libtommath.c revision 04949598a23f501be6eec21697465fd46a28840a
1/*
2 * Minimal code for RSA support from LibTomMath 0.41
3 * http://libtom.org/
4 * http://libtom.org/files/ltm-0.41.tar.bz2
5 * This library was released in public domain by Tom St Denis.
6 *
7 * The combination in this file may not use all of the optimized algorithms
8 * from LibTomMath and may be considerable slower than the LibTomMath with its
9 * default settings. The main purpose of having this version here is to make it
10 * easier to build bignum.c wrapper without having to install and build an
11 * external library.
12 *
13 * If CONFIG_INTERNAL_LIBTOMMATH is defined, bignum.c includes this
14 * libtommath.c file instead of using the external LibTomMath library.
15 */
16
17#ifndef CHAR_BIT
18#define CHAR_BIT 8
19#endif
20
21#define BN_MP_INVMOD_C
22#define BN_S_MP_EXPTMOD_C /* Note: #undef in tommath_superclass.h; this would
23			   * require BN_MP_EXPTMOD_FAST_C instead */
24#define BN_S_MP_MUL_DIGS_C
25#define BN_MP_INVMOD_SLOW_C
26#define BN_S_MP_SQR_C
27#define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this
28				 * would require other than mp_reduce */
29
30#ifdef LTM_FAST
31
32/* Use faster div at the cost of about 1 kB */
33#define BN_MP_MUL_D_C
34
35/* Include faster exptmod (Montgomery) at the cost of about 2.5 kB in code */
36#define BN_MP_EXPTMOD_FAST_C
37#define BN_MP_MONTGOMERY_SETUP_C
38#define BN_FAST_MP_MONTGOMERY_REDUCE_C
39#define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
40#define BN_MP_MUL_2_C
41
42/* Include faster sqr at the cost of about 0.5 kB in code */
43#define BN_FAST_S_MP_SQR_C
44
45#else /* LTM_FAST */
46
47#define BN_MP_DIV_SMALL
48#define BN_MP_INIT_MULTI_C
49#define BN_MP_CLEAR_MULTI_C
50#define BN_MP_ABS_C
51#endif /* LTM_FAST */
52
53/* Current uses do not require support for negative exponent in exptmod, so we
54 * can save about 1.5 kB in leaving out invmod. */
55#define LTM_NO_NEG_EXP
56
57/* from tommath.h */
58
59#ifndef MIN
60   #define MIN(x,y) ((x)<(y)?(x):(y))
61#endif
62
63#ifndef MAX
64   #define MAX(x,y) ((x)>(y)?(x):(y))
65#endif
66
67#define  OPT_CAST(x)
68
69#ifdef __x86_64__
70typedef unsigned long mp_digit;
71typedef unsigned long mp_word __attribute__((mode(TI)));
72
73#define DIGIT_BIT 60
74#define MP_64BIT
75#else
76typedef unsigned long mp_digit;
77typedef u64 mp_word;
78
79#define DIGIT_BIT          28
80#define MP_28BIT
81#endif
82
83
84#define XMALLOC  os_malloc
85#define XFREE    os_free
86#define XREALLOC os_realloc
87
88
89#define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
90
91#define MP_LT        -1   /* less than */
92#define MP_EQ         0   /* equal to */
93#define MP_GT         1   /* greater than */
94
95#define MP_ZPOS       0   /* positive integer */
96#define MP_NEG        1   /* negative */
97
98#define MP_OKAY       0   /* ok result */
99#define MP_MEM        -2  /* out of mem */
100#define MP_VAL        -3  /* invalid input */
101
102#define MP_YES        1   /* yes response */
103#define MP_NO         0   /* no response */
104
105typedef int           mp_err;
106
107/* define this to use lower memory usage routines (exptmods mostly) */
108#define MP_LOW_MEM
109
110/* default precision */
111#ifndef MP_PREC
112   #ifndef MP_LOW_MEM
113      #define MP_PREC                 32     /* default digits of precision */
114   #else
115      #define MP_PREC                 8      /* default digits of precision */
116   #endif
117#endif
118
119/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
120#define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
121
122/* the infamous mp_int structure */
123typedef struct  {
124    int used, alloc, sign;
125    mp_digit *dp;
126} mp_int;
127
128
129/* ---> Basic Manipulations <--- */
130#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
131#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
132#define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
133
134
135/* prototypes for copied functions */
136#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
137static int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
138static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
139static int s_mp_sqr(mp_int * a, mp_int * b);
140static int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs);
141
142static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
143
144#ifdef BN_MP_INIT_MULTI_C
145static int mp_init_multi(mp_int *mp, ...);
146#endif
147#ifdef BN_MP_CLEAR_MULTI_C
148static void mp_clear_multi(mp_int *mp, ...);
149#endif
150static int mp_lshd(mp_int * a, int b);
151static void mp_set(mp_int * a, mp_digit b);
152static void mp_clamp(mp_int * a);
153static void mp_exch(mp_int * a, mp_int * b);
154static void mp_rshd(mp_int * a, int b);
155static void mp_zero(mp_int * a);
156static int mp_mod_2d(mp_int * a, int b, mp_int * c);
157static int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d);
158static int mp_init_copy(mp_int * a, mp_int * b);
159static int mp_mul_2d(mp_int * a, int b, mp_int * c);
160#ifndef LTM_NO_NEG_EXP
161static int mp_div_2(mp_int * a, mp_int * b);
162static int mp_invmod(mp_int * a, mp_int * b, mp_int * c);
163static int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c);
164#endif /* LTM_NO_NEG_EXP */
165static int mp_copy(mp_int * a, mp_int * b);
166static int mp_count_bits(mp_int * a);
167static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d);
168static int mp_mod(mp_int * a, mp_int * b, mp_int * c);
169static int mp_grow(mp_int * a, int size);
170static int mp_cmp_mag(mp_int * a, mp_int * b);
171#ifdef BN_MP_ABS_C
172static int mp_abs(mp_int * a, mp_int * b);
173#endif
174static int mp_sqr(mp_int * a, mp_int * b);
175static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
176static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
177static int mp_2expt(mp_int * a, int b);
178static int mp_reduce_setup(mp_int * a, mp_int * b);
179static int mp_reduce(mp_int * x, mp_int * m, mp_int * mu);
180static int mp_init_size(mp_int * a, int size);
181#ifdef BN_MP_EXPTMOD_FAST_C
182static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
183#endif /* BN_MP_EXPTMOD_FAST_C */
184#ifdef BN_FAST_S_MP_SQR_C
185static int fast_s_mp_sqr (mp_int * a, mp_int * b);
186#endif /* BN_FAST_S_MP_SQR_C */
187#ifdef BN_MP_MUL_D_C
188static int mp_mul_d (mp_int * a, mp_digit b, mp_int * c);
189#endif /* BN_MP_MUL_D_C */
190
191
192
193/* functions from bn_<func name>.c */
194
195
196/* reverse an array, used for radix code */
197static void bn_reverse (unsigned char *s, int len)
198{
199  int     ix, iy;
200  unsigned char t;
201
202  ix = 0;
203  iy = len - 1;
204  while (ix < iy) {
205    t     = s[ix];
206    s[ix] = s[iy];
207    s[iy] = t;
208    ++ix;
209    --iy;
210  }
211}
212
213
214/* low level addition, based on HAC pp.594, Algorithm 14.7 */
215static int s_mp_add (mp_int * a, mp_int * b, mp_int * c)
216{
217  mp_int *x;
218  int     olduse, res, min, max;
219
220  /* find sizes, we let |a| <= |b| which means we have to sort
221   * them.  "x" will point to the input with the most digits
222   */
223  if (a->used > b->used) {
224    min = b->used;
225    max = a->used;
226    x = a;
227  } else {
228    min = a->used;
229    max = b->used;
230    x = b;
231  }
232
233  /* init result */
234  if (c->alloc < max + 1) {
235    if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
236      return res;
237    }
238  }
239
240  /* get old used digit count and set new one */
241  olduse = c->used;
242  c->used = max + 1;
243
244  {
245    register mp_digit u, *tmpa, *tmpb, *tmpc;
246    register int i;
247
248    /* alias for digit pointers */
249
250    /* first input */
251    tmpa = a->dp;
252
253    /* second input */
254    tmpb = b->dp;
255
256    /* destination */
257    tmpc = c->dp;
258
259    /* zero the carry */
260    u = 0;
261    for (i = 0; i < min; i++) {
262      /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
263      *tmpc = *tmpa++ + *tmpb++ + u;
264
265      /* U = carry bit of T[i] */
266      u = *tmpc >> ((mp_digit)DIGIT_BIT);
267
268      /* take away carry bit from T[i] */
269      *tmpc++ &= MP_MASK;
270    }
271
272    /* now copy higher words if any, that is in A+B
273     * if A or B has more digits add those in
274     */
275    if (min != max) {
276      for (; i < max; i++) {
277        /* T[i] = X[i] + U */
278        *tmpc = x->dp[i] + u;
279
280        /* U = carry bit of T[i] */
281        u = *tmpc >> ((mp_digit)DIGIT_BIT);
282
283        /* take away carry bit from T[i] */
284        *tmpc++ &= MP_MASK;
285      }
286    }
287
288    /* add carry */
289    *tmpc++ = u;
290
291    /* clear digits above oldused */
292    for (i = c->used; i < olduse; i++) {
293      *tmpc++ = 0;
294    }
295  }
296
297  mp_clamp (c);
298  return MP_OKAY;
299}
300
301
302/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
303static int s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
304{
305  int     olduse, res, min, max;
306
307  /* find sizes */
308  min = b->used;
309  max = a->used;
310
311  /* init result */
312  if (c->alloc < max) {
313    if ((res = mp_grow (c, max)) != MP_OKAY) {
314      return res;
315    }
316  }
317  olduse = c->used;
318  c->used = max;
319
320  {
321    register mp_digit u, *tmpa, *tmpb, *tmpc;
322    register int i;
323
324    /* alias for digit pointers */
325    tmpa = a->dp;
326    tmpb = b->dp;
327    tmpc = c->dp;
328
329    /* set carry to zero */
330    u = 0;
331    for (i = 0; i < min; i++) {
332      /* T[i] = A[i] - B[i] - U */
333      *tmpc = *tmpa++ - *tmpb++ - u;
334
335      /* U = carry bit of T[i]
336       * Note this saves performing an AND operation since
337       * if a carry does occur it will propagate all the way to the
338       * MSB.  As a result a single shift is enough to get the carry
339       */
340      u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
341
342      /* Clear carry from T[i] */
343      *tmpc++ &= MP_MASK;
344    }
345
346    /* now copy higher words if any, e.g. if A has more digits than B  */
347    for (; i < max; i++) {
348      /* T[i] = A[i] - U */
349      *tmpc = *tmpa++ - u;
350
351      /* U = carry bit of T[i] */
352      u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
353
354      /* Clear carry from T[i] */
355      *tmpc++ &= MP_MASK;
356    }
357
358    /* clear digits above used (since we may not have grown result above) */
359    for (i = c->used; i < olduse; i++) {
360      *tmpc++ = 0;
361    }
362  }
363
364  mp_clamp (c);
365  return MP_OKAY;
366}
367
368
369/* init a new mp_int */
370static int mp_init (mp_int * a)
371{
372  int i;
373
374  /* allocate memory required and clear it */
375  a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
376  if (a->dp == NULL) {
377    return MP_MEM;
378  }
379
380  /* set the digits to zero */
381  for (i = 0; i < MP_PREC; i++) {
382      a->dp[i] = 0;
383  }
384
385  /* set the used to zero, allocated digits to the default precision
386   * and sign to positive */
387  a->used  = 0;
388  a->alloc = MP_PREC;
389  a->sign  = MP_ZPOS;
390
391  return MP_OKAY;
392}
393
394
395/* clear one (frees)  */
396static void mp_clear (mp_int * a)
397{
398  int i;
399
400  /* only do anything if a hasn't been freed previously */
401  if (a->dp != NULL) {
402    /* first zero the digits */
403    for (i = 0; i < a->used; i++) {
404        a->dp[i] = 0;
405    }
406
407    /* free ram */
408    XFREE(a->dp);
409
410    /* reset members to make debugging easier */
411    a->dp    = NULL;
412    a->alloc = a->used = 0;
413    a->sign  = MP_ZPOS;
414  }
415}
416
417
418/* high level addition (handles signs) */
419static int mp_add (mp_int * a, mp_int * b, mp_int * c)
420{
421  int     sa, sb, res;
422
423  /* get sign of both inputs */
424  sa = a->sign;
425  sb = b->sign;
426
427  /* handle two cases, not four */
428  if (sa == sb) {
429    /* both positive or both negative */
430    /* add their magnitudes, copy the sign */
431    c->sign = sa;
432    res = s_mp_add (a, b, c);
433  } else {
434    /* one positive, the other negative */
435    /* subtract the one with the greater magnitude from */
436    /* the one of the lesser magnitude.  The result gets */
437    /* the sign of the one with the greater magnitude. */
438    if (mp_cmp_mag (a, b) == MP_LT) {
439      c->sign = sb;
440      res = s_mp_sub (b, a, c);
441    } else {
442      c->sign = sa;
443      res = s_mp_sub (a, b, c);
444    }
445  }
446  return res;
447}
448
449
450/* high level subtraction (handles signs) */
451static int mp_sub (mp_int * a, mp_int * b, mp_int * c)
452{
453  int     sa, sb, res;
454
455  sa = a->sign;
456  sb = b->sign;
457
458  if (sa != sb) {
459    /* subtract a negative from a positive, OR */
460    /* subtract a positive from a negative. */
461    /* In either case, ADD their magnitudes, */
462    /* and use the sign of the first number. */
463    c->sign = sa;
464    res = s_mp_add (a, b, c);
465  } else {
466    /* subtract a positive from a positive, OR */
467    /* subtract a negative from a negative. */
468    /* First, take the difference between their */
469    /* magnitudes, then... */
470    if (mp_cmp_mag (a, b) != MP_LT) {
471      /* Copy the sign from the first */
472      c->sign = sa;
473      /* The first has a larger or equal magnitude */
474      res = s_mp_sub (a, b, c);
475    } else {
476      /* The result has the *opposite* sign from */
477      /* the first number. */
478      c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
479      /* The second has a larger magnitude */
480      res = s_mp_sub (b, a, c);
481    }
482  }
483  return res;
484}
485
486
487/* high level multiplication (handles sign) */
488static int mp_mul (mp_int * a, mp_int * b, mp_int * c)
489{
490  int     res, neg;
491  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
492
493  /* use Toom-Cook? */
494#ifdef BN_MP_TOOM_MUL_C
495  if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
496    res = mp_toom_mul(a, b, c);
497  } else
498#endif
499#ifdef BN_MP_KARATSUBA_MUL_C
500  /* use Karatsuba? */
501  if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
502    res = mp_karatsuba_mul (a, b, c);
503  } else
504#endif
505  {
506    /* can we use the fast multiplier?
507     *
508     * The fast multiplier can be used if the output will
509     * have less than MP_WARRAY digits and the number of
510     * digits won't affect carry propagation
511     */
512#ifdef BN_FAST_S_MP_MUL_DIGS_C
513    int     digs = a->used + b->used + 1;
514
515    if ((digs < MP_WARRAY) &&
516        MIN(a->used, b->used) <=
517        (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
518      res = fast_s_mp_mul_digs (a, b, c, digs);
519    } else
520#endif
521#ifdef BN_S_MP_MUL_DIGS_C
522      res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
523#else
524#error mp_mul could fail
525      res = MP_VAL;
526#endif
527
528  }
529  c->sign = (c->used > 0) ? neg : MP_ZPOS;
530  return res;
531}
532
533
534/* d = a * b (mod c) */
535static int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
536{
537  int     res;
538  mp_int  t;
539
540  if ((res = mp_init (&t)) != MP_OKAY) {
541    return res;
542  }
543
544  if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
545    mp_clear (&t);
546    return res;
547  }
548  res = mp_mod (&t, c, d);
549  mp_clear (&t);
550  return res;
551}
552
553
554/* c = a mod b, 0 <= c < b */
555static int mp_mod (mp_int * a, mp_int * b, mp_int * c)
556{
557  mp_int  t;
558  int     res;
559
560  if ((res = mp_init (&t)) != MP_OKAY) {
561    return res;
562  }
563
564  if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
565    mp_clear (&t);
566    return res;
567  }
568
569  if (t.sign != b->sign) {
570    res = mp_add (b, &t, c);
571  } else {
572    res = MP_OKAY;
573    mp_exch (&t, c);
574  }
575
576  mp_clear (&t);
577  return res;
578}
579
580
581/* this is a shell function that calls either the normal or Montgomery
582 * exptmod functions.  Originally the call to the montgomery code was
583 * embedded in the normal function but that wasted a lot of stack space
584 * for nothing (since 99% of the time the Montgomery code would be called)
585 */
586static int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
587{
588  int dr;
589
590  /* modulus P must be positive */
591  if (P->sign == MP_NEG) {
592     return MP_VAL;
593  }
594
595  /* if exponent X is negative we have to recurse */
596  if (X->sign == MP_NEG) {
597#ifdef LTM_NO_NEG_EXP
598        return MP_VAL;
599#else /* LTM_NO_NEG_EXP */
600#ifdef BN_MP_INVMOD_C
601     mp_int tmpG, tmpX;
602     int err;
603
604     /* first compute 1/G mod P */
605     if ((err = mp_init(&tmpG)) != MP_OKAY) {
606        return err;
607     }
608     if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
609        mp_clear(&tmpG);
610        return err;
611     }
612
613     /* now get |X| */
614     if ((err = mp_init(&tmpX)) != MP_OKAY) {
615        mp_clear(&tmpG);
616        return err;
617     }
618     if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
619        mp_clear_multi(&tmpG, &tmpX, NULL);
620        return err;
621     }
622
623     /* and now compute (1/G)**|X| instead of G**X [X < 0] */
624     err = mp_exptmod(&tmpG, &tmpX, P, Y);
625     mp_clear_multi(&tmpG, &tmpX, NULL);
626     return err;
627#else
628#error mp_exptmod would always fail
629     /* no invmod */
630     return MP_VAL;
631#endif
632#endif /* LTM_NO_NEG_EXP */
633  }
634
635/* modified diminished radix reduction */
636#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
637  if (mp_reduce_is_2k_l(P) == MP_YES) {
638     return s_mp_exptmod(G, X, P, Y, 1);
639  }
640#endif
641
642#ifdef BN_MP_DR_IS_MODULUS_C
643  /* is it a DR modulus? */
644  dr = mp_dr_is_modulus(P);
645#else
646  /* default to no */
647  dr = 0;
648#endif
649
650#ifdef BN_MP_REDUCE_IS_2K_C
651  /* if not, is it a unrestricted DR modulus? */
652  if (dr == 0) {
653     dr = mp_reduce_is_2k(P) << 1;
654  }
655#endif
656
657  /* if the modulus is odd or dr != 0 use the montgomery method */
658#ifdef BN_MP_EXPTMOD_FAST_C
659  if (mp_isodd (P) == 1 || dr !=  0) {
660    return mp_exptmod_fast (G, X, P, Y, dr);
661  } else {
662#endif
663#ifdef BN_S_MP_EXPTMOD_C
664    /* otherwise use the generic Barrett reduction technique */
665    return s_mp_exptmod (G, X, P, Y, 0);
666#else
667#error mp_exptmod could fail
668    /* no exptmod for evens */
669    return MP_VAL;
670#endif
671#ifdef BN_MP_EXPTMOD_FAST_C
672  }
673#endif
674}
675
676
677/* compare two ints (signed)*/
678static int mp_cmp (mp_int * a, mp_int * b)
679{
680  /* compare based on sign */
681  if (a->sign != b->sign) {
682     if (a->sign == MP_NEG) {
683        return MP_LT;
684     } else {
685        return MP_GT;
686     }
687  }
688
689  /* compare digits */
690  if (a->sign == MP_NEG) {
691     /* if negative compare opposite direction */
692     return mp_cmp_mag(b, a);
693  } else {
694     return mp_cmp_mag(a, b);
695  }
696}
697
698
699/* compare a digit */
700static int mp_cmp_d(mp_int * a, mp_digit b)
701{
702  /* compare based on sign */
703  if (a->sign == MP_NEG) {
704    return MP_LT;
705  }
706
707  /* compare based on magnitude */
708  if (a->used > 1) {
709    return MP_GT;
710  }
711
712  /* compare the only digit of a to b */
713  if (a->dp[0] > b) {
714    return MP_GT;
715  } else if (a->dp[0] < b) {
716    return MP_LT;
717  } else {
718    return MP_EQ;
719  }
720}
721
722
723#ifndef LTM_NO_NEG_EXP
724/* hac 14.61, pp608 */
725static int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
726{
727  /* b cannot be negative */
728  if (b->sign == MP_NEG || mp_iszero(b) == 1) {
729    return MP_VAL;
730  }
731
732#ifdef BN_FAST_MP_INVMOD_C
733  /* if the modulus is odd we can use a faster routine instead */
734  if (mp_isodd (b) == 1) {
735    return fast_mp_invmod (a, b, c);
736  }
737#endif
738
739#ifdef BN_MP_INVMOD_SLOW_C
740  return mp_invmod_slow(a, b, c);
741#endif
742
743#ifndef BN_FAST_MP_INVMOD_C
744#ifndef BN_MP_INVMOD_SLOW_C
745#error mp_invmod would always fail
746#endif
747#endif
748  return MP_VAL;
749}
750#endif /* LTM_NO_NEG_EXP */
751
752
753/* get the size for an unsigned equivalent */
754static int mp_unsigned_bin_size (mp_int * a)
755{
756  int     size = mp_count_bits (a);
757  return (size / 8 + ((size & 7) != 0 ? 1 : 0));
758}
759
760
761#ifndef LTM_NO_NEG_EXP
762/* hac 14.61, pp608 */
763static int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
764{
765  mp_int  x, y, u, v, A, B, C, D;
766  int     res;
767
768  /* b cannot be negative */
769  if (b->sign == MP_NEG || mp_iszero(b) == 1) {
770    return MP_VAL;
771  }
772
773  /* init temps */
774  if ((res = mp_init_multi(&x, &y, &u, &v,
775                           &A, &B, &C, &D, NULL)) != MP_OKAY) {
776     return res;
777  }
778
779  /* x = a, y = b */
780  if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
781      goto LBL_ERR;
782  }
783  if ((res = mp_copy (b, &y)) != MP_OKAY) {
784    goto LBL_ERR;
785  }
786
787  /* 2. [modified] if x,y are both even then return an error! */
788  if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
789    res = MP_VAL;
790    goto LBL_ERR;
791  }
792
793  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
794  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
795    goto LBL_ERR;
796  }
797  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
798    goto LBL_ERR;
799  }
800  mp_set (&A, 1);
801  mp_set (&D, 1);
802
803top:
804  /* 4.  while u is even do */
805  while (mp_iseven (&u) == 1) {
806    /* 4.1 u = u/2 */
807    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
808      goto LBL_ERR;
809    }
810    /* 4.2 if A or B is odd then */
811    if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
812      /* A = (A+y)/2, B = (B-x)/2 */
813      if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
814         goto LBL_ERR;
815      }
816      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
817         goto LBL_ERR;
818      }
819    }
820    /* A = A/2, B = B/2 */
821    if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
822      goto LBL_ERR;
823    }
824    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
825      goto LBL_ERR;
826    }
827  }
828
829  /* 5.  while v is even do */
830  while (mp_iseven (&v) == 1) {
831    /* 5.1 v = v/2 */
832    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
833      goto LBL_ERR;
834    }
835    /* 5.2 if C or D is odd then */
836    if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
837      /* C = (C+y)/2, D = (D-x)/2 */
838      if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
839         goto LBL_ERR;
840      }
841      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
842         goto LBL_ERR;
843      }
844    }
845    /* C = C/2, D = D/2 */
846    if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
847      goto LBL_ERR;
848    }
849    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
850      goto LBL_ERR;
851    }
852  }
853
854  /* 6.  if u >= v then */
855  if (mp_cmp (&u, &v) != MP_LT) {
856    /* u = u - v, A = A - C, B = B - D */
857    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
858      goto LBL_ERR;
859    }
860
861    if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
862      goto LBL_ERR;
863    }
864
865    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
866      goto LBL_ERR;
867    }
868  } else {
869    /* v - v - u, C = C - A, D = D - B */
870    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
871      goto LBL_ERR;
872    }
873
874    if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
875      goto LBL_ERR;
876    }
877
878    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
879      goto LBL_ERR;
880    }
881  }
882
883  /* if not zero goto step 4 */
884  if (mp_iszero (&u) == 0)
885    goto top;
886
887  /* now a = C, b = D, gcd == g*v */
888
889  /* if v != 1 then there is no inverse */
890  if (mp_cmp_d (&v, 1) != MP_EQ) {
891    res = MP_VAL;
892    goto LBL_ERR;
893  }
894
895  /* if its too low */
896  while (mp_cmp_d(&C, 0) == MP_LT) {
897      if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
898         goto LBL_ERR;
899      }
900  }
901
902  /* too big */
903  while (mp_cmp_mag(&C, b) != MP_LT) {
904      if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
905         goto LBL_ERR;
906      }
907  }
908
909  /* C is now the inverse */
910  mp_exch (&C, c);
911  res = MP_OKAY;
912LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
913  return res;
914}
915#endif /* LTM_NO_NEG_EXP */
916
917
918/* compare maginitude of two ints (unsigned) */
919static int mp_cmp_mag (mp_int * a, mp_int * b)
920{
921  int     n;
922  mp_digit *tmpa, *tmpb;
923
924  /* compare based on # of non-zero digits */
925  if (a->used > b->used) {
926    return MP_GT;
927  }
928
929  if (a->used < b->used) {
930    return MP_LT;
931  }
932
933  /* alias for a */
934  tmpa = a->dp + (a->used - 1);
935
936  /* alias for b */
937  tmpb = b->dp + (a->used - 1);
938
939  /* compare based on digits  */
940  for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
941    if (*tmpa > *tmpb) {
942      return MP_GT;
943    }
944
945    if (*tmpa < *tmpb) {
946      return MP_LT;
947    }
948  }
949  return MP_EQ;
950}
951
952
953/* reads a unsigned char array, assumes the msb is stored first [big endian] */
954static int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
955{
956  int     res;
957
958  /* make sure there are at least two digits */
959  if (a->alloc < 2) {
960     if ((res = mp_grow(a, 2)) != MP_OKAY) {
961        return res;
962     }
963  }
964
965  /* zero the int */
966  mp_zero (a);
967
968  /* read the bytes in */
969  while (c-- > 0) {
970    if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
971      return res;
972    }
973
974#ifndef MP_8BIT
975      a->dp[0] |= *b++;
976      a->used += 1;
977#else
978      a->dp[0] = (*b & MP_MASK);
979      a->dp[1] |= ((*b++ >> 7U) & 1);
980      a->used += 2;
981#endif
982  }
983  mp_clamp (a);
984  return MP_OKAY;
985}
986
987
988/* store in unsigned [big endian] format */
989static int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
990{
991  int     x, res;
992  mp_int  t;
993
994  if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
995    return res;
996  }
997
998  x = 0;
999  while (mp_iszero (&t) == 0) {
1000#ifndef MP_8BIT
1001      b[x++] = (unsigned char) (t.dp[0] & 255);
1002#else
1003      b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
1004#endif
1005    if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
1006      mp_clear (&t);
1007      return res;
1008    }
1009  }
1010  bn_reverse (b, x);
1011  mp_clear (&t);
1012  return MP_OKAY;
1013}
1014
1015
1016/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
1017static int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
1018{
1019  mp_digit D, r, rr;
1020  int     x, res;
1021  mp_int  t;
1022
1023
1024  /* if the shift count is <= 0 then we do no work */
1025  if (b <= 0) {
1026    res = mp_copy (a, c);
1027    if (d != NULL) {
1028      mp_zero (d);
1029    }
1030    return res;
1031  }
1032
1033  if ((res = mp_init (&t)) != MP_OKAY) {
1034    return res;
1035  }
1036
1037  /* get the remainder */
1038  if (d != NULL) {
1039    if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
1040      mp_clear (&t);
1041      return res;
1042    }
1043  }
1044
1045  /* copy */
1046  if ((res = mp_copy (a, c)) != MP_OKAY) {
1047    mp_clear (&t);
1048    return res;
1049  }
1050
1051  /* shift by as many digits in the bit count */
1052  if (b >= (int)DIGIT_BIT) {
1053    mp_rshd (c, b / DIGIT_BIT);
1054  }
1055
1056  /* shift any bit count < DIGIT_BIT */
1057  D = (mp_digit) (b % DIGIT_BIT);
1058  if (D != 0) {
1059    register mp_digit *tmpc, mask, shift;
1060
1061    /* mask */
1062    mask = (((mp_digit)1) << D) - 1;
1063
1064    /* shift for lsb */
1065    shift = DIGIT_BIT - D;
1066
1067    /* alias */
1068    tmpc = c->dp + (c->used - 1);
1069
1070    /* carry */
1071    r = 0;
1072    for (x = c->used - 1; x >= 0; x--) {
1073      /* get the lower  bits of this word in a temp */
1074      rr = *tmpc & mask;
1075
1076      /* shift the current word and mix in the carry bits from the previous word */
1077      *tmpc = (*tmpc >> D) | (r << shift);
1078      --tmpc;
1079
1080      /* set the carry to the carry bits of the current word found above */
1081      r = rr;
1082    }
1083  }
1084  mp_clamp (c);
1085  if (d != NULL) {
1086    mp_exch (&t, d);
1087  }
1088  mp_clear (&t);
1089  return MP_OKAY;
1090}
1091
1092
1093static int mp_init_copy (mp_int * a, mp_int * b)
1094{
1095  int     res;
1096
1097  if ((res = mp_init (a)) != MP_OKAY) {
1098    return res;
1099  }
1100  return mp_copy (b, a);
1101}
1102
1103
1104/* set to zero */
1105static void mp_zero (mp_int * a)
1106{
1107  int       n;
1108  mp_digit *tmp;
1109
1110  a->sign = MP_ZPOS;
1111  a->used = 0;
1112
1113  tmp = a->dp;
1114  for (n = 0; n < a->alloc; n++) {
1115     *tmp++ = 0;
1116  }
1117}
1118
1119
1120/* copy, b = a */
1121static int mp_copy (mp_int * a, mp_int * b)
1122{
1123  int     res, n;
1124
1125  /* if dst == src do nothing */
1126  if (a == b) {
1127    return MP_OKAY;
1128  }
1129
1130  /* grow dest */
1131  if (b->alloc < a->used) {
1132     if ((res = mp_grow (b, a->used)) != MP_OKAY) {
1133        return res;
1134     }
1135  }
1136
1137  /* zero b and copy the parameters over */
1138  {
1139    register mp_digit *tmpa, *tmpb;
1140
1141    /* pointer aliases */
1142
1143    /* source */
1144    tmpa = a->dp;
1145
1146    /* destination */
1147    tmpb = b->dp;
1148
1149    /* copy all the digits */
1150    for (n = 0; n < a->used; n++) {
1151      *tmpb++ = *tmpa++;
1152    }
1153
1154    /* clear high digits */
1155    for (; n < b->used; n++) {
1156      *tmpb++ = 0;
1157    }
1158  }
1159
1160  /* copy used count and sign */
1161  b->used = a->used;
1162  b->sign = a->sign;
1163  return MP_OKAY;
1164}
1165
1166
1167/* shift right a certain amount of digits */
1168static void mp_rshd (mp_int * a, int b)
1169{
1170  int     x;
1171
1172  /* if b <= 0 then ignore it */
1173  if (b <= 0) {
1174    return;
1175  }
1176
1177  /* if b > used then simply zero it and return */
1178  if (a->used <= b) {
1179    mp_zero (a);
1180    return;
1181  }
1182
1183  {
1184    register mp_digit *bottom, *top;
1185
1186    /* shift the digits down */
1187
1188    /* bottom */
1189    bottom = a->dp;
1190
1191    /* top [offset into digits] */
1192    top = a->dp + b;
1193
1194    /* this is implemented as a sliding window where
1195     * the window is b-digits long and digits from
1196     * the top of the window are copied to the bottom
1197     *
1198     * e.g.
1199
1200     b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
1201                 /\                   |      ---->
1202                  \-------------------/      ---->
1203     */
1204    for (x = 0; x < (a->used - b); x++) {
1205      *bottom++ = *top++;
1206    }
1207
1208    /* zero the top digits */
1209    for (; x < a->used; x++) {
1210      *bottom++ = 0;
1211    }
1212  }
1213
1214  /* remove excess digits */
1215  a->used -= b;
1216}
1217
1218
1219/* swap the elements of two integers, for cases where you can't simply swap the
1220 * mp_int pointers around
1221 */
1222static void mp_exch (mp_int * a, mp_int * b)
1223{
1224  mp_int  t;
1225
1226  t  = *a;
1227  *a = *b;
1228  *b = t;
1229}
1230
1231
1232/* trim unused digits
1233 *
1234 * This is used to ensure that leading zero digits are
1235 * trimed and the leading "used" digit will be non-zero
1236 * Typically very fast.  Also fixes the sign if there
1237 * are no more leading digits
1238 */
1239static void mp_clamp (mp_int * a)
1240{
1241  /* decrease used while the most significant digit is
1242   * zero.
1243   */
1244  while (a->used > 0 && a->dp[a->used - 1] == 0) {
1245    --(a->used);
1246  }
1247
1248  /* reset the sign flag if used == 0 */
1249  if (a->used == 0) {
1250    a->sign = MP_ZPOS;
1251  }
1252}
1253
1254
1255/* grow as required */
1256static int mp_grow (mp_int * a, int size)
1257{
1258  int     i;
1259  mp_digit *tmp;
1260
1261  /* if the alloc size is smaller alloc more ram */
1262  if (a->alloc < size) {
1263    /* ensure there are always at least MP_PREC digits extra on top */
1264    size += (MP_PREC * 2) - (size % MP_PREC);
1265
1266    /* reallocate the array a->dp
1267     *
1268     * We store the return in a temporary variable
1269     * in case the operation failed we don't want
1270     * to overwrite the dp member of a.
1271     */
1272    tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
1273    if (tmp == NULL) {
1274      /* reallocation failed but "a" is still valid [can be freed] */
1275      return MP_MEM;
1276    }
1277
1278    /* reallocation succeeded so set a->dp */
1279    a->dp = tmp;
1280
1281    /* zero excess digits */
1282    i        = a->alloc;
1283    a->alloc = size;
1284    for (; i < a->alloc; i++) {
1285      a->dp[i] = 0;
1286    }
1287  }
1288  return MP_OKAY;
1289}
1290
1291
1292#ifdef BN_MP_ABS_C
1293/* b = |a|
1294 *
1295 * Simple function copies the input and fixes the sign to positive
1296 */
1297static int mp_abs (mp_int * a, mp_int * b)
1298{
1299  int     res;
1300
1301  /* copy a to b */
1302  if (a != b) {
1303     if ((res = mp_copy (a, b)) != MP_OKAY) {
1304       return res;
1305     }
1306  }
1307
1308  /* force the sign of b to positive */
1309  b->sign = MP_ZPOS;
1310
1311  return MP_OKAY;
1312}
1313#endif
1314
1315
1316/* set to a digit */
1317static void mp_set (mp_int * a, mp_digit b)
1318{
1319  mp_zero (a);
1320  a->dp[0] = b & MP_MASK;
1321  a->used  = (a->dp[0] != 0) ? 1 : 0;
1322}
1323
1324
1325#ifndef LTM_NO_NEG_EXP
1326/* b = a/2 */
1327static int mp_div_2(mp_int * a, mp_int * b)
1328{
1329  int     x, res, oldused;
1330
1331  /* copy */
1332  if (b->alloc < a->used) {
1333    if ((res = mp_grow (b, a->used)) != MP_OKAY) {
1334      return res;
1335    }
1336  }
1337
1338  oldused = b->used;
1339  b->used = a->used;
1340  {
1341    register mp_digit r, rr, *tmpa, *tmpb;
1342
1343    /* source alias */
1344    tmpa = a->dp + b->used - 1;
1345
1346    /* dest alias */
1347    tmpb = b->dp + b->used - 1;
1348
1349    /* carry */
1350    r = 0;
1351    for (x = b->used - 1; x >= 0; x--) {
1352      /* get the carry for the next iteration */
1353      rr = *tmpa & 1;
1354
1355      /* shift the current digit, add in carry and store */
1356      *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
1357
1358      /* forward carry to next iteration */
1359      r = rr;
1360    }
1361
1362    /* zero excess digits */
1363    tmpb = b->dp + b->used;
1364    for (x = b->used; x < oldused; x++) {
1365      *tmpb++ = 0;
1366    }
1367  }
1368  b->sign = a->sign;
1369  mp_clamp (b);
1370  return MP_OKAY;
1371}
1372#endif /* LTM_NO_NEG_EXP */
1373
1374
1375/* shift left by a certain bit count */
1376static int mp_mul_2d (mp_int * a, int b, mp_int * c)
1377{
1378  mp_digit d;
1379  int      res;
1380
1381  /* copy */
1382  if (a != c) {
1383     if ((res = mp_copy (a, c)) != MP_OKAY) {
1384       return res;
1385     }
1386  }
1387
1388  if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
1389     if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
1390       return res;
1391     }
1392  }
1393
1394  /* shift by as many digits in the bit count */
1395  if (b >= (int)DIGIT_BIT) {
1396    if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
1397      return res;
1398    }
1399  }
1400
1401  /* shift any bit count < DIGIT_BIT */
1402  d = (mp_digit) (b % DIGIT_BIT);
1403  if (d != 0) {
1404    register mp_digit *tmpc, shift, mask, r, rr;
1405    register int x;
1406
1407    /* bitmask for carries */
1408    mask = (((mp_digit)1) << d) - 1;
1409
1410    /* shift for msbs */
1411    shift = DIGIT_BIT - d;
1412
1413    /* alias */
1414    tmpc = c->dp;
1415
1416    /* carry */
1417    r    = 0;
1418    for (x = 0; x < c->used; x++) {
1419      /* get the higher bits of the current word */
1420      rr = (*tmpc >> shift) & mask;
1421
1422      /* shift the current word and OR in the carry */
1423      *tmpc = ((*tmpc << d) | r) & MP_MASK;
1424      ++tmpc;
1425
1426      /* set the carry to the carry bits of the current word */
1427      r = rr;
1428    }
1429
1430    /* set final carry */
1431    if (r != 0) {
1432       c->dp[(c->used)++] = r;
1433    }
1434  }
1435  mp_clamp (c);
1436  return MP_OKAY;
1437}
1438
1439
1440#ifdef BN_MP_INIT_MULTI_C
1441static int mp_init_multi(mp_int *mp, ...)
1442{
1443    mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
1444    int n = 0;                 /* Number of ok inits */
1445    mp_int* cur_arg = mp;
1446    va_list args;
1447
1448    va_start(args, mp);        /* init args to next argument from caller */
1449    while (cur_arg != NULL) {
1450        if (mp_init(cur_arg) != MP_OKAY) {
1451            /* Oops - error! Back-track and mp_clear what we already
1452               succeeded in init-ing, then return error.
1453            */
1454            va_list clean_args;
1455
1456            /* end the current list */
1457            va_end(args);
1458
1459            /* now start cleaning up */
1460            cur_arg = mp;
1461            va_start(clean_args, mp);
1462            while (n--) {
1463                mp_clear(cur_arg);
1464                cur_arg = va_arg(clean_args, mp_int*);
1465            }
1466            va_end(clean_args);
1467            res = MP_MEM;
1468            break;
1469        }
1470        n++;
1471        cur_arg = va_arg(args, mp_int*);
1472    }
1473    va_end(args);
1474    return res;                /* Assumed ok, if error flagged above. */
1475}
1476#endif
1477
1478
1479#ifdef BN_MP_CLEAR_MULTI_C
1480static void mp_clear_multi(mp_int *mp, ...)
1481{
1482    mp_int* next_mp = mp;
1483    va_list args;
1484    va_start(args, mp);
1485    while (next_mp != NULL) {
1486        mp_clear(next_mp);
1487        next_mp = va_arg(args, mp_int*);
1488    }
1489    va_end(args);
1490}
1491#endif
1492
1493
1494/* shift left a certain amount of digits */
1495static int mp_lshd (mp_int * a, int b)
1496{
1497  int     x, res;
1498
1499  /* if its less than zero return */
1500  if (b <= 0) {
1501    return MP_OKAY;
1502  }
1503
1504  /* grow to fit the new digits */
1505  if (a->alloc < a->used + b) {
1506     if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
1507       return res;
1508     }
1509  }
1510
1511  {
1512    register mp_digit *top, *bottom;
1513
1514    /* increment the used by the shift amount then copy upwards */
1515    a->used += b;
1516
1517    /* top */
1518    top = a->dp + a->used - 1;
1519
1520    /* base */
1521    bottom = a->dp + a->used - 1 - b;
1522
1523    /* much like mp_rshd this is implemented using a sliding window
1524     * except the window goes the otherway around.  Copying from
1525     * the bottom to the top.  see bn_mp_rshd.c for more info.
1526     */
1527    for (x = a->used - 1; x >= b; x--) {
1528      *top-- = *bottom--;
1529    }
1530
1531    /* zero the lower digits */
1532    top = a->dp;
1533    for (x = 0; x < b; x++) {
1534      *top++ = 0;
1535    }
1536  }
1537  return MP_OKAY;
1538}
1539
1540
1541/* returns the number of bits in an int */
1542static int mp_count_bits (mp_int * a)
1543{
1544  int     r;
1545  mp_digit q;
1546
1547  /* shortcut */
1548  if (a->used == 0) {
1549    return 0;
1550  }
1551
1552  /* get number of digits and add that */
1553  r = (a->used - 1) * DIGIT_BIT;
1554
1555  /* take the last digit and count the bits in it */
1556  q = a->dp[a->used - 1];
1557  while (q > ((mp_digit) 0)) {
1558    ++r;
1559    q >>= ((mp_digit) 1);
1560  }
1561  return r;
1562}
1563
1564
1565/* calc a value mod 2**b */
1566static int mp_mod_2d (mp_int * a, int b, mp_int * c)
1567{
1568  int     x, res;
1569
1570  /* if b is <= 0 then zero the int */
1571  if (b <= 0) {
1572    mp_zero (c);
1573    return MP_OKAY;
1574  }
1575
1576  /* if the modulus is larger than the value than return */
1577  if (b >= (int) (a->used * DIGIT_BIT)) {
1578    res = mp_copy (a, c);
1579    return res;
1580  }
1581
1582  /* copy */
1583  if ((res = mp_copy (a, c)) != MP_OKAY) {
1584    return res;
1585  }
1586
1587  /* zero digits above the last digit of the modulus */
1588  for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
1589    c->dp[x] = 0;
1590  }
1591  /* clear the digit that is not completely outside/inside the modulus */
1592  c->dp[b / DIGIT_BIT] &=
1593    (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
1594  mp_clamp (c);
1595  return MP_OKAY;
1596}
1597
1598
1599#ifdef BN_MP_DIV_SMALL
1600
1601/* slower bit-bang division... also smaller */
1602static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
1603{
1604   mp_int ta, tb, tq, q;
1605   int    res, n, n2;
1606
1607  /* is divisor zero ? */
1608  if (mp_iszero (b) == 1) {
1609    return MP_VAL;
1610  }
1611
1612  /* if a < b then q=0, r = a */
1613  if (mp_cmp_mag (a, b) == MP_LT) {
1614    if (d != NULL) {
1615      res = mp_copy (a, d);
1616    } else {
1617      res = MP_OKAY;
1618    }
1619    if (c != NULL) {
1620      mp_zero (c);
1621    }
1622    return res;
1623  }
1624
1625  /* init our temps */
1626  if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
1627     return res;
1628  }
1629
1630
1631  mp_set(&tq, 1);
1632  n = mp_count_bits(a) - mp_count_bits(b);
1633  if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
1634      ((res = mp_abs(b, &tb)) != MP_OKAY) ||
1635      ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
1636      ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
1637      goto LBL_ERR;
1638  }
1639
1640  while (n-- >= 0) {
1641     if (mp_cmp(&tb, &ta) != MP_GT) {
1642        if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
1643            ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
1644           goto LBL_ERR;
1645        }
1646     }
1647     if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
1648         ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
1649           goto LBL_ERR;
1650     }
1651  }
1652
1653  /* now q == quotient and ta == remainder */
1654  n  = a->sign;
1655  n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
1656  if (c != NULL) {
1657     mp_exch(c, &q);
1658     c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
1659  }
1660  if (d != NULL) {
1661     mp_exch(d, &ta);
1662     d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
1663  }
1664LBL_ERR:
1665   mp_clear_multi(&ta, &tb, &tq, &q, NULL);
1666   return res;
1667}
1668
1669#else
1670
1671/* integer signed division.
1672 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
1673 * HAC pp.598 Algorithm 14.20
1674 *
1675 * Note that the description in HAC is horribly
1676 * incomplete.  For example, it doesn't consider
1677 * the case where digits are removed from 'x' in
1678 * the inner loop.  It also doesn't consider the
1679 * case that y has fewer than three digits, etc..
1680 *
1681 * The overall algorithm is as described as
1682 * 14.20 from HAC but fixed to treat these cases.
1683*/
1684static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
1685{
1686  mp_int  q, x, y, t1, t2;
1687  int     res, n, t, i, norm, neg;
1688
1689  /* is divisor zero ? */
1690  if (mp_iszero (b) == 1) {
1691    return MP_VAL;
1692  }
1693
1694  /* if a < b then q=0, r = a */
1695  if (mp_cmp_mag (a, b) == MP_LT) {
1696    if (d != NULL) {
1697      res = mp_copy (a, d);
1698    } else {
1699      res = MP_OKAY;
1700    }
1701    if (c != NULL) {
1702      mp_zero (c);
1703    }
1704    return res;
1705  }
1706
1707  if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
1708    return res;
1709  }
1710  q.used = a->used + 2;
1711
1712  if ((res = mp_init (&t1)) != MP_OKAY) {
1713    goto LBL_Q;
1714  }
1715
1716  if ((res = mp_init (&t2)) != MP_OKAY) {
1717    goto LBL_T1;
1718  }
1719
1720  if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
1721    goto LBL_T2;
1722  }
1723
1724  if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
1725    goto LBL_X;
1726  }
1727
1728  /* fix the sign */
1729  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
1730  x.sign = y.sign = MP_ZPOS;
1731
1732  /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
1733  norm = mp_count_bits(&y) % DIGIT_BIT;
1734  if (norm < (int)(DIGIT_BIT-1)) {
1735     norm = (DIGIT_BIT-1) - norm;
1736     if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
1737       goto LBL_Y;
1738     }
1739     if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
1740       goto LBL_Y;
1741     }
1742  } else {
1743     norm = 0;
1744  }
1745
1746  /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
1747  n = x.used - 1;
1748  t = y.used - 1;
1749
1750  /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
1751  if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
1752    goto LBL_Y;
1753  }
1754
1755  while (mp_cmp (&x, &y) != MP_LT) {
1756    ++(q.dp[n - t]);
1757    if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
1758      goto LBL_Y;
1759    }
1760  }
1761
1762  /* reset y by shifting it back down */
1763  mp_rshd (&y, n - t);
1764
1765  /* step 3. for i from n down to (t + 1) */
1766  for (i = n; i >= (t + 1); i--) {
1767    if (i > x.used) {
1768      continue;
1769    }
1770
1771    /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
1772     * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
1773    if (x.dp[i] == y.dp[t]) {
1774      q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
1775    } else {
1776      mp_word tmp;
1777      tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
1778      tmp |= ((mp_word) x.dp[i - 1]);
1779      tmp /= ((mp_word) y.dp[t]);
1780      if (tmp > (mp_word) MP_MASK)
1781        tmp = MP_MASK;
1782      q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
1783    }
1784
1785    /* while (q{i-t-1} * (yt * b + y{t-1})) >
1786             xi * b**2 + xi-1 * b + xi-2
1787
1788       do q{i-t-1} -= 1;
1789    */
1790    q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
1791    do {
1792      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
1793
1794      /* find left hand */
1795      mp_zero (&t1);
1796      t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
1797      t1.dp[1] = y.dp[t];
1798      t1.used = 2;
1799      if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
1800        goto LBL_Y;
1801      }
1802
1803      /* find right hand */
1804      t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
1805      t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
1806      t2.dp[2] = x.dp[i];
1807      t2.used = 3;
1808    } while (mp_cmp_mag(&t1, &t2) == MP_GT);
1809
1810    /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
1811    if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
1812      goto LBL_Y;
1813    }
1814
1815    if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
1816      goto LBL_Y;
1817    }
1818
1819    if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
1820      goto LBL_Y;
1821    }
1822
1823    /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
1824    if (x.sign == MP_NEG) {
1825      if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
1826        goto LBL_Y;
1827      }
1828      if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
1829        goto LBL_Y;
1830      }
1831      if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
1832        goto LBL_Y;
1833      }
1834
1835      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
1836    }
1837  }
1838
1839  /* now q is the quotient and x is the remainder
1840   * [which we have to normalize]
1841   */
1842
1843  /* get sign before writing to c */
1844  x.sign = x.used == 0 ? MP_ZPOS : a->sign;
1845
1846  if (c != NULL) {
1847    mp_clamp (&q);
1848    mp_exch (&q, c);
1849    c->sign = neg;
1850  }
1851
1852  if (d != NULL) {
1853    mp_div_2d (&x, norm, &x, NULL);
1854    mp_exch (&x, d);
1855  }
1856
1857  res = MP_OKAY;
1858
1859LBL_Y:mp_clear (&y);
1860LBL_X:mp_clear (&x);
1861LBL_T2:mp_clear (&t2);
1862LBL_T1:mp_clear (&t1);
1863LBL_Q:mp_clear (&q);
1864  return res;
1865}
1866
1867#endif
1868
1869
1870#ifdef MP_LOW_MEM
1871   #define TAB_SIZE 32
1872#else
1873   #define TAB_SIZE 256
1874#endif
1875
1876static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
1877{
1878  mp_int  M[TAB_SIZE], res, mu;
1879  mp_digit buf;
1880  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
1881  int (*redux)(mp_int*,mp_int*,mp_int*);
1882
1883  /* find window size */
1884  x = mp_count_bits (X);
1885  if (x <= 7) {
1886    winsize = 2;
1887  } else if (x <= 36) {
1888    winsize = 3;
1889  } else if (x <= 140) {
1890    winsize = 4;
1891  } else if (x <= 450) {
1892    winsize = 5;
1893  } else if (x <= 1303) {
1894    winsize = 6;
1895  } else if (x <= 3529) {
1896    winsize = 7;
1897  } else {
1898    winsize = 8;
1899  }
1900
1901#ifdef MP_LOW_MEM
1902    if (winsize > 5) {
1903       winsize = 5;
1904    }
1905#endif
1906
1907  /* init M array */
1908  /* init first cell */
1909  if ((err = mp_init(&M[1])) != MP_OKAY) {
1910     return err;
1911  }
1912
1913  /* now init the second half of the array */
1914  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
1915    if ((err = mp_init(&M[x])) != MP_OKAY) {
1916      for (y = 1<<(winsize-1); y < x; y++) {
1917        mp_clear (&M[y]);
1918      }
1919      mp_clear(&M[1]);
1920      return err;
1921    }
1922  }
1923
1924  /* create mu, used for Barrett reduction */
1925  if ((err = mp_init (&mu)) != MP_OKAY) {
1926    goto LBL_M;
1927  }
1928
1929  if (redmode == 0) {
1930     if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
1931        goto LBL_MU;
1932     }
1933     redux = mp_reduce;
1934  } else {
1935     if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
1936        goto LBL_MU;
1937     }
1938     redux = mp_reduce_2k_l;
1939  }
1940
1941  /* create M table
1942   *
1943   * The M table contains powers of the base,
1944   * e.g. M[x] = G**x mod P
1945   *
1946   * The first half of the table is not
1947   * computed though accept for M[0] and M[1]
1948   */
1949  if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
1950    goto LBL_MU;
1951  }
1952
1953  /* compute the value at M[1<<(winsize-1)] by squaring
1954   * M[1] (winsize-1) times
1955   */
1956  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
1957    goto LBL_MU;
1958  }
1959
1960  for (x = 0; x < (winsize - 1); x++) {
1961    /* square it */
1962    if ((err = mp_sqr (&M[1 << (winsize - 1)],
1963                       &M[1 << (winsize - 1)])) != MP_OKAY) {
1964      goto LBL_MU;
1965    }
1966
1967    /* reduce modulo P */
1968    if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
1969      goto LBL_MU;
1970    }
1971  }
1972
1973  /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
1974   * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
1975   */
1976  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
1977    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
1978      goto LBL_MU;
1979    }
1980    if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
1981      goto LBL_MU;
1982    }
1983  }
1984
1985  /* setup result */
1986  if ((err = mp_init (&res)) != MP_OKAY) {
1987    goto LBL_MU;
1988  }
1989  mp_set (&res, 1);
1990
1991  /* set initial mode and bit cnt */
1992  mode   = 0;
1993  bitcnt = 1;
1994  buf    = 0;
1995  digidx = X->used - 1;
1996  bitcpy = 0;
1997  bitbuf = 0;
1998
1999  for (;;) {
2000    /* grab next digit as required */
2001    if (--bitcnt == 0) {
2002      /* if digidx == -1 we are out of digits */
2003      if (digidx == -1) {
2004        break;
2005      }
2006      /* read next digit and reset the bitcnt */
2007      buf    = X->dp[digidx--];
2008      bitcnt = (int) DIGIT_BIT;
2009    }
2010
2011    /* grab the next msb from the exponent */
2012    y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
2013    buf <<= (mp_digit)1;
2014
2015    /* if the bit is zero and mode == 0 then we ignore it
2016     * These represent the leading zero bits before the first 1 bit
2017     * in the exponent.  Technically this opt is not required but it
2018     * does lower the # of trivial squaring/reductions used
2019     */
2020    if (mode == 0 && y == 0) {
2021      continue;
2022    }
2023
2024    /* if the bit is zero and mode == 1 then we square */
2025    if (mode == 1 && y == 0) {
2026      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2027        goto LBL_RES;
2028      }
2029      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2030        goto LBL_RES;
2031      }
2032      continue;
2033    }
2034
2035    /* else we add it to the window */
2036    bitbuf |= (y << (winsize - ++bitcpy));
2037    mode    = 2;
2038
2039    if (bitcpy == winsize) {
2040      /* ok window is filled so square as required and multiply  */
2041      /* square first */
2042      for (x = 0; x < winsize; x++) {
2043        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2044          goto LBL_RES;
2045        }
2046        if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2047          goto LBL_RES;
2048        }
2049      }
2050
2051      /* then multiply */
2052      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
2053        goto LBL_RES;
2054      }
2055      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2056        goto LBL_RES;
2057      }
2058
2059      /* empty window and reset */
2060      bitcpy = 0;
2061      bitbuf = 0;
2062      mode   = 1;
2063    }
2064  }
2065
2066  /* if bits remain then square/multiply */
2067  if (mode == 2 && bitcpy > 0) {
2068    /* square then multiply if the bit is set */
2069    for (x = 0; x < bitcpy; x++) {
2070      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2071        goto LBL_RES;
2072      }
2073      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2074        goto LBL_RES;
2075      }
2076
2077      bitbuf <<= 1;
2078      if ((bitbuf & (1 << winsize)) != 0) {
2079        /* then multiply */
2080        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
2081          goto LBL_RES;
2082        }
2083        if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2084          goto LBL_RES;
2085        }
2086      }
2087    }
2088  }
2089
2090  mp_exch (&res, Y);
2091  err = MP_OKAY;
2092LBL_RES:mp_clear (&res);
2093LBL_MU:mp_clear (&mu);
2094LBL_M:
2095  mp_clear(&M[1]);
2096  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
2097    mp_clear (&M[x]);
2098  }
2099  return err;
2100}
2101
2102
2103/* computes b = a*a */
2104static int mp_sqr (mp_int * a, mp_int * b)
2105{
2106  int     res;
2107
2108#ifdef BN_MP_TOOM_SQR_C
2109  /* use Toom-Cook? */
2110  if (a->used >= TOOM_SQR_CUTOFF) {
2111    res = mp_toom_sqr(a, b);
2112  /* Karatsuba? */
2113  } else
2114#endif
2115#ifdef BN_MP_KARATSUBA_SQR_C
2116if (a->used >= KARATSUBA_SQR_CUTOFF) {
2117    res = mp_karatsuba_sqr (a, b);
2118  } else
2119#endif
2120  {
2121#ifdef BN_FAST_S_MP_SQR_C
2122    /* can we use the fast comba multiplier? */
2123    if ((a->used * 2 + 1) < MP_WARRAY &&
2124         a->used <
2125         (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
2126      res = fast_s_mp_sqr (a, b);
2127    } else
2128#endif
2129#ifdef BN_S_MP_SQR_C
2130      res = s_mp_sqr (a, b);
2131#else
2132#error mp_sqr could fail
2133      res = MP_VAL;
2134#endif
2135  }
2136  b->sign = MP_ZPOS;
2137  return res;
2138}
2139
2140
2141/* reduces a modulo n where n is of the form 2**p - d
2142   This differs from reduce_2k since "d" can be larger
2143   than a single digit.
2144*/
2145static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
2146{
2147   mp_int q;
2148   int    p, res;
2149
2150   if ((res = mp_init(&q)) != MP_OKAY) {
2151      return res;
2152   }
2153
2154   p = mp_count_bits(n);
2155top:
2156   /* q = a/2**p, a = a mod 2**p */
2157   if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
2158      goto ERR;
2159   }
2160
2161   /* q = q * d */
2162   if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
2163      goto ERR;
2164   }
2165
2166   /* a = a + q */
2167   if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
2168      goto ERR;
2169   }
2170
2171   if (mp_cmp_mag(a, n) != MP_LT) {
2172      s_mp_sub(a, n, a);
2173      goto top;
2174   }
2175
2176ERR:
2177   mp_clear(&q);
2178   return res;
2179}
2180
2181
2182/* determines the setup value */
2183static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
2184{
2185   int    res;
2186   mp_int tmp;
2187
2188   if ((res = mp_init(&tmp)) != MP_OKAY) {
2189      return res;
2190   }
2191
2192   if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
2193      goto ERR;
2194   }
2195
2196   if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
2197      goto ERR;
2198   }
2199
2200ERR:
2201   mp_clear(&tmp);
2202   return res;
2203}
2204
2205
2206/* computes a = 2**b
2207 *
2208 * Simple algorithm which zeroes the int, grows it then just sets one bit
2209 * as required.
2210 */
2211static int mp_2expt (mp_int * a, int b)
2212{
2213  int     res;
2214
2215  /* zero a as per default */
2216  mp_zero (a);
2217
2218  /* grow a to accommodate the single bit */
2219  if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
2220    return res;
2221  }
2222
2223  /* set the used count of where the bit will go */
2224  a->used = b / DIGIT_BIT + 1;
2225
2226  /* put the single bit in its place */
2227  a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
2228
2229  return MP_OKAY;
2230}
2231
2232
2233/* pre-calculate the value required for Barrett reduction
2234 * For a given modulus "b" it calulates the value required in "a"
2235 */
2236static int mp_reduce_setup (mp_int * a, mp_int * b)
2237{
2238  int     res;
2239
2240  if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
2241    return res;
2242  }
2243  return mp_div (a, b, a, NULL);
2244}
2245
2246
2247/* reduces x mod m, assumes 0 < x < m**2, mu is
2248 * precomputed via mp_reduce_setup.
2249 * From HAC pp.604 Algorithm 14.42
2250 */
2251static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
2252{
2253  mp_int  q;
2254  int     res, um = m->used;
2255
2256  /* q = x */
2257  if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
2258    return res;
2259  }
2260
2261  /* q1 = x / b**(k-1)  */
2262  mp_rshd (&q, um - 1);
2263
2264  /* according to HAC this optimization is ok */
2265  if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
2266    if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
2267      goto CLEANUP;
2268    }
2269  } else {
2270#ifdef BN_S_MP_MUL_HIGH_DIGS_C
2271    if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
2272      goto CLEANUP;
2273    }
2274#elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
2275    if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
2276      goto CLEANUP;
2277    }
2278#else
2279    {
2280#error mp_reduce would always fail
2281      res = MP_VAL;
2282      goto CLEANUP;
2283    }
2284#endif
2285  }
2286
2287  /* q3 = q2 / b**(k+1) */
2288  mp_rshd (&q, um + 1);
2289
2290  /* x = x mod b**(k+1), quick (no division) */
2291  if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
2292    goto CLEANUP;
2293  }
2294
2295  /* q = q * m mod b**(k+1), quick (no division) */
2296  if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
2297    goto CLEANUP;
2298  }
2299
2300  /* x = x - q */
2301  if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
2302    goto CLEANUP;
2303  }
2304
2305  /* If x < 0, add b**(k+1) to it */
2306  if (mp_cmp_d (x, 0) == MP_LT) {
2307    mp_set (&q, 1);
2308    if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) {
2309      goto CLEANUP;
2310    }
2311    if ((res = mp_add (x, &q, x)) != MP_OKAY) {
2312      goto CLEANUP;
2313    }
2314  }
2315
2316  /* Back off if it's too big */
2317  while (mp_cmp (x, m) != MP_LT) {
2318    if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
2319      goto CLEANUP;
2320    }
2321  }
2322
2323CLEANUP:
2324  mp_clear (&q);
2325
2326  return res;
2327}
2328
2329
2330/* multiplies |a| * |b| and only computes up to digs digits of result
2331 * HAC pp. 595, Algorithm 14.12  Modified so you can control how
2332 * many digits of output are created.
2333 */
2334static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2335{
2336  mp_int  t;
2337  int     res, pa, pb, ix, iy;
2338  mp_digit u;
2339  mp_word r;
2340  mp_digit tmpx, *tmpt, *tmpy;
2341
2342  /* can we use the fast multiplier? */
2343  if (((digs) < MP_WARRAY) &&
2344      MIN (a->used, b->used) <
2345          (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
2346    return fast_s_mp_mul_digs (a, b, c, digs);
2347  }
2348
2349  if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
2350    return res;
2351  }
2352  t.used = digs;
2353
2354  /* compute the digits of the product directly */
2355  pa = a->used;
2356  for (ix = 0; ix < pa; ix++) {
2357    /* set the carry to zero */
2358    u = 0;
2359
2360    /* limit ourselves to making digs digits of output */
2361    pb = MIN (b->used, digs - ix);
2362
2363    /* setup some aliases */
2364    /* copy of the digit from a used within the nested loop */
2365    tmpx = a->dp[ix];
2366
2367    /* an alias for the destination shifted ix places */
2368    tmpt = t.dp + ix;
2369
2370    /* an alias for the digits of b */
2371    tmpy = b->dp;
2372
2373    /* compute the columns of the output and propagate the carry */
2374    for (iy = 0; iy < pb; iy++) {
2375      /* compute the column as a mp_word */
2376      r       = ((mp_word)*tmpt) +
2377                ((mp_word)tmpx) * ((mp_word)*tmpy++) +
2378                ((mp_word) u);
2379
2380      /* the new column is the lower part of the result */
2381      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2382
2383      /* get the carry word from the result */
2384      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
2385    }
2386    /* set carry if it is placed below digs */
2387    if (ix + iy < digs) {
2388      *tmpt = u;
2389    }
2390  }
2391
2392  mp_clamp (&t);
2393  mp_exch (&t, c);
2394
2395  mp_clear (&t);
2396  return MP_OKAY;
2397}
2398
2399
2400/* Fast (comba) multiplier
2401 *
2402 * This is the fast column-array [comba] multiplier.  It is
2403 * designed to compute the columns of the product first
2404 * then handle the carries afterwards.  This has the effect
2405 * of making the nested loops that compute the columns very
2406 * simple and schedulable on super-scalar processors.
2407 *
2408 * This has been modified to produce a variable number of
2409 * digits of output so if say only a half-product is required
2410 * you don't have to compute the upper half (a feature
2411 * required for fast Barrett reduction).
2412 *
2413 * Based on Algorithm 14.12 on pp.595 of HAC.
2414 *
2415 */
2416static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2417{
2418  int     olduse, res, pa, ix, iz;
2419  mp_digit W[MP_WARRAY];
2420  register mp_word  _W;
2421
2422  /* grow the destination as required */
2423  if (c->alloc < digs) {
2424    if ((res = mp_grow (c, digs)) != MP_OKAY) {
2425      return res;
2426    }
2427  }
2428
2429  /* number of output digits to produce */
2430  pa = MIN(digs, a->used + b->used);
2431
2432  /* clear the carry */
2433  _W = 0;
2434  for (ix = 0; ix < pa; ix++) {
2435      int      tx, ty;
2436      int      iy;
2437      mp_digit *tmpx, *tmpy;
2438
2439      /* get offsets into the two bignums */
2440      ty = MIN(b->used-1, ix);
2441      tx = ix - ty;
2442
2443      /* setup temp aliases */
2444      tmpx = a->dp + tx;
2445      tmpy = b->dp + ty;
2446
2447      /* this is the number of times the loop will iterrate, essentially
2448         while (tx++ < a->used && ty-- >= 0) { ... }
2449       */
2450      iy = MIN(a->used-tx, ty+1);
2451
2452      /* execute loop */
2453      for (iz = 0; iz < iy; ++iz) {
2454         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
2455
2456      }
2457
2458      /* store term */
2459      W[ix] = ((mp_digit)_W) & MP_MASK;
2460
2461      /* make next carry */
2462      _W = _W >> ((mp_word)DIGIT_BIT);
2463 }
2464
2465  /* setup dest */
2466  olduse  = c->used;
2467  c->used = pa;
2468
2469  {
2470    register mp_digit *tmpc;
2471    tmpc = c->dp;
2472    for (ix = 0; ix < pa+1; ix++) {
2473      /* now extract the previous digit [below the carry] */
2474      *tmpc++ = W[ix];
2475    }
2476
2477    /* clear unused digits [that existed in the old copy of c] */
2478    for (; ix < olduse; ix++) {
2479      *tmpc++ = 0;
2480    }
2481  }
2482  mp_clamp (c);
2483  return MP_OKAY;
2484}
2485
2486
2487/* init an mp_init for a given size */
2488static int mp_init_size (mp_int * a, int size)
2489{
2490  int x;
2491
2492  /* pad size so there are always extra digits */
2493  size += (MP_PREC * 2) - (size % MP_PREC);
2494
2495  /* alloc mem */
2496  a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
2497  if (a->dp == NULL) {
2498    return MP_MEM;
2499  }
2500
2501  /* set the members */
2502  a->used  = 0;
2503  a->alloc = size;
2504  a->sign  = MP_ZPOS;
2505
2506  /* zero the digits */
2507  for (x = 0; x < size; x++) {
2508      a->dp[x] = 0;
2509  }
2510
2511  return MP_OKAY;
2512}
2513
2514
2515/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
2516static int s_mp_sqr (mp_int * a, mp_int * b)
2517{
2518  mp_int  t;
2519  int     res, ix, iy, pa;
2520  mp_word r;
2521  mp_digit u, tmpx, *tmpt;
2522
2523  pa = a->used;
2524  if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
2525    return res;
2526  }
2527
2528  /* default used is maximum possible size */
2529  t.used = 2*pa + 1;
2530
2531  for (ix = 0; ix < pa; ix++) {
2532    /* first calculate the digit at 2*ix */
2533    /* calculate double precision result */
2534    r = ((mp_word) t.dp[2*ix]) +
2535        ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
2536
2537    /* store lower part in result */
2538    t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
2539
2540    /* get the carry */
2541    u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2542
2543    /* left hand side of A[ix] * A[iy] */
2544    tmpx        = a->dp[ix];
2545
2546    /* alias for where to store the results */
2547    tmpt        = t.dp + (2*ix + 1);
2548
2549    for (iy = ix + 1; iy < pa; iy++) {
2550      /* first calculate the product */
2551      r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
2552
2553      /* now calculate the double precision result, note we use
2554       * addition instead of *2 since it's easier to optimize
2555       */
2556      r       = ((mp_word) *tmpt) + r + r + ((mp_word) u);
2557
2558      /* store lower part */
2559      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2560
2561      /* get carry */
2562      u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2563    }
2564    /* propagate upwards */
2565    while (u != ((mp_digit) 0)) {
2566      r       = ((mp_word) *tmpt) + ((mp_word) u);
2567      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2568      u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2569    }
2570  }
2571
2572  mp_clamp (&t);
2573  mp_exch (&t, b);
2574  mp_clear (&t);
2575  return MP_OKAY;
2576}
2577
2578
2579/* multiplies |a| * |b| and does not compute the lower digs digits
2580 * [meant to get the higher part of the product]
2581 */
2582static int s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2583{
2584  mp_int  t;
2585  int     res, pa, pb, ix, iy;
2586  mp_digit u;
2587  mp_word r;
2588  mp_digit tmpx, *tmpt, *tmpy;
2589
2590  /* can we use the fast multiplier? */
2591#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
2592  if (((a->used + b->used + 1) < MP_WARRAY)
2593      && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
2594    return fast_s_mp_mul_high_digs (a, b, c, digs);
2595  }
2596#endif
2597
2598  if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
2599    return res;
2600  }
2601  t.used = a->used + b->used + 1;
2602
2603  pa = a->used;
2604  pb = b->used;
2605  for (ix = 0; ix < pa; ix++) {
2606    /* clear the carry */
2607    u = 0;
2608
2609    /* left hand side of A[ix] * B[iy] */
2610    tmpx = a->dp[ix];
2611
2612    /* alias to the address of where the digits will be stored */
2613    tmpt = &(t.dp[digs]);
2614
2615    /* alias for where to read the right hand side from */
2616    tmpy = b->dp + (digs - ix);
2617
2618    for (iy = digs - ix; iy < pb; iy++) {
2619      /* calculate the double precision result */
2620      r       = ((mp_word)*tmpt) +
2621                ((mp_word)tmpx) * ((mp_word)*tmpy++) +
2622                ((mp_word) u);
2623
2624      /* get the lower part */
2625      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2626
2627      /* carry the carry */
2628      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
2629    }
2630    *tmpt = u;
2631  }
2632  mp_clamp (&t);
2633  mp_exch (&t, c);
2634  mp_clear (&t);
2635  return MP_OKAY;
2636}
2637
2638
2639#ifdef BN_MP_MONTGOMERY_SETUP_C
2640/* setups the montgomery reduction stuff */
2641static int
2642mp_montgomery_setup (mp_int * n, mp_digit * rho)
2643{
2644  mp_digit x, b;
2645
2646/* fast inversion mod 2**k
2647 *
2648 * Based on the fact that
2649 *
2650 * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
2651 *                    =>  2*X*A - X*X*A*A = 1
2652 *                    =>  2*(1) - (1)     = 1
2653 */
2654  b = n->dp[0];
2655
2656  if ((b & 1) == 0) {
2657    return MP_VAL;
2658  }
2659
2660  x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
2661  x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
2662#if !defined(MP_8BIT)
2663  x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
2664#endif
2665#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
2666  x *= 2 - b * x;               /* here x*a==1 mod 2**32 */
2667#endif
2668#ifdef MP_64BIT
2669  x *= 2 - b * x;               /* here x*a==1 mod 2**64 */
2670#endif
2671
2672  /* rho = -1/m mod b */
2673  *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
2674
2675  return MP_OKAY;
2676}
2677#endif
2678
2679
2680#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
2681/* computes xR**-1 == x (mod N) via Montgomery Reduction
2682 *
2683 * This is an optimized implementation of montgomery_reduce
2684 * which uses the comba method to quickly calculate the columns of the
2685 * reduction.
2686 *
2687 * Based on Algorithm 14.32 on pp.601 of HAC.
2688*/
2689static int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
2690{
2691  int     ix, res, olduse;
2692  mp_word W[MP_WARRAY];
2693
2694  /* get old used count */
2695  olduse = x->used;
2696
2697  /* grow a as required */
2698  if (x->alloc < n->used + 1) {
2699    if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
2700      return res;
2701    }
2702  }
2703
2704  /* first we have to get the digits of the input into
2705   * an array of double precision words W[...]
2706   */
2707  {
2708    register mp_word *_W;
2709    register mp_digit *tmpx;
2710
2711    /* alias for the W[] array */
2712    _W   = W;
2713
2714    /* alias for the digits of  x*/
2715    tmpx = x->dp;
2716
2717    /* copy the digits of a into W[0..a->used-1] */
2718    for (ix = 0; ix < x->used; ix++) {
2719      *_W++ = *tmpx++;
2720    }
2721
2722    /* zero the high words of W[a->used..m->used*2] */
2723    for (; ix < n->used * 2 + 1; ix++) {
2724      *_W++ = 0;
2725    }
2726  }
2727
2728  /* now we proceed to zero successive digits
2729   * from the least significant upwards
2730   */
2731  for (ix = 0; ix < n->used; ix++) {
2732    /* mu = ai * m' mod b
2733     *
2734     * We avoid a double precision multiplication (which isn't required)
2735     * by casting the value down to a mp_digit.  Note this requires
2736     * that W[ix-1] have  the carry cleared (see after the inner loop)
2737     */
2738    register mp_digit mu;
2739    mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
2740
2741    /* a = a + mu * m * b**i
2742     *
2743     * This is computed in place and on the fly.  The multiplication
2744     * by b**i is handled by offseting which columns the results
2745     * are added to.
2746     *
2747     * Note the comba method normally doesn't handle carries in the
2748     * inner loop In this case we fix the carry from the previous
2749     * column since the Montgomery reduction requires digits of the
2750     * result (so far) [see above] to work.  This is
2751     * handled by fixing up one carry after the inner loop.  The
2752     * carry fixups are done in order so after these loops the
2753     * first m->used words of W[] have the carries fixed
2754     */
2755    {
2756      register int iy;
2757      register mp_digit *tmpn;
2758      register mp_word *_W;
2759
2760      /* alias for the digits of the modulus */
2761      tmpn = n->dp;
2762
2763      /* Alias for the columns set by an offset of ix */
2764      _W = W + ix;
2765
2766      /* inner loop */
2767      for (iy = 0; iy < n->used; iy++) {
2768          *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
2769      }
2770    }
2771
2772    /* now fix carry for next digit, W[ix+1] */
2773    W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
2774  }
2775
2776  /* now we have to propagate the carries and
2777   * shift the words downward [all those least
2778   * significant digits we zeroed].
2779   */
2780  {
2781    register mp_digit *tmpx;
2782    register mp_word *_W, *_W1;
2783
2784    /* nox fix rest of carries */
2785
2786    /* alias for current word */
2787    _W1 = W + ix;
2788
2789    /* alias for next word, where the carry goes */
2790    _W = W + ++ix;
2791
2792    for (; ix <= n->used * 2 + 1; ix++) {
2793      *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
2794    }
2795
2796    /* copy out, A = A/b**n
2797     *
2798     * The result is A/b**n but instead of converting from an
2799     * array of mp_word to mp_digit than calling mp_rshd
2800     * we just copy them in the right order
2801     */
2802
2803    /* alias for destination word */
2804    tmpx = x->dp;
2805
2806    /* alias for shifted double precision result */
2807    _W = W + n->used;
2808
2809    for (ix = 0; ix < n->used + 1; ix++) {
2810      *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
2811    }
2812
2813    /* zero oldused digits, if the input a was larger than
2814     * m->used+1 we'll have to clear the digits
2815     */
2816    for (; ix < olduse; ix++) {
2817      *tmpx++ = 0;
2818    }
2819  }
2820
2821  /* set the max used and clamp */
2822  x->used = n->used + 1;
2823  mp_clamp (x);
2824
2825  /* if A >= m then A = A - m */
2826  if (mp_cmp_mag (x, n) != MP_LT) {
2827    return s_mp_sub (x, n, x);
2828  }
2829  return MP_OKAY;
2830}
2831#endif
2832
2833
2834#ifdef BN_MP_MUL_2_C
2835/* b = a*2 */
2836static int mp_mul_2(mp_int * a, mp_int * b)
2837{
2838  int     x, res, oldused;
2839
2840  /* grow to accommodate result */
2841  if (b->alloc < a->used + 1) {
2842    if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
2843      return res;
2844    }
2845  }
2846
2847  oldused = b->used;
2848  b->used = a->used;
2849
2850  {
2851    register mp_digit r, rr, *tmpa, *tmpb;
2852
2853    /* alias for source */
2854    tmpa = a->dp;
2855
2856    /* alias for dest */
2857    tmpb = b->dp;
2858
2859    /* carry */
2860    r = 0;
2861    for (x = 0; x < a->used; x++) {
2862
2863      /* get what will be the *next* carry bit from the
2864       * MSB of the current digit
2865       */
2866      rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
2867
2868      /* now shift up this digit, add in the carry [from the previous] */
2869      *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
2870
2871      /* copy the carry that would be from the source
2872       * digit into the next iteration
2873       */
2874      r = rr;
2875    }
2876
2877    /* new leading digit? */
2878    if (r != 0) {
2879      /* add a MSB which is always 1 at this point */
2880      *tmpb = 1;
2881      ++(b->used);
2882    }
2883
2884    /* now zero any excess digits on the destination
2885     * that we didn't write to
2886     */
2887    tmpb = b->dp + b->used;
2888    for (x = b->used; x < oldused; x++) {
2889      *tmpb++ = 0;
2890    }
2891  }
2892  b->sign = a->sign;
2893  return MP_OKAY;
2894}
2895#endif
2896
2897
2898#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
2899/*
2900 * shifts with subtractions when the result is greater than b.
2901 *
2902 * The method is slightly modified to shift B unconditionally up to just under
2903 * the leading bit of b.  This saves a lot of multiple precision shifting.
2904 */
2905static int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
2906{
2907  int     x, bits, res;
2908
2909  /* how many bits of last digit does b use */
2910  bits = mp_count_bits (b) % DIGIT_BIT;
2911
2912  if (b->used > 1) {
2913     if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
2914        return res;
2915     }
2916  } else {
2917     mp_set(a, 1);
2918     bits = 1;
2919  }
2920
2921
2922  /* now compute C = A * B mod b */
2923  for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
2924    if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
2925      return res;
2926    }
2927    if (mp_cmp_mag (a, b) != MP_LT) {
2928      if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
2929        return res;
2930      }
2931    }
2932  }
2933
2934  return MP_OKAY;
2935}
2936#endif
2937
2938
2939#ifdef BN_MP_EXPTMOD_FAST_C
2940/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
2941 *
2942 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
2943 * The value of k changes based on the size of the exponent.
2944 *
2945 * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
2946 */
2947
2948static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
2949{
2950  mp_int  M[TAB_SIZE], res;
2951  mp_digit buf, mp;
2952  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
2953
2954  /* use a pointer to the reduction algorithm.  This allows us to use
2955   * one of many reduction algorithms without modding the guts of
2956   * the code with if statements everywhere.
2957   */
2958  int     (*redux)(mp_int*,mp_int*,mp_digit);
2959
2960  /* find window size */
2961  x = mp_count_bits (X);
2962  if (x <= 7) {
2963    winsize = 2;
2964  } else if (x <= 36) {
2965    winsize = 3;
2966  } else if (x <= 140) {
2967    winsize = 4;
2968  } else if (x <= 450) {
2969    winsize = 5;
2970  } else if (x <= 1303) {
2971    winsize = 6;
2972  } else if (x <= 3529) {
2973    winsize = 7;
2974  } else {
2975    winsize = 8;
2976  }
2977
2978#ifdef MP_LOW_MEM
2979  if (winsize > 5) {
2980     winsize = 5;
2981  }
2982#endif
2983
2984  /* init M array */
2985  /* init first cell */
2986  if ((err = mp_init(&M[1])) != MP_OKAY) {
2987     return err;
2988  }
2989
2990  /* now init the second half of the array */
2991  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
2992    if ((err = mp_init(&M[x])) != MP_OKAY) {
2993      for (y = 1<<(winsize-1); y < x; y++) {
2994        mp_clear (&M[y]);
2995      }
2996      mp_clear(&M[1]);
2997      return err;
2998    }
2999  }
3000
3001  /* determine and setup reduction code */
3002  if (redmode == 0) {
3003#ifdef BN_MP_MONTGOMERY_SETUP_C
3004     /* now setup montgomery  */
3005     if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
3006        goto LBL_M;
3007     }
3008#else
3009     err = MP_VAL;
3010     goto LBL_M;
3011#endif
3012
3013     /* automatically pick the comba one if available (saves quite a few calls/ifs) */
3014#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
3015     if (((P->used * 2 + 1) < MP_WARRAY) &&
3016          P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
3017        redux = fast_mp_montgomery_reduce;
3018     } else
3019#endif
3020     {
3021#ifdef BN_MP_MONTGOMERY_REDUCE_C
3022        /* use slower baseline Montgomery method */
3023        redux = mp_montgomery_reduce;
3024#else
3025        err = MP_VAL;
3026        goto LBL_M;
3027#endif
3028     }
3029  } else if (redmode == 1) {
3030#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
3031     /* setup DR reduction for moduli of the form B**k - b */
3032     mp_dr_setup(P, &mp);
3033     redux = mp_dr_reduce;
3034#else
3035     err = MP_VAL;
3036     goto LBL_M;
3037#endif
3038  } else {
3039#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
3040     /* setup DR reduction for moduli of the form 2**k - b */
3041     if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
3042        goto LBL_M;
3043     }
3044     redux = mp_reduce_2k;
3045#else
3046     err = MP_VAL;
3047     goto LBL_M;
3048#endif
3049  }
3050
3051  /* setup result */
3052  if ((err = mp_init (&res)) != MP_OKAY) {
3053    goto LBL_M;
3054  }
3055
3056  /* create M table
3057   *
3058
3059   *
3060   * The first half of the table is not computed though accept for M[0] and M[1]
3061   */
3062
3063  if (redmode == 0) {
3064#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
3065     /* now we need R mod m */
3066     if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
3067       goto LBL_RES;
3068     }
3069#else
3070     err = MP_VAL;
3071     goto LBL_RES;
3072#endif
3073
3074     /* now set M[1] to G * R mod m */
3075     if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
3076       goto LBL_RES;
3077     }
3078  } else {
3079     mp_set(&res, 1);
3080     if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
3081        goto LBL_RES;
3082     }
3083  }
3084
3085  /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
3086  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
3087    goto LBL_RES;
3088  }
3089
3090  for (x = 0; x < (winsize - 1); x++) {
3091    if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
3092      goto LBL_RES;
3093    }
3094    if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
3095      goto LBL_RES;
3096    }
3097  }
3098
3099  /* create upper table */
3100  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
3101    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
3102      goto LBL_RES;
3103    }
3104    if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
3105      goto LBL_RES;
3106    }
3107  }
3108
3109  /* set initial mode and bit cnt */
3110  mode   = 0;
3111  bitcnt = 1;
3112  buf    = 0;
3113  digidx = X->used - 1;
3114  bitcpy = 0;
3115  bitbuf = 0;
3116
3117  for (;;) {
3118    /* grab next digit as required */
3119    if (--bitcnt == 0) {
3120      /* if digidx == -1 we are out of digits so break */
3121      if (digidx == -1) {
3122        break;
3123      }
3124      /* read next digit and reset bitcnt */
3125      buf    = X->dp[digidx--];
3126      bitcnt = (int)DIGIT_BIT;
3127    }
3128
3129    /* grab the next msb from the exponent */
3130    y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
3131    buf <<= (mp_digit)1;
3132
3133    /* if the bit is zero and mode == 0 then we ignore it
3134     * These represent the leading zero bits before the first 1 bit
3135     * in the exponent.  Technically this opt is not required but it
3136     * does lower the # of trivial squaring/reductions used
3137     */
3138    if (mode == 0 && y == 0) {
3139      continue;
3140    }
3141
3142    /* if the bit is zero and mode == 1 then we square */
3143    if (mode == 1 && y == 0) {
3144      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3145        goto LBL_RES;
3146      }
3147      if ((err = redux (&res, P, mp)) != MP_OKAY) {
3148        goto LBL_RES;
3149      }
3150      continue;
3151    }
3152
3153    /* else we add it to the window */
3154    bitbuf |= (y << (winsize - ++bitcpy));
3155    mode    = 2;
3156
3157    if (bitcpy == winsize) {
3158      /* ok window is filled so square as required and multiply  */
3159      /* square first */
3160      for (x = 0; x < winsize; x++) {
3161        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3162          goto LBL_RES;
3163        }
3164        if ((err = redux (&res, P, mp)) != MP_OKAY) {
3165          goto LBL_RES;
3166        }
3167      }
3168
3169      /* then multiply */
3170      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
3171        goto LBL_RES;
3172      }
3173      if ((err = redux (&res, P, mp)) != MP_OKAY) {
3174        goto LBL_RES;
3175      }
3176
3177      /* empty window and reset */
3178      bitcpy = 0;
3179      bitbuf = 0;
3180      mode   = 1;
3181    }
3182  }
3183
3184  /* if bits remain then square/multiply */
3185  if (mode == 2 && bitcpy > 0) {
3186    /* square then multiply if the bit is set */
3187    for (x = 0; x < bitcpy; x++) {
3188      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3189        goto LBL_RES;
3190      }
3191      if ((err = redux (&res, P, mp)) != MP_OKAY) {
3192        goto LBL_RES;
3193      }
3194
3195      /* get next bit of the window */
3196      bitbuf <<= 1;
3197      if ((bitbuf & (1 << winsize)) != 0) {
3198        /* then multiply */
3199        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
3200          goto LBL_RES;
3201        }
3202        if ((err = redux (&res, P, mp)) != MP_OKAY) {
3203          goto LBL_RES;
3204        }
3205      }
3206    }
3207  }
3208
3209  if (redmode == 0) {
3210     /* fixup result if Montgomery reduction is used
3211      * recall that any value in a Montgomery system is
3212      * actually multiplied by R mod n.  So we have
3213      * to reduce one more time to cancel out the factor
3214      * of R.
3215      */
3216     if ((err = redux(&res, P, mp)) != MP_OKAY) {
3217       goto LBL_RES;
3218     }
3219  }
3220
3221  /* swap res with Y */
3222  mp_exch (&res, Y);
3223  err = MP_OKAY;
3224LBL_RES:mp_clear (&res);
3225LBL_M:
3226  mp_clear(&M[1]);
3227  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
3228    mp_clear (&M[x]);
3229  }
3230  return err;
3231}
3232#endif
3233
3234
3235#ifdef BN_FAST_S_MP_SQR_C
3236/* the jist of squaring...
3237 * you do like mult except the offset of the tmpx [one that
3238 * starts closer to zero] can't equal the offset of tmpy.
3239 * So basically you set up iy like before then you min it with
3240 * (ty-tx) so that it never happens.  You double all those
3241 * you add in the inner loop
3242
3243After that loop you do the squares and add them in.
3244*/
3245
3246static int fast_s_mp_sqr (mp_int * a, mp_int * b)
3247{
3248  int       olduse, res, pa, ix, iz;
3249  mp_digit   W[MP_WARRAY], *tmpx;
3250  mp_word   W1;
3251
3252  /* grow the destination as required */
3253  pa = a->used + a->used;
3254  if (b->alloc < pa) {
3255    if ((res = mp_grow (b, pa)) != MP_OKAY) {
3256      return res;
3257    }
3258  }
3259
3260  /* number of output digits to produce */
3261  W1 = 0;
3262  for (ix = 0; ix < pa; ix++) {
3263      int      tx, ty, iy;
3264      mp_word  _W;
3265      mp_digit *tmpy;
3266
3267      /* clear counter */
3268      _W = 0;
3269
3270      /* get offsets into the two bignums */
3271      ty = MIN(a->used-1, ix);
3272      tx = ix - ty;
3273
3274      /* setup temp aliases */
3275      tmpx = a->dp + tx;
3276      tmpy = a->dp + ty;
3277
3278      /* this is the number of times the loop will iterrate, essentially
3279         while (tx++ < a->used && ty-- >= 0) { ... }
3280       */
3281      iy = MIN(a->used-tx, ty+1);
3282
3283      /* now for squaring tx can never equal ty
3284       * we halve the distance since they approach at a rate of 2x
3285       * and we have to round because odd cases need to be executed
3286       */
3287      iy = MIN(iy, (ty-tx+1)>>1);
3288
3289      /* execute loop */
3290      for (iz = 0; iz < iy; iz++) {
3291         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
3292      }
3293
3294      /* double the inner product and add carry */
3295      _W = _W + _W + W1;
3296
3297      /* even columns have the square term in them */
3298      if ((ix&1) == 0) {
3299         _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
3300      }
3301
3302      /* store it */
3303      W[ix] = (mp_digit)(_W & MP_MASK);
3304
3305      /* make next carry */
3306      W1 = _W >> ((mp_word)DIGIT_BIT);
3307  }
3308
3309  /* setup dest */
3310  olduse  = b->used;
3311  b->used = a->used+a->used;
3312
3313  {
3314    mp_digit *tmpb;
3315    tmpb = b->dp;
3316    for (ix = 0; ix < pa; ix++) {
3317      *tmpb++ = W[ix] & MP_MASK;
3318    }
3319
3320    /* clear unused digits [that existed in the old copy of c] */
3321    for (; ix < olduse; ix++) {
3322      *tmpb++ = 0;
3323    }
3324  }
3325  mp_clamp (b);
3326  return MP_OKAY;
3327}
3328#endif
3329
3330
3331#ifdef BN_MP_MUL_D_C
3332/* multiply by a digit */
3333static int
3334mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
3335{
3336  mp_digit u, *tmpa, *tmpc;
3337  mp_word  r;
3338  int      ix, res, olduse;
3339
3340  /* make sure c is big enough to hold a*b */
3341  if (c->alloc < a->used + 1) {
3342    if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
3343      return res;
3344    }
3345  }
3346
3347  /* get the original destinations used count */
3348  olduse = c->used;
3349
3350  /* set the sign */
3351  c->sign = a->sign;
3352
3353  /* alias for a->dp [source] */
3354  tmpa = a->dp;
3355
3356  /* alias for c->dp [dest] */
3357  tmpc = c->dp;
3358
3359  /* zero carry */
3360  u = 0;
3361
3362  /* compute columns */
3363  for (ix = 0; ix < a->used; ix++) {
3364    /* compute product and carry sum for this term */
3365    r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
3366
3367    /* mask off higher bits to get a single digit */
3368    *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
3369
3370    /* send carry into next iteration */
3371    u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
3372  }
3373
3374  /* store final carry [if any] and increment ix offset  */
3375  *tmpc++ = u;
3376  ++ix;
3377
3378  /* now zero digits above the top */
3379  while (ix++ < olduse) {
3380     *tmpc++ = 0;
3381  }
3382
3383  /* set used count */
3384  c->used = a->used + 1;
3385  mp_clamp(c);
3386
3387  return MP_OKAY;
3388}
3389#endif
3390