sm->reqId == sm->lastId ||
654	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
655		SM_ENTER(EAP, SUCCESS);
656	else if (sm->methodState != METHOD_CONT &&
657		 ((sm->rxFailure &&
658		   sm->decision != DECISION_UNCOND_SUCC) ||
659		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
660		   (sm->selectedMethod != EAP_TYPE_LEAP ||
661		    sm->methodState != METHOD_MAY_CONT))) &&
662		 (sm->reqId == sm->lastId ||
663		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
664		SM_ENTER(EAP, FAILURE);
665	else if (sm->rxReq && duplicate)
666		SM_ENTER(EAP, RETRANSMIT);
667	else if (sm->rxReq && !duplicate &&
668		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
669		 sm->allowNotifications)
670		SM_ENTER(EAP, NOTIFICATION);
671	else if (sm->rxReq && !duplicate &&
672		 sm->selectedMethod == EAP_TYPE_NONE &&
673		 sm->reqMethod == EAP_TYPE_IDENTITY)
674		SM_ENTER(EAP, IDENTITY);
675	else if (sm->rxReq && !duplicate &&
676		 sm->selectedMethod == EAP_TYPE_NONE &&
677		 sm->reqMethod != EAP_TYPE_IDENTITY &&
678		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
679		SM_ENTER(EAP, GET_METHOD);
680	else if (sm->rxReq && !duplicate &&
681		 sm->reqMethod == sm->selectedMethod &&
682		 sm->methodState != METHOD_DONE)
683		SM_ENTER(EAP, METHOD);
684	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
685		 (sm->rxSuccess || sm->rxResp))
686		SM_ENTER(EAP, METHOD);
687	else
688		SM_ENTER(EAP, DISCARD);
689}
690
691
692static void eap_peer_sm_step_local(struct eap_sm *sm)
693{
694	switch (sm->EAP_state) {
695	case EAP_INITIALIZE:
696		SM_ENTER(EAP, IDLE);
697		break;
698	case EAP_DISABLED:
699		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
700		    !sm->force_disabled)
701			SM_ENTER(EAP, INITIALIZE);
702		break;
703	case EAP_IDLE:
704		eap_peer_sm_step_idle(sm);
705		break;
706	case EAP_RECEIVED:
707		eap_peer_sm_step_received(sm);
708		break;
709	case EAP_GET_METHOD:
710		if (sm->selectedMethod == sm->reqMethod)
711			SM_ENTER(EAP, METHOD);
712		else
713			SM_ENTER(EAP, SEND_RESPONSE);
714		break;
715	case EAP_METHOD:
716		if (sm->ignore)
717			SM_ENTER(EAP, DISCARD);
718		else
719			SM_ENTER(EAP, SEND_RESPONSE);
720		break;
721	case EAP_SEND_RESPONSE:
722		SM_ENTER(EAP, IDLE);
723		break;
724	case EAP_DISCARD:
725		SM_ENTER(EAP, IDLE);
726		break;
727	case EAP_IDENTITY:
728		SM_ENTER(EAP, SEND_RESPONSE);
729		break;
730	case EAP_NOTIFICATION:
731		SM_ENTER(EAP, SEND_RESPONSE);
732		break;
733	case EAP_RETRANSMIT:
734		SM_ENTER(EAP, SEND_RESPONSE);
735		break;
736	case EAP_SUCCESS:
737		break;
738	case EAP_FAILURE:
739		break;
740	}
741}
742
743
744SM_STEP(EAP)
745{
746	/* Global transitions */
747	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
748	    eapol_get_bool(sm, EAPOL_portEnabled))
749		SM_ENTER_GLOBAL(EAP, INITIALIZE);
750	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
751		SM_ENTER_GLOBAL(EAP, DISABLED);
752	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
753		/* RFC 4137 does not place any limit on number of EAP messages
754		 * in an authentication session. However, some error cases have
755		 * ended up in a state were EAP messages were sent between the
756		 * peer and server in a loop (e.g., TLS ACK frame in both
757		 * direction). Since this is quite undesired outcome, limit the
758		 * total number of EAP round-trips and abort authentication if
759		 * this limit is exceeded.
760		 */
761		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
762			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
763				"authentication rounds - abort",
764				EAP_MAX_AUTH_ROUNDS);
765			sm->num_rounds++;
766			SM_ENTER_GLOBAL(EAP, FAILURE);
767		}
768	} else {
769		/* Local transitions */
770		eap_peer_sm_step_local(sm);
771	}
772}
773
774
775static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
776				  EapType method)
777{
778	if (!eap_allowed_method(sm, vendor, method)) {
779		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
780			   "vendor %u method %u", vendor, method);
781		return FALSE;
782	}
783	if (eap_peer_get_eap_method(vendor, method))
784		return TRUE;
785	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
786		   "vendor %u method %u", vendor, method);
787	return FALSE;
788}
789
790
791static struct wpabuf * eap_sm_build_expanded_nak(
792	struct eap_sm *sm, int id, const struct eap_method *methods,
793	size_t count)
794{
795	struct wpabuf *resp;
796	int found = 0;
797	const struct eap_method *m;
798
799	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
800
801	/* RFC 3748 - 5.3.2: Expanded Nak */
802	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
803			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
804	if (resp == NULL)
805		return NULL;
806
807	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
808	wpabuf_put_be32(resp, EAP_TYPE_NAK);
809
810	for (m = methods; m; m = m->next) {
811		if (sm->reqVendor == m->vendor &&
812		    sm->reqVendorMethod == m->method)
813			continue; /* do not allow the current method again */
814		if (eap_allowed_method(sm, m->vendor, m->method)) {
815			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
816				   "vendor=%u method=%u",
817				   m->vendor, m->method);
818			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
819			wpabuf_put_be24(resp, m->vendor);
820			wpabuf_put_be32(resp, m->method);
821
822			found++;
823		}
824	}
825	if (!found) {
826		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
827		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
828		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
829		wpabuf_put_be32(resp, EAP_TYPE_NONE);
830	}
831
832	eap_update_len(resp);
833
834	return resp;
835}
836
837
838static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
839{
840	struct wpabuf *resp;
841	u8 *start;
842	int found = 0, expanded_found = 0;
843	size_t count;
844	const struct eap_method *methods, *m;
845
846	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
847		   "vendor=%u method=%u not allowed)", sm->reqMethod,
848		   sm->reqVendor, sm->reqVendorMethod);
849	methods = eap_peer_get_methods(&count);
850	if (methods == NULL)
851		return NULL;
852	if (sm->reqMethod == EAP_TYPE_EXPANDED)
853		return eap_sm_build_expanded_nak(sm, id, methods, count);
854
855	/* RFC 3748 - 5.3.1: Legacy Nak */
856	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
857			     sizeof(struct eap_hdr) + 1 + count + 1,
858			     EAP_CODE_RESPONSE, id);
859	if (resp == NULL)
860		return NULL;
861
862	start = wpabuf_put(resp, 0);
863	for (m = methods; m; m = m->next) {
864		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
865			continue; /* do not allow the current method again */
866		if (eap_allowed_method(sm, m->vendor, m->method)) {
867			if (m->vendor != EAP_VENDOR_IETF) {
868				if (expanded_found)
869					continue;
870				expanded_found = 1;
871				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
872			} else
873				wpabuf_put_u8(resp, m->method);
874			found++;
875		}
876	}
877	if (!found)
878		wpabuf_put_u8(resp, EAP_TYPE_NONE);
879	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
880
881	eap_update_len(resp);
882
883	return resp;
884}
885
886
887static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
888{
889	const u8 *pos;
890	size_t msg_len;
891
892	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
893		"EAP authentication started");
894
895	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
896			       &msg_len);
897	if (pos == NULL)
898		return;
899
900	/*
901	 * RFC 3748 - 5.1: Identity
902	 * Data field may contain a displayable message in UTF-8. If this
903	 * includes NUL-character, only the data before that should be
904	 * displayed. Some EAP implementasitons may piggy-back additional
905	 * options after the NUL.
906	 */
907	/* TODO: could save displayable message so that it can be shown to the
908	 * user in case of interaction is required */
909	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
910			  pos, msg_len);
911}
912
913
914#ifdef PCSC_FUNCS
915
916/*
917 * Rules for figuring out MNC length based on IMSI for SIM cards that do not
918 * include MNC length field.
919 */
920static int mnc_len_from_imsi(const char *imsi)
921{
922	char mcc_str[4];
923	unsigned int mcc;
924
925	os_memcpy(mcc_str, imsi, 3);
926	mcc_str[3] = '\0';
927	mcc = atoi(mcc_str);
928
929	if (mcc == 244)
930		return 2; /* Networks in Finland use 2-digit MNC */
931
932	return -1;
933}
934
935
936static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
937				    size_t max_len, size_t *imsi_len)
938{
939	int mnc_len;
940	char *pos, mnc[4];
941
942	if (*imsi_len + 36 > max_len) {
943		wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
944		return -1;
945	}
946
947	/* MNC (2 or 3 digits) */
948	mnc_len = scard_get_mnc_len(sm->scard_ctx);
949	if (mnc_len < 0)
950		mnc_len = mnc_len_from_imsi(imsi);
951	if (mnc_len < 0) {
952		wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
953			   "assuming 3");
954		mnc_len = 3;
955	}
956
957	if (mnc_len == 2) {
958		mnc[0] = '0';
959		mnc[1] = imsi[3];
960		mnc[2] = imsi[4];
961	} else if (mnc_len == 3) {
962		mnc[0] = imsi[3];
963		mnc[1] = imsi[4];
964		mnc[2] = imsi[5];
965	}
966	mnc[3] = '\0';
967
968	pos = imsi + *imsi_len;
969	pos += os_snprintf(pos, imsi + max_len - pos,
970			   "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
971			   mnc, imsi[0], imsi[1], imsi[2]);
972	*imsi_len = pos - imsi;
973
974	return 0;
975}
976
977
978static int eap_sm_imsi_identity(struct eap_sm *sm,
979				struct eap_peer_config *conf)
980{
981	enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
982	char imsi[100];
983	size_t imsi_len;
984	struct eap_method_type *m = conf->eap_methods;
985	int i;
986
987	imsi_len = sizeof(imsi);
988	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
989		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
990		return -1;
991	}
992
993	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
994
995	if (imsi_len < 7) {
996		wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
997		return -1;
998	}
999
1000	if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
1001		wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
1002		return -1;
1003	}
1004	wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
1005
1006	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
1007			  m[i].method != EAP_TYPE_NONE); i++) {
1008		if (m[i].vendor == EAP_VENDOR_IETF &&
1009		    m[i].method == EAP_TYPE_AKA_PRIME) {
1010			method = EAP_SM_AKA_PRIME;
1011			break;
1012		}
1013
1014		if (m[i].vendor == EAP_VENDOR_IETF &&
1015		    m[i].method == EAP_TYPE_AKA) {
1016			method = EAP_SM_AKA;
1017			break;
1018		}
1019	}
1020
1021	os_free(conf->identity);
1022	conf->identity = os_malloc(1 + imsi_len);
1023	if (conf->identity == NULL) {
1024		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
1025			   "IMSI-based identity");
1026		return -1;
1027	}
1028
1029	switch (method) {
1030	case EAP_SM_SIM:
1031		conf->identity[0] = '1';
1032		break;
1033	case EAP_SM_AKA:
1034		conf->identity[0] = '0';
1035		break;
1036	case EAP_SM_AKA_PRIME:
1037		conf->identity[0] = '6';
1038		break;
1039	}
1040	os_memcpy(conf->identity + 1, imsi, imsi_len);
1041	conf->identity_len = 1 + imsi_len;
1042
1043	return 0;
1044}
1045
1046#endif /* PCSC_FUNCS */
1047
1048
1049static int eap_sm_set_scard_pin(struct eap_sm *sm,
1050				struct eap_peer_config *conf)
1051{
1052#ifdef PCSC_FUNCS
1053	if (scard_set_pin(sm->scard_ctx, conf->pin)) {
1054		/*
1055		 * Make sure the same PIN is not tried again in order to avoid
1056		 * blocking SIM.
1057		 */
1058		os_free(conf->pin);
1059		conf->pin = NULL;
1060
1061		wpa_printf(MSG_WARNING, "PIN validation failed");
1062		eap_sm_request_pin(sm);
1063		return -1;
1064	}
1065	return 0;
1066#else /* PCSC_FUNCS */
1067	return -1;
1068#endif /* PCSC_FUNCS */
1069}
1070
1071static int eap_sm_get_scard_identity(struct eap_sm *sm,
1072				     struct eap_peer_config *conf)
1073{
1074#ifdef PCSC_FUNCS
1075	if (eap_sm_set_scard_pin(sm, conf))
1076		return -1;
1077
1078	return eap_sm_imsi_identity(sm, conf);
1079#else /* PCSC_FUNCS */
1080	return -1;
1081#endif /* PCSC_FUNCS */
1082}
1083
1084
1085/**
1086 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1087 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1088 * @id: EAP identifier for the packet
1089 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1090 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1091 * failure
1092 *
1093 * This function allocates and builds an EAP-Identity/Response packet for the
1094 * current network. The caller is responsible for freeing the returned data.
1095 */
1096struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1097{
1098	struct eap_peer_config *config = eap_get_config(sm);
1099	struct wpabuf *resp;
1100	const u8 *identity;
1101	size_t identity_len;
1102
1103	if (config == NULL) {
1104		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1105			   "was not available");
1106		return NULL;
1107	}
1108
1109	if (sm->m && sm->m->get_identity &&
1110	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1111					    &identity_len)) != NULL) {
1112		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1113				  "identity", identity, identity_len);
1114	} else if (!encrypted && config->anonymous_identity) {
1115		identity = config->anonymous_identity;
1116		identity_len = config->anonymous_identity_len;
1117		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1118				  identity, identity_len);
1119	} else {
1120		identity = config->identity;
1121		identity_len = config->identity_len;
1122		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1123				  identity, identity_len);
1124	}
1125
1126	if (identity == NULL) {
1127		wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
1128			   "configuration was not available");
1129		if (config->pcsc) {
1130			if (eap_sm_get_scard_identity(sm, config) < 0)
1131				return NULL;
1132			identity = config->identity;
1133			identity_len = config->identity_len;
1134			wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
1135					  "IMSI", identity, identity_len);
1136		} else {
1137			eap_sm_request_identity(sm);
1138			return NULL;
1139		}
1140	} else if (config->pcsc) {
1141		if (eap_sm_set_scard_pin(sm, config) < 0)
1142			return NULL;
1143	}
1144
1145	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1146			     EAP_CODE_RESPONSE, id);
1147	if (resp == NULL)
1148		return NULL;
1149
1150	wpabuf_put_data(resp, identity, identity_len);
1151
1152	return resp;
1153}
1154
1155
1156static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1157{
1158	const u8 *pos;
1159	char *msg;
1160	size_t i, msg_len;
1161
1162	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1163			       &msg_len);
1164	if (pos == NULL)
1165		return;
1166	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1167			  pos, msg_len);
1168
1169	msg = os_malloc(msg_len + 1);
1170	if (msg == NULL)
1171		return;
1172	for (i = 0; i < msg_len; i++)
1173		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1174	msg[msg_len] = '\0';
1175	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1176		WPA_EVENT_EAP_NOTIFICATION, msg);
1177	os_free(msg);
1178}
1179
1180
1181static struct wpabuf * eap_sm_buildNotify(int id)
1182{
1183	struct wpabuf *resp;
1184
1185	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1186	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1187			     EAP_CODE_RESPONSE, id);
1188	if (resp == NULL)
1189		return NULL;
1190
1191	return resp;
1192}
1193
1194
1195static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1196{
1197	const struct eap_hdr *hdr;
1198	size_t plen;
1199	const u8 *pos;
1200
1201	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1202	sm->reqId = 0;
1203	sm->reqMethod = EAP_TYPE_NONE;
1204	sm->reqVendor = EAP_VENDOR_IETF;
1205	sm->reqVendorMethod = EAP_TYPE_NONE;
1206
1207	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1208		return;
1209
1210	hdr = wpabuf_head(req);
1211	plen = be_to_host16(hdr->length);
1212	if (plen > wpabuf_len(req)) {
1213		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1214			   "(len=%lu plen=%lu)",
1215			   (unsigned long) wpabuf_len(req),
1216			   (unsigned long) plen);
1217		return;
1218	}
1219
1220	sm->reqId = hdr->identifier;
1221
1222	if (sm->workaround) {
1223		const u8 *addr[1];
1224		addr[0] = wpabuf_head(req);
1225		md5_vector(1, addr, &plen, sm->req_md5);
1226	}
1227
1228	switch (hdr->code) {
1229	case EAP_CODE_REQUEST:
1230		if (plen < sizeof(*hdr) + 1) {
1231			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1232				   "no Type field");
1233			return;
1234		}
1235		sm->rxReq = TRUE;
1236		pos = (const u8 *) (hdr + 1);
1237		sm->reqMethod = *pos++;
1238		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1239			if (plen < sizeof(*hdr) + 8) {
1240				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1241					   "expanded EAP-Packet (plen=%lu)",
1242					   (unsigned long) plen);
1243				return;
1244			}
1245			sm->reqVendor = WPA_GET_BE24(pos);
1246			pos += 3;
1247			sm->reqVendorMethod = WPA_GET_BE32(pos);
1248		}
1249		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1250			   "method=%u vendor=%u vendorMethod=%u",
1251			   sm->reqId, sm->reqMethod, sm->reqVendor,
1252			   sm->reqVendorMethod);
1253		break;
1254	case EAP_CODE_RESPONSE:
1255		if (sm->selectedMethod == EAP_TYPE_LEAP) {
1256			/*
1257			 * LEAP differs from RFC 4137 by using reversed roles
1258			 * for mutual authentication and because of this, we
1259			 * need to accept EAP-Response frames if LEAP is used.
1260			 */
1261			if (plen < sizeof(*hdr) + 1) {
1262				wpa_printf(MSG_DEBUG, "EAP: Too short "
1263					   "EAP-Response - no Type field");
1264				return;
1265			}
1266			sm->rxResp = TRUE;
1267			pos = (const u8 *) (hdr + 1);
1268			sm->reqMethod = *pos;
1269			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1270				   "LEAP method=%d id=%d",
1271				   sm->reqMethod, sm->reqId);
1272			break;
1273		}
1274		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1275		break;
1276	case EAP_CODE_SUCCESS:
1277		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1278		eap_notify_status(sm, "completion", "success");
1279		sm->rxSuccess = TRUE;
1280		break;
1281	case EAP_CODE_FAILURE:
1282		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1283		eap_notify_status(sm, "completion", "failure");
1284		sm->rxFailure = TRUE;
1285		break;
1286	default:
1287		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1288			   "code %d", hdr->code);
1289		break;
1290	}
1291}
1292
1293
1294static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
1295				  union tls_event_data *data)
1296{
1297	struct eap_sm *sm = ctx;
1298	char *hash_hex = NULL;
1299
1300	switch (ev) {
1301	case TLS_CERT_CHAIN_SUCCESS:
1302		eap_notify_status(sm, "remote certificate verification",
1303				  "success");
1304		break;
1305	case TLS_CERT_CHAIN_FAILURE:
1306		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
1307			"reason=%d depth=%d subject='%s' err='%s'",
1308			data->cert_fail.reason,
1309			data->cert_fail.depth,
1310			data->cert_fail.subject,
1311			data->cert_fail.reason_txt);
1312		eap_notify_status(sm, "remote certificate verification",
1313				  data->cert_fail.reason_txt);
1314		break;
1315	case TLS_PEER_CERTIFICATE:
1316		if (!sm->eapol_cb->notify_cert)
1317			break;
1318
1319		if (data->peer_cert.hash) {
1320			size_t len = data->peer_cert.hash_len * 2 + 1;
1321			hash_hex = os_malloc(len);
1322			if (hash_hex) {
1323				wpa_snprintf_hex(hash_hex, len,
1324						 data->peer_cert.hash,
1325						 data->peer_cert.hash_len);
1326			}
1327		}
1328
1329		sm->eapol_cb->notify_cert(sm->eapol_ctx,
1330					  data->peer_cert.depth,
1331					  data->peer_cert.subject,
1332					  hash_hex, data->peer_cert.cert);
1333		break;
1334	case TLS_ALERT:
1335		if (data->alert.is_local)
1336			eap_notify_status(sm, "local TLS alert",
1337					  data->alert.description);
1338		else
1339			eap_notify_status(sm, "remote TLS alert",
1340					  data->alert.description);
1341		break;
1342	}
1343
1344	os_free(hash_hex);
1345}
1346
1347
1348/**
1349 * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1350 * @eapol_ctx: Context data to be used with eapol_cb calls
1351 * @eapol_cb: Pointer to EAPOL callback functions
1352 * @msg_ctx: Context data for wpa_msg() calls
1353 * @conf: EAP configuration
1354 * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1355 *
1356 * This function allocates and initializes an EAP state machine. In addition,
1357 * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1358 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1359 * state machine. Consequently, the caller must make sure that this data
1360 * structure remains alive while the EAP state machine is active.
1361 */
1362struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1363				 struct eapol_callbacks *eapol_cb,
1364				 void *msg_ctx, struct eap_config *conf)
1365{
1366	struct eap_sm *sm;
1367	struct tls_config tlsconf;
1368
1369	sm = os_zalloc(sizeof(*sm));
1370	if (sm == NULL)
1371		return NULL;
1372	sm->eapol_ctx = eapol_ctx;
1373	sm->eapol_cb = eapol_cb;
1374	sm->msg_ctx = msg_ctx;
1375	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
1376	sm->wps = conf->wps;
1377
1378	os_memset(&tlsconf, 0, sizeof(tlsconf));
1379	tlsconf.opensc_engine_path = conf->opensc_engine_path;
1380	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1381	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1382#ifdef CONFIG_FIPS
1383	tlsconf.fips_mode = 1;
1384#endif /* CONFIG_FIPS */
1385	tlsconf.event_cb = eap_peer_sm_tls_event;
1386	tlsconf.cb_ctx = sm;
1387	tlsconf.cert_in_cb = conf->cert_in_cb;
1388	sm->ssl_ctx = tls_init(&tlsconf);
1389	if (sm->ssl_ctx == NULL) {
1390		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1391			   "context.");
1392		os_free(sm);
1393		return NULL;
1394	}
1395
1396	sm->ssl_ctx2 = tls_init(&tlsconf);
1397	if (sm->ssl_ctx2 == NULL) {
1398		wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
1399			   "context (2).");
1400		/* Run without separate TLS context within TLS tunnel */
1401	}
1402
1403	return sm;
1404}
1405
1406
1407/**
1408 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1409 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1410 *
1411 * This function deinitializes EAP state machine and frees all allocated
1412 * resources.
1413 */
1414void eap_peer_sm_deinit(struct eap_sm *sm)
1415{
1416	if (sm == NULL)
1417		return;
1418	eap_deinit_prev_method(sm, "EAP deinit");
1419	eap_sm_abort(sm);
1420	if (sm->ssl_ctx2)
1421		tls_deinit(sm->ssl_ctx2);
1422	tls_deinit(sm->ssl_ctx);
1423	os_free(sm);
1424}
1425
1426
1427/**
1428 * eap_peer_sm_step - Step EAP peer state machine
1429 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1430 * Returns: 1 if EAP state was changed or 0 if not
1431 *
1432 * This function advances EAP state machine to a new state to match with the
1433 * current variables. This should be called whenever variables used by the EAP
1434 * state machine have changed.
1435 */
1436int eap_peer_sm_step(struct eap_sm *sm)
1437{
1438	int res = 0;
1439	do {
1440		sm->changed = FALSE;
1441		SM_STEP_RUN(EAP);
1442		if (sm->changed)
1443			res = 1;
1444	} while (sm->changed);
1445	return res;
1446}
1447
1448
1449/**
1450 * eap_sm_abort - Abort EAP authentication
1451 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1452 *
1453 * Release system resources that have been allocated for the authentication
1454 * session without fully deinitializing the EAP state machine.
1455 */
1456void eap_sm_abort(struct eap_sm *sm)
1457{
1458	wpabuf_free(sm->lastRespData);
1459	sm->lastRespData = NULL;
1460	wpabuf_free(sm->eapRespData);
1461	sm->eapRespData = NULL;
1462	os_free(sm->eapKeyData);
1463	sm->eapKeyData = NULL;
1464
1465	/* This is not clearly specified in the EAP statemachines draft, but
1466	 * it seems necessary to make sure that some of the EAPOL variables get
1467	 * cleared for the next authentication. */
1468	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
1469}
1470
1471
1472#ifdef CONFIG_CTRL_IFACE
1473static const char * eap_sm_state_txt(int state)
1474{
1475	switch (state) {
1476	case EAP_INITIALIZE:
1477		return "INITIALIZE";
1478	case EAP_DISABLED:
1479		return "DISABLED";
1480	case EAP_IDLE:
1481		return "IDLE";
1482	case EAP_RECEIVED:
1483		return "RECEIVED";
1484	case EAP_GET_METHOD:
1485		return "GET_METHOD";
1486	case EAP_METHOD:
1487		return "METHOD";
1488	case EAP_SEND_RESPONSE:
1489		return "SEND_RESPONSE";
1490	case EAP_DISCARD:
1491		return "DISCARD";
1492	case EAP_IDENTITY:
1493		return "IDENTITY";
1494	case EAP_NOTIFICATION:
1495		return "NOTIFICATION";
1496	case EAP_RETRANSMIT:
1497		return "RETRANSMIT";
1498	case EAP_SUCCESS:
1499		return "SUCCESS";
1500	case EAP_FAILURE:
1501		return "FAILURE";
1502	default:
1503		return "UNKNOWN";
1504	}
1505}
1506#endif /* CONFIG_CTRL_IFACE */
1507
1508
1509#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1510static const char * eap_sm_method_state_txt(EapMethodState state)
1511{
1512	switch (state) {
1513	case METHOD_NONE:
1514		return "NONE";
1515	case METHOD_INIT:
1516		return "INIT";
1517	case METHOD_CONT:
1518		return "CONT";
1519	case METHOD_MAY_CONT:
1520		return "MAY_CONT";
1521	case METHOD_DONE:
1522		return "DONE";
1523	default:
1524		return "UNKNOWN";
1525	}
1526}
1527
1528
1529static const char * eap_sm_decision_txt(EapDecision decision)
1530{
1531	switch (decision) {
1532	case DECISION_FAIL:
1533		return "FAIL";
1534	case DECISION_COND_SUCC:
1535		return "COND_SUCC";
1536	case DECISION_UNCOND_SUCC:
1537		return "UNCOND_SUCC";
1538	default:
1539		return "UNKNOWN";
1540	}
1541}
1542#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1543
1544
1545#ifdef CONFIG_CTRL_IFACE
1546
1547/**
1548 * eap_sm_get_status - Get EAP state machine status
1549 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1550 * @buf: Buffer for status information
1551 * @buflen: Maximum buffer length
1552 * @verbose: Whether to include verbose status information
1553 * Returns: Number of bytes written to buf.
1554 *
1555 * Query EAP state machine for status information. This function fills in a
1556 * text area with current status information from the EAPOL state machine. If
1557 * the buffer (buf) is not large enough, status information will be truncated
1558 * to fit the buffer.
1559 */
1560int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
1561{
1562	int len, ret;
1563
1564	if (sm == NULL)
1565		return 0;
1566
1567	len = os_snprintf(buf, buflen,
1568			  "EAP state=%s\n",
1569			  eap_sm_state_txt(sm->EAP_state));
1570	if (len < 0 || (size_t) len >= buflen)
1571		return 0;
1572
1573	if (sm->selectedMethod != EAP_TYPE_NONE) {
1574		const char *name;
1575		if (sm->m) {
1576			name = sm->m->name;
1577		} else {
1578			const struct eap_method *m =
1579				eap_peer_get_eap_method(EAP_VENDOR_IETF,
1580							sm->selectedMethod);
1581			if (m)
1582				name = m->name;
1583			else
1584				name = "?";
1585		}
1586		ret = os_snprintf(buf + len, buflen - len,
1587				  "selectedMethod=%d (EAP-%s)\n",
1588				  sm->selectedMethod, name);
1589		if (ret < 0 || (size_t) ret >= buflen - len)
1590			return len;
1591		len += ret;
1592
1593		if (sm->m && sm->m->get_status) {
1594			len += sm->m->get_status(sm, sm->eap_method_priv,
1595						 buf + len, buflen - len,
1596						 verbose);
1597		}
1598	}
1599
1600	if (verbose) {
1601		ret = os_snprintf(buf + len, buflen - len,
1602				  "reqMethod=%d\n"
1603				  "methodState=%s\n"
1604				  "decision=%s\n"
1605				  "ClientTimeout=%d\n",
1606				  sm->reqMethod,
1607				  eap_sm_method_state_txt(sm->methodState),
1608				  eap_sm_decision_txt(sm->decision),
1609				  sm->ClientTimeout);
1610		if (ret < 0 || (size_t) ret >= buflen - len)
1611			return len;
1612		len += ret;
1613	}
1614
1615	return len;
1616}
1617#endif /* CONFIG_CTRL_IFACE */
1618
1619
1620#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1621static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
1622			   const char *msg, size_t msglen)
1623{
1624	struct eap_peer_config *config;
1625	char *txt = NULL, *tmp;
1626
1627	if (sm == NULL)
1628		return;
1629	config = eap_get_config(sm);
1630	if (config == NULL)
1631		return;
1632
1633	switch (field) {
1634	case WPA_CTRL_REQ_EAP_IDENTITY:
1635		config->pending_req_identity++;
1636		break;
1637	case WPA_CTRL_REQ_EAP_PASSWORD:
1638		config->pending_req_password++;
1639		break;
1640	case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
1641		config->pending_req_new_password++;
1642		break;
1643	case WPA_CTRL_REQ_EAP_PIN:
1644		config->pending_req_pin++;
1645		break;
1646	case WPA_CTRL_REQ_EAP_OTP:
1647		if (msg) {
1648			tmp = os_malloc(msglen + 3);
1649			if (tmp == NULL)
1650				return;
1651			tmp[0] = '[';
1652			os_memcpy(tmp + 1, msg, msglen);
1653			tmp[msglen + 1] = ']';
1654			tmp[msglen + 2] = '\0';
1655			txt = tmp;
1656			os_free(config->pending_req_otp);
1657			config->pending_req_otp = tmp;
1658			config->pending_req_otp_len = msglen + 3;
1659		} else {
1660			if (config->pending_req_otp == NULL)
1661				return;
1662			txt = config->pending_req_otp;
1663		}
1664		break;
1665	case WPA_CTRL_REQ_EAP_PASSPHRASE:
1666		config->pending_req_passphrase++;
1667		break;
1668	default:
1669		return;
1670	}
1671
1672	if (sm->eapol_cb->eap_param_needed)
1673		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
1674}
1675#else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1676#define eap_sm_request(sm, type, msg, msglen) do { } while (0)
1677#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1678
1679const char * eap_sm_get_method_name(struct eap_sm *sm)
1680{
1681	if (sm->m == NULL)
1682		return "UNKNOWN";
1683	return sm->m->name;
1684}
1685
1686
1687/**
1688 * eap_sm_request_identity - Request identity from user (ctrl_iface)
1689 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1690 *
1691 * EAP methods can call this function to request identity information for the
1692 * current network. This is normally called when the identity is not included
1693 * in the network configuration. The request will be sent to monitor programs
1694 * through the control interface.
1695 */
1696void eap_sm_request_identity(struct eap_sm *sm)
1697{
1698	eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
1699}
1700
1701
1702/**
1703 * eap_sm_request_password - Request password from user (ctrl_iface)
1704 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1705 *
1706 * EAP methods can call this function to request password information for the
1707 * current network. This is normally called when the password is not included
1708 * in the network configuration. The request will be sent to monitor programs
1709 * through the control interface.
1710 */
1711void eap_sm_request_password(struct eap_sm *sm)
1712{
1713	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
1714}
1715
1716
1717/**
1718 * eap_sm_request_new_password - Request new password from user (ctrl_iface)
1719 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1720 *
1721 * EAP methods can call this function to request new password information for
1722 * the current network. This is normally called when the EAP method indicates
1723 * that the current password has expired and password change is required. The
1724 * request will be sent to monitor programs through the control interface.
1725 */
1726void eap_sm_request_new_password(struct eap_sm *sm)
1727{
1728	eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
1729}
1730
1731
1732/**
1733 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
1734 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1735 *
1736 * EAP methods can call this function to request SIM or smart card PIN
1737 * information for the current network. This is normally called when the PIN is
1738 * not included in the network configuration. The request will be sent to
1739 * monitor programs through the control interface.
1740 */
1741void eap_sm_request_pin(struct eap_sm *sm)
1742{
1743	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
1744}
1745
1746
1747/**
1748 * eap_sm_request_otp - Request one time password from user (ctrl_iface)
1749 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1750 * @msg: Message to be displayed to the user when asking for OTP
1751 * @msg_len: Length of the user displayable message
1752 *
1753 * EAP methods can call this function to request open time password (OTP) for
1754 * the current network. The request will be sent to monitor programs through
1755 * the control interface.
1756 */
1757void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
1758{
1759	eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
1760}
1761
1762
1763/**
1764 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
1765 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1766 *
1767 * EAP methods can call this function to request passphrase for a private key
1768 * for the current network. This is normally called when the passphrase is not
1769 * included in the network configuration. The request will be sent to monitor
1770 * programs through the control interface.
1771 */
1772void eap_sm_request_passphrase(struct eap_sm *sm)
1773{
1774	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
1775}
1776
1777
1778/**
1779 * eap_sm_notify_ctrl_attached - Notification of attached monitor
1780 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1781 *
1782 * Notify EAP state machines that a monitor was attached to the control
1783 * interface to trigger re-sending of pending requests for user input.
1784 */
1785void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
1786{
1787	struct eap_peer_config *config = eap_get_config(sm);
1788
1789	if (config == NULL)
1790		return;
1791
1792	/* Re-send any pending requests for user data since a new control
1793	 * interface was added. This handles cases where the EAP authentication
1794	 * starts immediately after system startup when the user interface is
1795	 * not yet running. */
1796	if (config->pending_req_identity)
1797		eap_sm_request_identity(sm);
1798	if (config->pending_req_password)
1799		eap_sm_request_password(sm);
1800	if (config->pending_req_new_password)
1801		eap_sm_request_new_password(sm);
1802	if (config->pending_req_otp)
1803		eap_sm_request_otp(sm, NULL, 0);
1804	if (config->pending_req_pin)
1805		eap_sm_request_pin(sm);
1806	if (config->pending_req_passphrase)
1807		eap_sm_request_passphrase(sm);
1808}
1809
1810
1811static int eap_allowed_phase2_type(int vendor, int type)
1812{
1813	if (vendor != EAP_VENDOR_IETF)
1814		return 0;
1815	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
1816		type != EAP_TYPE_FAST;
1817}
1818
1819
1820/**
1821 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
1822 * @name: EAP method name, e.g., MD5
1823 * @vendor: Buffer for returning EAP Vendor-Id
1824 * Returns: EAP method type or %EAP_TYPE_NONE if not found
1825 *
1826 * This function maps EAP type names into EAP type numbers that are allowed for
1827 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
1828 * EAP-PEAP, EAP-TTLS, and EAP-FAST.
1829 */
1830u32 eap_get_phase2_type(const char *name, int *vendor)
1831{
1832	int v;
1833	u8 type = eap_peer_get_type(name, &v);
1834	if (eap_allowed_phase2_type(v, type)) {
1835		*vendor = v;
1836		return type;
1837	}
1838	*vendor = EAP_VENDOR_IETF;
1839	return EAP_TYPE_NONE;
1840}
1841
1842
1843/**
1844 * eap_get_phase2_types - Get list of allowed EAP phase 2 types
1845 * @config: Pointer to a network configuration
1846 * @count: Pointer to a variable to be filled with number of returned EAP types
1847 * Returns: Pointer to allocated type list or %NULL on failure
1848 *
1849 * This function generates an array of allowed EAP phase 2 (tunneled) types for
1850 * the given network configuration.
1851 */
1852struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
1853					      size_t *count)
1854{
1855	struct eap_method_type *buf;
1856	u32 method;
1857	int vendor;
1858	size_t mcount;
1859	const struct eap_method *methods, *m;
1860
1861	methods = eap_peer_get_methods(&mcount);
1862	if (methods == NULL)
1863		return NULL;
1864	*count = 0;
1865	buf = os_malloc(mcount * sizeof(struct eap_method_type));
1866	if (buf == NULL)
1867		return NULL;
1868
1869	for (m = methods; m; m = m->next) {
1870		vendor = m->vendor;
1871		method = m->method;
1872		if (eap_allowed_phase2_type(vendor, method)) {
1873			if (vendor == EAP_VENDOR_IETF &&
1874			    method == EAP_TYPE_TLS && config &&
1875			    config->private_key2 == NULL)
1876				continue;
1877			buf[*count].vendor = vendor;
1878			buf[*count].method = method;
1879			(*count)++;
1880		}
1881	}
1882
1883	return buf;
1884}
1885
1886
1887/**
1888 * eap_set_fast_reauth - Update fast_reauth setting
1889 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1890 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
1891 */
1892void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
1893{
1894	sm->fast_reauth = enabled;
1895}
1896
1897
1898/**
1899 * eap_set_workaround - Update EAP workarounds setting
1900 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1901 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
1902 */
1903void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
1904{
1905	sm->workaround = workaround;
1906}
1907
1908
1909/**
1910 * eap_get_config - Get current network configuration
1911 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1912 * Returns: Pointer to the current network configuration or %NULL if not found
1913 *
1914 * EAP peer methods should avoid using this function if they can use other
1915 * access functions, like eap_get_config_identity() and
1916 * eap_get_config_password(), that do not require direct access to
1917 * struct eap_peer_config.
1918 */
1919struct eap_peer_config * eap_get_config(struct eap_sm *sm)
1920{
1921	return sm->eapol_cb->get_config(sm->eapol_ctx);
1922}
1923
1924
1925/**
1926 * eap_get_config_identity - Get identity from the network configuration
1927 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1928 * @len: Buffer for the length of the identity
1929 * Returns: Pointer to the identity or %NULL if not found
1930 */
1931const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
1932{
1933	struct eap_peer_config *config = eap_get_config(sm);
1934	if (config == NULL)
1935		return NULL;
1936	*len = config->identity_len;
1937	return config->identity;
1938}
1939
1940
1941static int eap_get_ext_password(struct eap_sm *sm,
1942				struct eap_peer_config *config)
1943{
1944	char *name;
1945
1946	if (config->password == NULL)
1947		return -1;
1948
1949	name = os_zalloc(config->password_len + 1);
1950	if (name == NULL)
1951		return -1;
1952	os_memcpy(name, config->password, config->password_len);
1953
1954	ext_password_free(sm->ext_pw_buf);
1955	sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
1956	os_free(name);
1957
1958	return sm->ext_pw_buf == NULL ? -1 : 0;
1959}
1960
1961
1962/**
1963 * eap_get_config_password - Get password from the network configuration
1964 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1965 * @len: Buffer for the length of the password
1966 * Returns: Pointer to the password or %NULL if not found
1967 */
1968const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
1969{
1970	struct eap_peer_config *config = eap_get_config(sm);
1971	if (config == NULL)
1972		return NULL;
1973
1974	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
1975		if (eap_get_ext_password(sm, config) < 0)
1976			return NULL;
1977		*len = wpabuf_len(sm->ext_pw_buf);
1978		return wpabuf_head(sm->ext_pw_buf);
1979	}
1980
1981	*len = config->password_len;
1982	return config->password;
1983}
1984
1985
1986/**
1987 * eap_get_config_password2 - Get password from the network configuration
1988 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1989 * @len: Buffer for the length of the password
1990 * @hash: Buffer for returning whether the password is stored as a
1991 * NtPasswordHash instead of plaintext password; can be %NULL if this
1992 * information is not needed
1993 * Returns: Pointer to the password or %NULL if not found
1994 */
1995const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
1996{
1997	struct eap_peer_config *config = eap_get_config(sm);
1998	if (config == NULL)
1999		return NULL;
2000
2001	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2002		if (eap_get_ext_password(sm, config) < 0)
2003			return NULL;
2004		*len = wpabuf_len(sm->ext_pw_buf);
2005		return wpabuf_head(sm->ext_pw_buf);
2006	}
2007
2008	*len = config->password_len;
2009	if (hash)
2010		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
2011	return config->password;
2012}
2013
2014
2015/**
2016 * eap_get_config_new_password - Get new password from network configuration
2017 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2018 * @len: Buffer for the length of the new password
2019 * Returns: Pointer to the new password or %NULL if not found
2020 */
2021const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
2022{
2023	struct eap_peer_config *config = eap_get_config(sm);
2024	if (config == NULL)
2025		return NULL;
2026	*len = config->new_password_len;
2027	return config->new_password;
2028}
2029
2030
2031/**
2032 * eap_get_config_otp - Get one-time password from the network configuration
2033 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2034 * @len: Buffer for the length of the one-time password
2035 * Returns: Pointer to the one-time password or %NULL if not found
2036 */
2037const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
2038{
2039	struct eap_peer_config *config = eap_get_config(sm);
2040	if (config == NULL)
2041		return NULL;
2042	*len = config->otp_len;
2043	return config->otp;
2044}
2045
2046
2047/**
2048 * eap_clear_config_otp - Clear used one-time password
2049 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2050 *
2051 * This function clears a used one-time password (OTP) from the current network
2052 * configuration. This should be called when the OTP has been used and is not
2053 * needed anymore.
2054 */
2055void eap_clear_config_otp(struct eap_sm *sm)
2056{
2057	struct eap_peer_config *config = eap_get_config(sm);
2058	if (config == NULL)
2059		return;
2060	os_memset(config->otp, 0, config->otp_len);
2061	os_free(config->otp);
2062	config->otp = NULL;
2063	config->otp_len = 0;
2064}
2065
2066
2067/**
2068 * eap_get_config_phase1 - Get phase1 data from the network configuration
2069 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2070 * Returns: Pointer to the phase1 data or %NULL if not found
2071 */
2072const char * eap_get_config_phase1(struct eap_sm *sm)
2073{
2074	struct eap_peer_config *config = eap_get_config(sm);
2075	if (config == NULL)
2076		return NULL;
2077	return config->phase1;
2078}
2079
2080
2081/**
2082 * eap_get_config_phase2 - Get phase2 data from the network configuration
2083 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2084 * Returns: Pointer to the phase1 data or %NULL if not found
2085 */
2086const char * eap_get_config_phase2(struct eap_sm *sm)
2087{
2088	struct eap_peer_config *config = eap_get_config(sm);
2089	if (config == NULL)
2090		return NULL;
2091	return config->phase2;
2092}
2093
2094
2095int eap_get_config_fragment_size(struct eap_sm *sm)
2096{
2097	struct eap_peer_config *config = eap_get_config(sm);
2098	if (config == NULL)
2099		return -1;
2100	return config->fragment_size;
2101}
2102
2103
2104/**
2105 * eap_key_available - Get key availability (eapKeyAvailable variable)
2106 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2107 * Returns: 1 if EAP keying material is available, 0 if not
2108 */
2109int eap_key_available(struct eap_sm *sm)
2110{
2111	return sm ? sm->eapKeyAvailable : 0;
2112}
2113
2114
2115/**
2116 * eap_notify_success - Notify EAP state machine about external success trigger
2117 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2118 *
2119 * This function is called when external event, e.g., successful completion of
2120 * WPA-PSK key handshake, is indicating that EAP state machine should move to
2121 * success state. This is mainly used with security modes that do not use EAP
2122 * state machine (e.g., WPA-PSK).
2123 */
2124void eap_notify_success(struct eap_sm *sm)
2125{
2126	if (sm) {
2127		sm->decision = DECISION_COND_SUCC;
2128		sm->EAP_state = EAP_SUCCESS;
2129	}
2130}
2131
2132
2133/**
2134 * eap_notify_lower_layer_success - Notification of lower layer success
2135 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2136 *
2137 * Notify EAP state machines that a lower layer has detected a successful
2138 * authentication. This is used to recover from dropped EAP-Success messages.
2139 */
2140void eap_notify_lower_layer_success(struct eap_sm *sm)
2141{
2142	if (sm == NULL)
2143		return;
2144
2145	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
2146	    sm->decision == DECISION_FAIL ||
2147	    (sm->methodState != METHOD_MAY_CONT &&
2148	     sm->methodState != METHOD_DONE))
2149		return;
2150
2151	if (sm->eapKeyData != NULL)
2152		sm->eapKeyAvailable = TRUE;
2153	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
2154	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2155		"EAP authentication completed successfully (based on lower "
2156		"layer success)");
2157}
2158
2159
2160/**
2161 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
2162 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2163 * @len: Pointer to variable that will be set to number of bytes in the key
2164 * Returns: Pointer to the EAP keying data or %NULL on failure
2165 *
2166 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
2167 * key is available only after a successful authentication. EAP state machine
2168 * continues to manage the key data and the caller must not change or free the
2169 * returned data.
2170 */
2171const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2172{
2173	if (sm == NULL || sm->eapKeyData == NULL) {
2174		*len = 0;
2175		return NULL;
2176	}
2177
2178	*len = sm->eapKeyDataLen;
2179	return sm->eapKeyData;
2180}
2181
2182
2183/**
2184 * eap_get_eapKeyData - Get EAP response data
2185 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2186 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
2187 *
2188 * Fetch EAP response (eapRespData) from the EAP state machine. This data is
2189 * available when EAP state machine has processed an incoming EAP request. The
2190 * EAP state machine does not maintain a reference to the response after this
2191 * function is called and the caller is responsible for freeing the data.
2192 */
2193struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
2194{
2195	struct wpabuf *resp;
2196
2197	if (sm == NULL || sm->eapRespData == NULL)
2198		return NULL;
2199
2200	resp = sm->eapRespData;
2201	sm->eapRespData = NULL;
2202
2203	return resp;
2204}
2205
2206
2207/**
2208 * eap_sm_register_scard_ctx - Notification of smart card context
2209 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2210 * @ctx: Context data for smart card operations
2211 *
2212 * Notify EAP state machines of context data for smart card operations. This
2213 * context data will be used as a parameter for scard_*() functions.
2214 */
2215void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
2216{
2217	if (sm)
2218		sm->scard_ctx = ctx;
2219}
2220
2221
2222/**
2223 * eap_set_config_blob - Set or add a named configuration blob
2224 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2225 * @blob: New value for the blob
2226 *
2227 * Adds a new configuration blob or replaces the current value of an existing
2228 * blob.
2229 */
2230void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
2231{
2232#ifndef CONFIG_NO_CONFIG_BLOBS
2233	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
2234#endif /* CONFIG_NO_CONFIG_BLOBS */
2235}
2236
2237
2238/**
2239 * eap_get_config_blob - Get a named configuration blob
2240 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2241 * @name: Name of the blob
2242 * Returns: Pointer to blob data or %NULL if not found
2243 */
2244const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2245						   const char *name)
2246{
2247#ifndef CONFIG_NO_CONFIG_BLOBS
2248	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2249#else /* CONFIG_NO_CONFIG_BLOBS */
2250	return NULL;
2251#endif /* CONFIG_NO_CONFIG_BLOBS */
2252}
2253
2254
2255/**
2256 * eap_set_force_disabled - Set force_disabled flag
2257 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2258 * @disabled: 1 = EAP disabled, 0 = EAP enabled
2259 *
2260 * This function is used to force EAP state machine to be disabled when it is
2261 * not in use (e.g., with WPA-PSK or plaintext connections).
2262 */
2263void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2264{
2265	sm->force_disabled = disabled;
2266}
2267
2268
2269 /**
2270 * eap_notify_pending - Notify that EAP method is ready to re-process a request
2271 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2272 *
2273 * An EAP method can perform a pending operation (e.g., to get a response from
2274 * an external process). Once the response is available, this function can be
2275 * used to request EAPOL state machine to retry delivering the previously
2276 * received (and still unanswered) EAP request to EAP state machine.
2277 */
2278void eap_notify_pending(struct eap_sm *sm)
2279{
2280	sm->eapol_cb->notify_pending(sm->eapol_ctx);
2281}
2282
2283
2284/**
2285 * eap_invalidate_cached_session - Mark cached session data invalid
2286 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2287 */
2288void eap_invalidate_cached_session(struct eap_sm *sm)
2289{
2290	if (sm)
2291		eap_deinit_prev_method(sm, "invalidate");
2292}
2293
2294
2295int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2296{
2297	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2298	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2299		return 0; /* Not a WPS Enrollee */
2300
2301	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2302		return 0; /* Not using PBC */
2303
2304	return 1;
2305}
2306
2307
2308int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2309{
2310	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2311	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2312		return 0; /* Not a WPS Enrollee */
2313
2314	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2315		return 0; /* Not using PIN */
2316
2317	return 1;
2318}
2319
2320
2321void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
2322{
2323	ext_password_free(sm->ext_pw_buf);
2324	sm->ext_pw_buf = NULL;
2325	sm->ext_pw = ext;
2326}
2327
2328
2329/**
2330 * eap_set_anon_id - Set or add anonymous identity
2331 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2332 * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
2333 * @len: Length of anonymous identity in octets
2334 */
2335void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
2336{
2337	if (sm->eapol_cb->set_anon_id)
2338		sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
2339}
2340