AudioResampler.cpp revision 5f51ade2c290e239a125dc88943b240e1105fd97
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "AudioResampler"
18//#define LOG_NDEBUG 0
19
20#include <stdint.h>
21#include <stdlib.h>
22#include <sys/types.h>
23#include <cutils/log.h>
24#include <cutils/properties.h>
25#include "AudioResampler.h"
26#include "AudioResamplerSinc.h"
27#include "AudioResamplerCubic.h"
28
29#ifdef __arm__
30#include <machine/cpu-features.h>
31#endif
32
33namespace android {
34
35#ifdef __ARM_HAVE_HALFWORD_MULTIPLY // optimized asm option
36    #define ASM_ARM_RESAMP1 // enable asm optimisation for ResamplerOrder1
37#endif // __ARM_HAVE_HALFWORD_MULTIPLY
38// ----------------------------------------------------------------------------
39
40class AudioResamplerOrder1 : public AudioResampler {
41public:
42    AudioResamplerOrder1(int bitDepth, int inChannelCount, int32_t sampleRate) :
43        AudioResampler(bitDepth, inChannelCount, sampleRate, LOW_QUALITY), mX0L(0), mX0R(0) {
44    }
45    virtual void resample(int32_t* out, size_t outFrameCount,
46            AudioBufferProvider* provider);
47private:
48    // number of bits used in interpolation multiply - 15 bits avoids overflow
49    static const int kNumInterpBits = 15;
50
51    // bits to shift the phase fraction down to avoid overflow
52    static const int kPreInterpShift = kNumPhaseBits - kNumInterpBits;
53
54    void init() {}
55    void resampleMono16(int32_t* out, size_t outFrameCount,
56            AudioBufferProvider* provider);
57    void resampleStereo16(int32_t* out, size_t outFrameCount,
58            AudioBufferProvider* provider);
59#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
60    void AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
61            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
62            uint32_t &phaseFraction, uint32_t phaseIncrement);
63    void AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
64            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
65            uint32_t &phaseFraction, uint32_t phaseIncrement);
66#endif  // ASM_ARM_RESAMP1
67
68    static inline int32_t Interp(int32_t x0, int32_t x1, uint32_t f) {
69        return x0 + (((x1 - x0) * (int32_t)(f >> kPreInterpShift)) >> kNumInterpBits);
70    }
71    static inline void Advance(size_t* index, uint32_t* frac, uint32_t inc) {
72        *frac += inc;
73        *index += (size_t)(*frac >> kNumPhaseBits);
74        *frac &= kPhaseMask;
75    }
76    int mX0L;
77    int mX0R;
78};
79
80bool AudioResampler::qualityIsSupported(src_quality quality)
81{
82    switch (quality) {
83    case DEFAULT_QUALITY:
84    case LOW_QUALITY:
85    case MED_QUALITY:
86    case HIGH_QUALITY:
87    case VERY_HIGH_QUALITY:
88        return true;
89    default:
90        return false;
91    }
92}
93
94// ----------------------------------------------------------------------------
95
96static pthread_once_t once_control = PTHREAD_ONCE_INIT;
97static AudioResampler::src_quality defaultQuality = AudioResampler::DEFAULT_QUALITY;
98
99void AudioResampler::init_routine()
100{
101    char value[PROPERTY_VALUE_MAX];
102    if (property_get("af.resampler.quality", value, NULL) > 0) {
103        char *endptr;
104        unsigned long l = strtoul(value, &endptr, 0);
105        if (*endptr == '\0') {
106            defaultQuality = (src_quality) l;
107            ALOGD("forcing AudioResampler quality to %d", defaultQuality);
108            if (defaultQuality < DEFAULT_QUALITY || defaultQuality > VERY_HIGH_QUALITY) {
109                defaultQuality = DEFAULT_QUALITY;
110            }
111        }
112    }
113}
114
115uint32_t AudioResampler::qualityMHz(src_quality quality)
116{
117    switch (quality) {
118    default:
119    case DEFAULT_QUALITY:
120    case LOW_QUALITY:
121        return 3;
122    case MED_QUALITY:
123        return 6;
124    case HIGH_QUALITY:
125        return 20;
126    case VERY_HIGH_QUALITY:
127        return 34;
128    }
129}
130
131static const uint32_t maxMHz = 130; // an arbitrary number that permits 3 VHQ, should be tunable
132static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
133static uint32_t currentMHz = 0;
134
135AudioResampler* AudioResampler::create(int bitDepth, int inChannelCount,
136        int32_t sampleRate, src_quality quality) {
137
138    bool atFinalQuality;
139    if (quality == DEFAULT_QUALITY) {
140        // read the resampler default quality property the first time it is needed
141        int ok = pthread_once(&once_control, init_routine);
142        if (ok != 0) {
143            ALOGE("%s pthread_once failed: %d", __func__, ok);
144        }
145        quality = defaultQuality;
146        atFinalQuality = false;
147    } else {
148        atFinalQuality = true;
149    }
150
151    // naive implementation of CPU load throttling doesn't account for whether resampler is active
152    pthread_mutex_lock(&mutex);
153    for (;;) {
154        uint32_t deltaMHz = qualityMHz(quality);
155        uint32_t newMHz = currentMHz + deltaMHz;
156        if ((qualityIsSupported(quality) && newMHz <= maxMHz) || atFinalQuality) {
157            ALOGV("resampler load %u -> %u MHz due to delta +%u MHz from quality %d",
158                    currentMHz, newMHz, deltaMHz, quality);
159            currentMHz = newMHz;
160            break;
161        }
162        // not enough CPU available for proposed quality level, so try next lowest level
163        switch (quality) {
164        default:
165        case DEFAULT_QUALITY:
166        case LOW_QUALITY:
167            atFinalQuality = true;
168            break;
169        case MED_QUALITY:
170            quality = LOW_QUALITY;
171            break;
172        case HIGH_QUALITY:
173            quality = MED_QUALITY;
174            break;
175        case VERY_HIGH_QUALITY:
176            quality = HIGH_QUALITY;
177            break;
178        }
179    }
180    pthread_mutex_unlock(&mutex);
181
182    AudioResampler* resampler;
183
184    switch (quality) {
185    default:
186    case DEFAULT_QUALITY:
187    case LOW_QUALITY:
188        ALOGV("Create linear Resampler");
189        resampler = new AudioResamplerOrder1(bitDepth, inChannelCount, sampleRate);
190        break;
191    case MED_QUALITY:
192        ALOGV("Create cubic Resampler");
193        resampler = new AudioResamplerCubic(bitDepth, inChannelCount, sampleRate);
194        break;
195    case HIGH_QUALITY:
196        ALOGV("Create HIGH_QUALITY sinc Resampler");
197        resampler = new AudioResamplerSinc(bitDepth, inChannelCount, sampleRate);
198        break;
199    case VERY_HIGH_QUALITY:
200        ALOGV("Create VERY_HIGH_QUALITY sinc Resampler = %d", quality);
201        resampler = new AudioResamplerSinc(bitDepth, inChannelCount, sampleRate, quality);
202        break;
203    }
204
205    // initialize resampler
206    resampler->init();
207    return resampler;
208}
209
210AudioResampler::AudioResampler(int bitDepth, int inChannelCount,
211        int32_t sampleRate, src_quality quality) :
212    mBitDepth(bitDepth), mChannelCount(inChannelCount),
213            mSampleRate(sampleRate), mInSampleRate(sampleRate), mInputIndex(0),
214            mPhaseFraction(0), mLocalTimeFreq(0),
215            mPTS(AudioBufferProvider::kInvalidPTS), mQuality(quality) {
216    // sanity check on format
217    if ((bitDepth != 16) ||(inChannelCount < 1) || (inChannelCount > 2)) {
218        ALOGE("Unsupported sample format, %d bits, %d channels", bitDepth,
219                inChannelCount);
220        // ALOG_ASSERT(0);
221    }
222    if (sampleRate <= 0) {
223        ALOGE("Unsupported sample rate %d Hz", sampleRate);
224    }
225
226    // initialize common members
227    mVolume[0] = mVolume[1] = 0;
228    mBuffer.frameCount = 0;
229
230}
231
232AudioResampler::~AudioResampler() {
233    pthread_mutex_lock(&mutex);
234    src_quality quality = getQuality();
235    uint32_t deltaMHz = qualityMHz(quality);
236    int32_t newMHz = currentMHz - deltaMHz;
237    ALOGV("resampler load %u -> %d MHz due to delta -%u MHz from quality %d",
238            currentMHz, newMHz, deltaMHz, quality);
239    LOG_ALWAYS_FATAL_IF(newMHz < 0, "negative resampler load %d MHz", newMHz);
240    currentMHz = newMHz;
241    pthread_mutex_unlock(&mutex);
242}
243
244void AudioResampler::setSampleRate(int32_t inSampleRate) {
245    mInSampleRate = inSampleRate;
246    mPhaseIncrement = (uint32_t)((kPhaseMultiplier * inSampleRate) / mSampleRate);
247}
248
249void AudioResampler::setVolume(int16_t left, int16_t right) {
250    // TODO: Implement anti-zipper filter
251    mVolume[0] = left;
252    mVolume[1] = right;
253}
254
255void AudioResampler::setLocalTimeFreq(uint64_t freq) {
256    mLocalTimeFreq = freq;
257}
258
259void AudioResampler::setPTS(int64_t pts) {
260    mPTS = pts;
261}
262
263int64_t AudioResampler::calculateOutputPTS(int outputFrameIndex) {
264
265    if (mPTS == AudioBufferProvider::kInvalidPTS) {
266        return AudioBufferProvider::kInvalidPTS;
267    } else {
268        return mPTS + ((outputFrameIndex * mLocalTimeFreq) / mSampleRate);
269    }
270}
271
272void AudioResampler::reset() {
273    mInputIndex = 0;
274    mPhaseFraction = 0;
275    mBuffer.frameCount = 0;
276}
277
278// ----------------------------------------------------------------------------
279
280void AudioResamplerOrder1::resample(int32_t* out, size_t outFrameCount,
281        AudioBufferProvider* provider) {
282
283    // should never happen, but we overflow if it does
284    // ALOG_ASSERT(outFrameCount < 32767);
285
286    // select the appropriate resampler
287    switch (mChannelCount) {
288    case 1:
289        resampleMono16(out, outFrameCount, provider);
290        break;
291    case 2:
292        resampleStereo16(out, outFrameCount, provider);
293        break;
294    }
295}
296
297void AudioResamplerOrder1::resampleStereo16(int32_t* out, size_t outFrameCount,
298        AudioBufferProvider* provider) {
299
300    int32_t vl = mVolume[0];
301    int32_t vr = mVolume[1];
302
303    size_t inputIndex = mInputIndex;
304    uint32_t phaseFraction = mPhaseFraction;
305    uint32_t phaseIncrement = mPhaseIncrement;
306    size_t outputIndex = 0;
307    size_t outputSampleCount = outFrameCount * 2;
308    size_t inFrameCount = (outFrameCount*mInSampleRate)/mSampleRate;
309
310    // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d",
311    //      outFrameCount, inputIndex, phaseFraction, phaseIncrement);
312
313    while (outputIndex < outputSampleCount) {
314
315        // buffer is empty, fetch a new one
316        while (mBuffer.frameCount == 0) {
317            mBuffer.frameCount = inFrameCount;
318            provider->getNextBuffer(&mBuffer,
319                                    calculateOutputPTS(outputIndex / 2));
320            if (mBuffer.raw == NULL) {
321                goto resampleStereo16_exit;
322            }
323
324            // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount);
325            if (mBuffer.frameCount > inputIndex) break;
326
327            inputIndex -= mBuffer.frameCount;
328            mX0L = mBuffer.i16[mBuffer.frameCount*2-2];
329            mX0R = mBuffer.i16[mBuffer.frameCount*2-1];
330            provider->releaseBuffer(&mBuffer);
331            // mBuffer.frameCount == 0 now so we reload a new buffer
332        }
333
334        int16_t *in = mBuffer.i16;
335
336        // handle boundary case
337        while (inputIndex == 0) {
338            // ALOGE("boundary case");
339            out[outputIndex++] += vl * Interp(mX0L, in[0], phaseFraction);
340            out[outputIndex++] += vr * Interp(mX0R, in[1], phaseFraction);
341            Advance(&inputIndex, &phaseFraction, phaseIncrement);
342            if (outputIndex == outputSampleCount)
343                break;
344        }
345
346        // process input samples
347        // ALOGE("general case");
348
349#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
350        if (inputIndex + 2 < mBuffer.frameCount) {
351            int32_t* maxOutPt;
352            int32_t maxInIdx;
353
354            maxOutPt = out + (outputSampleCount - 2);   // 2 because 2 frames per loop
355            maxInIdx = mBuffer.frameCount - 2;
356            AsmStereo16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr,
357                    phaseFraction, phaseIncrement);
358        }
359#endif  // ASM_ARM_RESAMP1
360
361        while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) {
362            out[outputIndex++] += vl * Interp(in[inputIndex*2-2],
363                    in[inputIndex*2], phaseFraction);
364            out[outputIndex++] += vr * Interp(in[inputIndex*2-1],
365                    in[inputIndex*2+1], phaseFraction);
366            Advance(&inputIndex, &phaseFraction, phaseIncrement);
367        }
368
369        // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
370
371        // if done with buffer, save samples
372        if (inputIndex >= mBuffer.frameCount) {
373            inputIndex -= mBuffer.frameCount;
374
375            // ALOGE("buffer done, new input index %d", inputIndex);
376
377            mX0L = mBuffer.i16[mBuffer.frameCount*2-2];
378            mX0R = mBuffer.i16[mBuffer.frameCount*2-1];
379            provider->releaseBuffer(&mBuffer);
380
381            // verify that the releaseBuffer resets the buffer frameCount
382            // ALOG_ASSERT(mBuffer.frameCount == 0);
383        }
384    }
385
386    // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
387
388resampleStereo16_exit:
389    // save state
390    mInputIndex = inputIndex;
391    mPhaseFraction = phaseFraction;
392}
393
394void AudioResamplerOrder1::resampleMono16(int32_t* out, size_t outFrameCount,
395        AudioBufferProvider* provider) {
396
397    int32_t vl = mVolume[0];
398    int32_t vr = mVolume[1];
399
400    size_t inputIndex = mInputIndex;
401    uint32_t phaseFraction = mPhaseFraction;
402    uint32_t phaseIncrement = mPhaseIncrement;
403    size_t outputIndex = 0;
404    size_t outputSampleCount = outFrameCount * 2;
405    size_t inFrameCount = (outFrameCount*mInSampleRate)/mSampleRate;
406
407    // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d",
408    //      outFrameCount, inputIndex, phaseFraction, phaseIncrement);
409    while (outputIndex < outputSampleCount) {
410        // buffer is empty, fetch a new one
411        while (mBuffer.frameCount == 0) {
412            mBuffer.frameCount = inFrameCount;
413            provider->getNextBuffer(&mBuffer,
414                                    calculateOutputPTS(outputIndex / 2));
415            if (mBuffer.raw == NULL) {
416                mInputIndex = inputIndex;
417                mPhaseFraction = phaseFraction;
418                goto resampleMono16_exit;
419            }
420            // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount);
421            if (mBuffer.frameCount >  inputIndex) break;
422
423            inputIndex -= mBuffer.frameCount;
424            mX0L = mBuffer.i16[mBuffer.frameCount-1];
425            provider->releaseBuffer(&mBuffer);
426            // mBuffer.frameCount == 0 now so we reload a new buffer
427        }
428        int16_t *in = mBuffer.i16;
429
430        // handle boundary case
431        while (inputIndex == 0) {
432            // ALOGE("boundary case");
433            int32_t sample = Interp(mX0L, in[0], phaseFraction);
434            out[outputIndex++] += vl * sample;
435            out[outputIndex++] += vr * sample;
436            Advance(&inputIndex, &phaseFraction, phaseIncrement);
437            if (outputIndex == outputSampleCount)
438                break;
439        }
440
441        // process input samples
442        // ALOGE("general case");
443
444#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
445        if (inputIndex + 2 < mBuffer.frameCount) {
446            int32_t* maxOutPt;
447            int32_t maxInIdx;
448
449            maxOutPt = out + (outputSampleCount - 2);
450            maxInIdx = (int32_t)mBuffer.frameCount - 2;
451                AsmMono16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr,
452                        phaseFraction, phaseIncrement);
453        }
454#endif  // ASM_ARM_RESAMP1
455
456        while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) {
457            int32_t sample = Interp(in[inputIndex-1], in[inputIndex],
458                    phaseFraction);
459            out[outputIndex++] += vl * sample;
460            out[outputIndex++] += vr * sample;
461            Advance(&inputIndex, &phaseFraction, phaseIncrement);
462        }
463
464
465        // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
466
467        // if done with buffer, save samples
468        if (inputIndex >= mBuffer.frameCount) {
469            inputIndex -= mBuffer.frameCount;
470
471            // ALOGE("buffer done, new input index %d", inputIndex);
472
473            mX0L = mBuffer.i16[mBuffer.frameCount-1];
474            provider->releaseBuffer(&mBuffer);
475
476            // verify that the releaseBuffer resets the buffer frameCount
477            // ALOG_ASSERT(mBuffer.frameCount == 0);
478        }
479    }
480
481    // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
482
483resampleMono16_exit:
484    // save state
485    mInputIndex = inputIndex;
486    mPhaseFraction = phaseFraction;
487}
488
489#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
490
491/*******************************************************************
492*
493*   AsmMono16Loop
494*   asm optimized monotonic loop version; one loop is 2 frames
495*   Input:
496*       in : pointer on input samples
497*       maxOutPt : pointer on first not filled
498*       maxInIdx : index on first not used
499*       outputIndex : pointer on current output index
500*       out : pointer on output buffer
501*       inputIndex : pointer on current input index
502*       vl, vr : left and right gain
503*       phaseFraction : pointer on current phase fraction
504*       phaseIncrement
505*   Ouput:
506*       outputIndex :
507*       out : updated buffer
508*       inputIndex : index of next to use
509*       phaseFraction : phase fraction for next interpolation
510*
511*******************************************************************/
512__attribute__((noinline))
513void AudioResamplerOrder1::AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
514            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
515            uint32_t &phaseFraction, uint32_t phaseIncrement)
516{
517#define MO_PARAM5   "36"        // offset of parameter 5 (outputIndex)
518
519    asm(
520        "stmfd  sp!, {r4, r5, r6, r7, r8, r9, r10, r11, lr}\n"
521        // get parameters
522        "   ldr r6, [sp, #" MO_PARAM5 " + 20]\n"    // &phaseFraction
523        "   ldr r6, [r6]\n"                         // phaseFraction
524        "   ldr r7, [sp, #" MO_PARAM5 " + 8]\n"     // &inputIndex
525        "   ldr r7, [r7]\n"                         // inputIndex
526        "   ldr r8, [sp, #" MO_PARAM5 " + 4]\n"     // out
527        "   ldr r0, [sp, #" MO_PARAM5 " + 0]\n"     // &outputIndex
528        "   ldr r0, [r0]\n"                         // outputIndex
529        "   add r8, r8, r0, asl #2\n"               // curOut
530        "   ldr r9, [sp, #" MO_PARAM5 " + 24]\n"    // phaseIncrement
531        "   ldr r10, [sp, #" MO_PARAM5 " + 12]\n"   // vl
532        "   ldr r11, [sp, #" MO_PARAM5 " + 16]\n"   // vr
533
534        // r0 pin, x0, Samp
535
536        // r1 in
537        // r2 maxOutPt
538        // r3 maxInIdx
539
540        // r4 x1, i1, i3, Out1
541        // r5 out0
542
543        // r6 frac
544        // r7 inputIndex
545        // r8 curOut
546
547        // r9 inc
548        // r10 vl
549        // r11 vr
550
551        // r12
552        // r13 sp
553        // r14
554
555        // the following loop works on 2 frames
556
557        "1:\n"
558        "   cmp r8, r2\n"                   // curOut - maxCurOut
559        "   bcs 2f\n"
560
561#define MO_ONE_FRAME \
562    "   add r0, r1, r7, asl #1\n"       /* in + inputIndex */\
563    "   ldrsh r4, [r0]\n"               /* in[inputIndex] */\
564    "   ldr r5, [r8]\n"                 /* out[outputIndex] */\
565    "   ldrsh r0, [r0, #-2]\n"          /* in[inputIndex-1] */\
566    "   bic r6, r6, #0xC0000000\n"      /* phaseFraction & ... */\
567    "   sub r4, r4, r0\n"               /* in[inputIndex] - in[inputIndex-1] */\
568    "   mov r4, r4, lsl #2\n"           /* <<2 */\
569    "   smulwt r4, r4, r6\n"            /* (x1-x0)*.. */\
570    "   add r6, r6, r9\n"               /* phaseFraction + phaseIncrement */\
571    "   add r0, r0, r4\n"               /* x0 - (..) */\
572    "   mla r5, r0, r10, r5\n"          /* vl*interp + out[] */\
573    "   ldr r4, [r8, #4]\n"             /* out[outputIndex+1] */\
574    "   str r5, [r8], #4\n"             /* out[outputIndex++] = ... */\
575    "   mla r4, r0, r11, r4\n"          /* vr*interp + out[] */\
576    "   add r7, r7, r6, lsr #30\n"      /* inputIndex + phaseFraction>>30 */\
577    "   str r4, [r8], #4\n"             /* out[outputIndex++] = ... */
578
579        MO_ONE_FRAME    // frame 1
580        MO_ONE_FRAME    // frame 2
581
582        "   cmp r7, r3\n"                   // inputIndex - maxInIdx
583        "   bcc 1b\n"
584        "2:\n"
585
586        "   bic r6, r6, #0xC0000000\n"             // phaseFraction & ...
587        // save modified values
588        "   ldr r0, [sp, #" MO_PARAM5 " + 20]\n"    // &phaseFraction
589        "   str r6, [r0]\n"                         // phaseFraction
590        "   ldr r0, [sp, #" MO_PARAM5 " + 8]\n"     // &inputIndex
591        "   str r7, [r0]\n"                         // inputIndex
592        "   ldr r0, [sp, #" MO_PARAM5 " + 4]\n"     // out
593        "   sub r8, r0\n"                           // curOut - out
594        "   asr r8, #2\n"                           // new outputIndex
595        "   ldr r0, [sp, #" MO_PARAM5 " + 0]\n"     // &outputIndex
596        "   str r8, [r0]\n"                         // save outputIndex
597
598        "   ldmfd   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}\n"
599    );
600}
601
602/*******************************************************************
603*
604*   AsmStereo16Loop
605*   asm optimized stereo loop version; one loop is 2 frames
606*   Input:
607*       in : pointer on input samples
608*       maxOutPt : pointer on first not filled
609*       maxInIdx : index on first not used
610*       outputIndex : pointer on current output index
611*       out : pointer on output buffer
612*       inputIndex : pointer on current input index
613*       vl, vr : left and right gain
614*       phaseFraction : pointer on current phase fraction
615*       phaseIncrement
616*   Ouput:
617*       outputIndex :
618*       out : updated buffer
619*       inputIndex : index of next to use
620*       phaseFraction : phase fraction for next interpolation
621*
622*******************************************************************/
623__attribute__((noinline))
624void AudioResamplerOrder1::AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
625            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
626            uint32_t &phaseFraction, uint32_t phaseIncrement)
627{
628#define ST_PARAM5    "40"     // offset of parameter 5 (outputIndex)
629    asm(
630        "stmfd  sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, lr}\n"
631        // get parameters
632        "   ldr r6, [sp, #" ST_PARAM5 " + 20]\n"    // &phaseFraction
633        "   ldr r6, [r6]\n"                         // phaseFraction
634        "   ldr r7, [sp, #" ST_PARAM5 " + 8]\n"     // &inputIndex
635        "   ldr r7, [r7]\n"                         // inputIndex
636        "   ldr r8, [sp, #" ST_PARAM5 " + 4]\n"     // out
637        "   ldr r0, [sp, #" ST_PARAM5 " + 0]\n"     // &outputIndex
638        "   ldr r0, [r0]\n"                         // outputIndex
639        "   add r8, r8, r0, asl #2\n"               // curOut
640        "   ldr r9, [sp, #" ST_PARAM5 " + 24]\n"    // phaseIncrement
641        "   ldr r10, [sp, #" ST_PARAM5 " + 12]\n"   // vl
642        "   ldr r11, [sp, #" ST_PARAM5 " + 16]\n"   // vr
643
644        // r0 pin, x0, Samp
645
646        // r1 in
647        // r2 maxOutPt
648        // r3 maxInIdx
649
650        // r4 x1, i1, i3, out1
651        // r5 out0
652
653        // r6 frac
654        // r7 inputIndex
655        // r8 curOut
656
657        // r9 inc
658        // r10 vl
659        // r11 vr
660
661        // r12 temporary
662        // r13 sp
663        // r14
664
665        "3:\n"
666        "   cmp r8, r2\n"                   // curOut - maxCurOut
667        "   bcs 4f\n"
668
669#define ST_ONE_FRAME \
670    "   bic r6, r6, #0xC0000000\n"      /* phaseFraction & ... */\
671\
672    "   add r0, r1, r7, asl #2\n"       /* in + 2*inputIndex */\
673\
674    "   ldrsh r4, [r0]\n"               /* in[2*inputIndex] */\
675    "   ldr r5, [r8]\n"                 /* out[outputIndex] */\
676    "   ldrsh r12, [r0, #-4]\n"         /* in[2*inputIndex-2] */\
677    "   sub r4, r4, r12\n"              /* in[2*InputIndex] - in[2*InputIndex-2] */\
678    "   mov r4, r4, lsl #2\n"           /* <<2 */\
679    "   smulwt r4, r4, r6\n"            /* (x1-x0)*.. */\
680    "   add r12, r12, r4\n"             /* x0 - (..) */\
681    "   mla r5, r12, r10, r5\n"         /* vl*interp + out[] */\
682    "   ldr r4, [r8, #4]\n"             /* out[outputIndex+1] */\
683    "   str r5, [r8], #4\n"             /* out[outputIndex++] = ... */\
684\
685    "   ldrsh r12, [r0, #+2]\n"         /* in[2*inputIndex+1] */\
686    "   ldrsh r0, [r0, #-2]\n"          /* in[2*inputIndex-1] */\
687    "   sub r12, r12, r0\n"             /* in[2*InputIndex] - in[2*InputIndex-2] */\
688    "   mov r12, r12, lsl #2\n"         /* <<2 */\
689    "   smulwt r12, r12, r6\n"          /* (x1-x0)*.. */\
690    "   add r12, r0, r12\n"             /* x0 - (..) */\
691    "   mla r4, r12, r11, r4\n"         /* vr*interp + out[] */\
692    "   str r4, [r8], #4\n"             /* out[outputIndex++] = ... */\
693\
694    "   add r6, r6, r9\n"               /* phaseFraction + phaseIncrement */\
695    "   add r7, r7, r6, lsr #30\n"      /* inputIndex + phaseFraction>>30 */
696
697    ST_ONE_FRAME    // frame 1
698    ST_ONE_FRAME    // frame 1
699
700        "   cmp r7, r3\n"                       // inputIndex - maxInIdx
701        "   bcc 3b\n"
702        "4:\n"
703
704        "   bic r6, r6, #0xC0000000\n"              // phaseFraction & ...
705        // save modified values
706        "   ldr r0, [sp, #" ST_PARAM5 " + 20]\n"    // &phaseFraction
707        "   str r6, [r0]\n"                         // phaseFraction
708        "   ldr r0, [sp, #" ST_PARAM5 " + 8]\n"     // &inputIndex
709        "   str r7, [r0]\n"                         // inputIndex
710        "   ldr r0, [sp, #" ST_PARAM5 " + 4]\n"     // out
711        "   sub r8, r0\n"                           // curOut - out
712        "   asr r8, #2\n"                           // new outputIndex
713        "   ldr r0, [sp, #" ST_PARAM5 " + 0]\n"     // &outputIndex
714        "   str r8, [r0]\n"                         // save outputIndex
715
716        "   ldmfd   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, pc}\n"
717    );
718}
719
720#endif  // ASM_ARM_RESAMP1
721
722
723// ----------------------------------------------------------------------------
724
725} // namespace android
726