AudioResampler.cpp revision cdf2158f3b9498d6cd0eb228d8bee16e32399e16
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "AudioResampler"
18//#define LOG_NDEBUG 0
19
20#include <stdint.h>
21#include <stdlib.h>
22#include <sys/types.h>
23#include <cutils/log.h>
24#include <cutils/properties.h>
25#include "AudioResampler.h"
26#if 0
27#include "AudioResamplerSinc.h"
28#include "AudioResamplerCubic.h"
29#endif
30
31#ifdef __arm__
32#include <machine/cpu-features.h>
33#endif
34
35namespace android {
36
37#ifdef __ARM_HAVE_HALFWORD_MULTIPLY // optimized asm option
38    #define ASM_ARM_RESAMP1 // enable asm optimisation for ResamplerOrder1
39#endif // __ARM_HAVE_HALFWORD_MULTIPLY
40// ----------------------------------------------------------------------------
41
42class AudioResamplerOrder1 : public AudioResampler {
43public:
44    AudioResamplerOrder1(int bitDepth, int inChannelCount, int32_t sampleRate) :
45        AudioResampler(bitDepth, inChannelCount, sampleRate), mX0L(0), mX0R(0) {
46    }
47    virtual void resample(int32_t* out, size_t outFrameCount,
48            AudioBufferProvider* provider);
49private:
50    // number of bits used in interpolation multiply - 15 bits avoids overflow
51    static const int kNumInterpBits = 15;
52
53    // bits to shift the phase fraction down to avoid overflow
54    static const int kPreInterpShift = kNumPhaseBits - kNumInterpBits;
55
56    void init() {}
57    void resampleMono16(int32_t* out, size_t outFrameCount,
58            AudioBufferProvider* provider);
59    void resampleStereo16(int32_t* out, size_t outFrameCount,
60            AudioBufferProvider* provider);
61#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
62    void AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
63            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
64            uint32_t &phaseFraction, uint32_t phaseIncrement);
65    void AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
66            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
67            uint32_t &phaseFraction, uint32_t phaseIncrement);
68#endif  // ASM_ARM_RESAMP1
69
70    static inline int32_t Interp(int32_t x0, int32_t x1, uint32_t f) {
71        return x0 + (((x1 - x0) * (int32_t)(f >> kPreInterpShift)) >> kNumInterpBits);
72    }
73    static inline void Advance(size_t* index, uint32_t* frac, uint32_t inc) {
74        *frac += inc;
75        *index += (size_t)(*frac >> kNumPhaseBits);
76        *frac &= kPhaseMask;
77    }
78    int mX0L;
79    int mX0R;
80};
81
82// ----------------------------------------------------------------------------
83AudioResampler* AudioResampler::create(int bitDepth, int inChannelCount,
84        int32_t sampleRate, int quality) {
85
86    // can only create low quality resample now
87    AudioResampler* resampler;
88
89    char value[PROPERTY_VALUE_MAX];
90    if (property_get("af.resampler.quality", value, 0)) {
91        quality = atoi(value);
92        ALOGD("forcing AudioResampler quality to %d", quality);
93    }
94
95    if (quality == DEFAULT)
96        quality = LOW_QUALITY;
97
98    switch (quality) {
99    default:
100    case LOW_QUALITY:
101        ALOGV("Create linear Resampler");
102        resampler = new AudioResamplerOrder1(bitDepth, inChannelCount, sampleRate);
103        break;
104#if 0
105    case MED_QUALITY:
106        ALOGV("Create cubic Resampler");
107        resampler = new AudioResamplerCubic(bitDepth, inChannelCount, sampleRate);
108        break;
109    case HIGH_QUALITY:
110        ALOGV("Create sinc Resampler");
111        resampler = new AudioResamplerSinc(bitDepth, inChannelCount, sampleRate);
112        break;
113#endif
114    }
115
116    // initialize resampler
117    resampler->init();
118    return resampler;
119}
120
121AudioResampler::AudioResampler(int bitDepth, int inChannelCount,
122        int32_t sampleRate) :
123    mBitDepth(bitDepth), mChannelCount(inChannelCount),
124            mSampleRate(sampleRate), mInSampleRate(sampleRate), mInputIndex(0),
125            mPhaseFraction(0) {
126    // sanity check on format
127    if ((bitDepth != 16) ||(inChannelCount < 1) || (inChannelCount > 2)) {
128        ALOGE("Unsupported sample format, %d bits, %d channels", bitDepth,
129                inChannelCount);
130        // ALOG_ASSERT(0);
131    }
132
133    // initialize common members
134    mVolume[0] = mVolume[1] = 0;
135    mBuffer.frameCount = 0;
136
137}
138
139AudioResampler::~AudioResampler() {
140}
141
142void AudioResampler::setSampleRate(int32_t inSampleRate) {
143    mInSampleRate = inSampleRate;
144    mPhaseIncrement = (uint32_t)((kPhaseMultiplier * inSampleRate) / mSampleRate);
145}
146
147void AudioResampler::setVolume(int16_t left, int16_t right) {
148    // TODO: Implement anti-zipper filter
149    mVolume[0] = left;
150    mVolume[1] = right;
151}
152
153void AudioResampler::reset() {
154    mInputIndex = 0;
155    mPhaseFraction = 0;
156    mBuffer.frameCount = 0;
157}
158
159// ----------------------------------------------------------------------------
160
161void AudioResamplerOrder1::resample(int32_t* out, size_t outFrameCount,
162        AudioBufferProvider* provider) {
163
164    // should never happen, but we overflow if it does
165    // ALOG_ASSERT(outFrameCount < 32767);
166
167    // select the appropriate resampler
168    switch (mChannelCount) {
169    case 1:
170        resampleMono16(out, outFrameCount, provider);
171        break;
172    case 2:
173        resampleStereo16(out, outFrameCount, provider);
174        break;
175    }
176}
177
178void AudioResamplerOrder1::resampleStereo16(int32_t* out, size_t outFrameCount,
179        AudioBufferProvider* provider) {
180
181    int32_t vl = mVolume[0];
182    int32_t vr = mVolume[1];
183
184    size_t inputIndex = mInputIndex;
185    uint32_t phaseFraction = mPhaseFraction;
186    uint32_t phaseIncrement = mPhaseIncrement;
187    size_t outputIndex = 0;
188    size_t outputSampleCount = outFrameCount * 2;
189    size_t inFrameCount = (outFrameCount*mInSampleRate)/mSampleRate;
190
191    // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d\n",
192    //      outFrameCount, inputIndex, phaseFraction, phaseIncrement);
193
194    while (outputIndex < outputSampleCount) {
195
196        // buffer is empty, fetch a new one
197        while (mBuffer.frameCount == 0) {
198            mBuffer.frameCount = inFrameCount;
199            provider->getNextBuffer(&mBuffer);
200            if (mBuffer.raw == NULL) {
201                goto resampleStereo16_exit;
202            }
203
204            // ALOGE("New buffer fetched: %d frames\n", mBuffer.frameCount);
205            if (mBuffer.frameCount > inputIndex) break;
206
207            inputIndex -= mBuffer.frameCount;
208            mX0L = mBuffer.i16[mBuffer.frameCount*2-2];
209            mX0R = mBuffer.i16[mBuffer.frameCount*2-1];
210            provider->releaseBuffer(&mBuffer);
211             // mBuffer.frameCount == 0 now so we reload a new buffer
212        }
213
214        int16_t *in = mBuffer.i16;
215
216        // handle boundary case
217        while (inputIndex == 0) {
218            // ALOGE("boundary case\n");
219            out[outputIndex++] += vl * Interp(mX0L, in[0], phaseFraction);
220            out[outputIndex++] += vr * Interp(mX0R, in[1], phaseFraction);
221            Advance(&inputIndex, &phaseFraction, phaseIncrement);
222            if (outputIndex == outputSampleCount)
223                break;
224        }
225
226        // process input samples
227        // ALOGE("general case\n");
228
229#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
230        if (inputIndex + 2 < mBuffer.frameCount) {
231            int32_t* maxOutPt;
232            int32_t maxInIdx;
233
234            maxOutPt = out + (outputSampleCount - 2);   // 2 because 2 frames per loop
235            maxInIdx = mBuffer.frameCount - 2;
236            AsmStereo16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr,
237                    phaseFraction, phaseIncrement);
238        }
239#endif  // ASM_ARM_RESAMP1
240
241        while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) {
242            out[outputIndex++] += vl * Interp(in[inputIndex*2-2],
243                    in[inputIndex*2], phaseFraction);
244            out[outputIndex++] += vr * Interp(in[inputIndex*2-1],
245                    in[inputIndex*2+1], phaseFraction);
246            Advance(&inputIndex, &phaseFraction, phaseIncrement);
247        }
248
249        // ALOGE("loop done - outputIndex=%d, inputIndex=%d\n", outputIndex, inputIndex);
250
251        // if done with buffer, save samples
252        if (inputIndex >= mBuffer.frameCount) {
253            inputIndex -= mBuffer.frameCount;
254
255            // ALOGE("buffer done, new input index %d", inputIndex);
256
257            mX0L = mBuffer.i16[mBuffer.frameCount*2-2];
258            mX0R = mBuffer.i16[mBuffer.frameCount*2-1];
259            provider->releaseBuffer(&mBuffer);
260
261            // verify that the releaseBuffer resets the buffer frameCount
262            // ALOG_ASSERT(mBuffer.frameCount == 0);
263        }
264    }
265
266    // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d\n", outputIndex, inputIndex);
267
268resampleStereo16_exit:
269    // save state
270    mInputIndex = inputIndex;
271    mPhaseFraction = phaseFraction;
272}
273
274void AudioResamplerOrder1::resampleMono16(int32_t* out, size_t outFrameCount,
275        AudioBufferProvider* provider) {
276
277    int32_t vl = mVolume[0];
278    int32_t vr = mVolume[1];
279
280    size_t inputIndex = mInputIndex;
281    uint32_t phaseFraction = mPhaseFraction;
282    uint32_t phaseIncrement = mPhaseIncrement;
283    size_t outputIndex = 0;
284    size_t outputSampleCount = outFrameCount * 2;
285    size_t inFrameCount = (outFrameCount*mInSampleRate)/mSampleRate;
286
287    // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d\n",
288    //      outFrameCount, inputIndex, phaseFraction, phaseIncrement);
289    while (outputIndex < outputSampleCount) {
290        // buffer is empty, fetch a new one
291        while (mBuffer.frameCount == 0) {
292            mBuffer.frameCount = inFrameCount;
293            provider->getNextBuffer(&mBuffer);
294            if (mBuffer.raw == NULL) {
295                mInputIndex = inputIndex;
296                mPhaseFraction = phaseFraction;
297                goto resampleMono16_exit;
298            }
299            // ALOGE("New buffer fetched: %d frames\n", mBuffer.frameCount);
300            if (mBuffer.frameCount >  inputIndex) break;
301
302            inputIndex -= mBuffer.frameCount;
303            mX0L = mBuffer.i16[mBuffer.frameCount-1];
304            provider->releaseBuffer(&mBuffer);
305            // mBuffer.frameCount == 0 now so we reload a new buffer
306        }
307        int16_t *in = mBuffer.i16;
308
309        // handle boundary case
310        while (inputIndex == 0) {
311            // ALOGE("boundary case\n");
312            int32_t sample = Interp(mX0L, in[0], phaseFraction);
313            out[outputIndex++] += vl * sample;
314            out[outputIndex++] += vr * sample;
315            Advance(&inputIndex, &phaseFraction, phaseIncrement);
316            if (outputIndex == outputSampleCount)
317                break;
318        }
319
320        // process input samples
321        // ALOGE("general case\n");
322
323#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
324        if (inputIndex + 2 < mBuffer.frameCount) {
325            int32_t* maxOutPt;
326            int32_t maxInIdx;
327
328            maxOutPt = out + (outputSampleCount - 2);
329            maxInIdx = (int32_t)mBuffer.frameCount - 2;
330                AsmMono16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr,
331                        phaseFraction, phaseIncrement);
332        }
333#endif  // ASM_ARM_RESAMP1
334
335        while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) {
336            int32_t sample = Interp(in[inputIndex-1], in[inputIndex],
337                    phaseFraction);
338            out[outputIndex++] += vl * sample;
339            out[outputIndex++] += vr * sample;
340            Advance(&inputIndex, &phaseFraction, phaseIncrement);
341        }
342
343
344        // ALOGE("loop done - outputIndex=%d, inputIndex=%d\n", outputIndex, inputIndex);
345
346        // if done with buffer, save samples
347        if (inputIndex >= mBuffer.frameCount) {
348            inputIndex -= mBuffer.frameCount;
349
350            // ALOGE("buffer done, new input index %d", inputIndex);
351
352            mX0L = mBuffer.i16[mBuffer.frameCount-1];
353            provider->releaseBuffer(&mBuffer);
354
355            // verify that the releaseBuffer resets the buffer frameCount
356            // ALOG_ASSERT(mBuffer.frameCount == 0);
357        }
358    }
359
360    // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d\n", outputIndex, inputIndex);
361
362resampleMono16_exit:
363    // save state
364    mInputIndex = inputIndex;
365    mPhaseFraction = phaseFraction;
366}
367
368#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
369
370/*******************************************************************
371*
372*   AsmMono16Loop
373*   asm optimized monotonic loop version; one loop is 2 frames
374*   Input:
375*       in : pointer on input samples
376*       maxOutPt : pointer on first not filled
377*       maxInIdx : index on first not used
378*       outputIndex : pointer on current output index
379*       out : pointer on output buffer
380*       inputIndex : pointer on current input index
381*       vl, vr : left and right gain
382*       phaseFraction : pointer on current phase fraction
383*       phaseIncrement
384*   Ouput:
385*       outputIndex :
386*       out : updated buffer
387*       inputIndex : index of next to use
388*       phaseFraction : phase fraction for next interpolation
389*
390*******************************************************************/
391__attribute__((noinline))
392void AudioResamplerOrder1::AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
393            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
394            uint32_t &phaseFraction, uint32_t phaseIncrement)
395{
396#define MO_PARAM5   "36"        // offset of parameter 5 (outputIndex)
397
398    asm(
399        "stmfd  sp!, {r4, r5, r6, r7, r8, r9, r10, r11, lr}\n"
400        // get parameters
401        "   ldr r6, [sp, #" MO_PARAM5 " + 20]\n"    // &phaseFraction
402        "   ldr r6, [r6]\n"                         // phaseFraction
403        "   ldr r7, [sp, #" MO_PARAM5 " + 8]\n"     // &inputIndex
404        "   ldr r7, [r7]\n"                         // inputIndex
405        "   ldr r8, [sp, #" MO_PARAM5 " + 4]\n"     // out
406        "   ldr r0, [sp, #" MO_PARAM5 " + 0]\n"     // &outputIndex
407        "   ldr r0, [r0]\n"                         // outputIndex
408        "   add r8, r0, asl #2\n"                   // curOut
409        "   ldr r9, [sp, #" MO_PARAM5 " + 24]\n"    // phaseIncrement
410        "   ldr r10, [sp, #" MO_PARAM5 " + 12]\n"   // vl
411        "   ldr r11, [sp, #" MO_PARAM5 " + 16]\n"   // vr
412
413        // r0 pin, x0, Samp
414
415        // r1 in
416        // r2 maxOutPt
417        // r3 maxInIdx
418
419        // r4 x1, i1, i3, Out1
420        // r5 out0
421
422        // r6 frac
423        // r7 inputIndex
424        // r8 curOut
425
426        // r9 inc
427        // r10 vl
428        // r11 vr
429
430        // r12
431        // r13 sp
432        // r14
433
434        // the following loop works on 2 frames
435
436        "1:\n"
437        "   cmp r8, r2\n"                   // curOut - maxCurOut
438        "   bcs 2f\n"
439
440#define MO_ONE_FRAME \
441    "   add r0, r1, r7, asl #1\n"       /* in + inputIndex */\
442    "   ldrsh r4, [r0]\n"               /* in[inputIndex] */\
443    "   ldr r5, [r8]\n"                 /* out[outputIndex] */\
444    "   ldrsh r0, [r0, #-2]\n"          /* in[inputIndex-1] */\
445    "   bic r6, r6, #0xC0000000\n"      /* phaseFraction & ... */\
446    "   sub r4, r4, r0\n"               /* in[inputIndex] - in[inputIndex-1] */\
447    "   mov r4, r4, lsl #2\n"           /* <<2 */\
448    "   smulwt r4, r4, r6\n"            /* (x1-x0)*.. */\
449    "   add r6, r6, r9\n"               /* phaseFraction + phaseIncrement */\
450    "   add r0, r0, r4\n"               /* x0 - (..) */\
451    "   mla r5, r0, r10, r5\n"          /* vl*interp + out[] */\
452    "   ldr r4, [r8, #4]\n"             /* out[outputIndex+1] */\
453    "   str r5, [r8], #4\n"             /* out[outputIndex++] = ... */\
454    "   mla r4, r0, r11, r4\n"          /* vr*interp + out[] */\
455    "   add r7, r7, r6, lsr #30\n"      /* inputIndex + phaseFraction>>30 */\
456    "   str r4, [r8], #4\n"             /* out[outputIndex++] = ... */
457
458        MO_ONE_FRAME    // frame 1
459        MO_ONE_FRAME    // frame 2
460
461        "   cmp r7, r3\n"                   // inputIndex - maxInIdx
462        "   bcc 1b\n"
463        "2:\n"
464
465        "   bic r6, r6, #0xC0000000\n"             // phaseFraction & ...
466        // save modified values
467        "   ldr r0, [sp, #" MO_PARAM5 " + 20]\n"    // &phaseFraction
468        "   str r6, [r0]\n"                         // phaseFraction
469        "   ldr r0, [sp, #" MO_PARAM5 " + 8]\n"     // &inputIndex
470        "   str r7, [r0]\n"                         // inputIndex
471        "   ldr r0, [sp, #" MO_PARAM5 " + 4]\n"     // out
472        "   sub r8, r0\n"                           // curOut - out
473        "   asr r8, #2\n"                           // new outputIndex
474        "   ldr r0, [sp, #" MO_PARAM5 " + 0]\n"     // &outputIndex
475        "   str r8, [r0]\n"                         // save outputIndex
476
477        "   ldmfd   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}\n"
478    );
479}
480
481/*******************************************************************
482*
483*   AsmStereo16Loop
484*   asm optimized stereo loop version; one loop is 2 frames
485*   Input:
486*       in : pointer on input samples
487*       maxOutPt : pointer on first not filled
488*       maxInIdx : index on first not used
489*       outputIndex : pointer on current output index
490*       out : pointer on output buffer
491*       inputIndex : pointer on current input index
492*       vl, vr : left and right gain
493*       phaseFraction : pointer on current phase fraction
494*       phaseIncrement
495*   Ouput:
496*       outputIndex :
497*       out : updated buffer
498*       inputIndex : index of next to use
499*       phaseFraction : phase fraction for next interpolation
500*
501*******************************************************************/
502__attribute__((noinline))
503void AudioResamplerOrder1::AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
504            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
505            uint32_t &phaseFraction, uint32_t phaseIncrement)
506{
507#define ST_PARAM5    "40"     // offset of parameter 5 (outputIndex)
508    asm(
509        "stmfd  sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, lr}\n"
510        // get parameters
511        "   ldr r6, [sp, #" ST_PARAM5 " + 20]\n"    // &phaseFraction
512        "   ldr r6, [r6]\n"                         // phaseFraction
513        "   ldr r7, [sp, #" ST_PARAM5 " + 8]\n"     // &inputIndex
514        "   ldr r7, [r7]\n"                         // inputIndex
515        "   ldr r8, [sp, #" ST_PARAM5 " + 4]\n"     // out
516        "   ldr r0, [sp, #" ST_PARAM5 " + 0]\n"     // &outputIndex
517        "   ldr r0, [r0]\n"                         // outputIndex
518        "   add r8, r0, asl #2\n"                   // curOut
519        "   ldr r9, [sp, #" ST_PARAM5 " + 24]\n"    // phaseIncrement
520        "   ldr r10, [sp, #" ST_PARAM5 " + 12]\n"   // vl
521        "   ldr r11, [sp, #" ST_PARAM5 " + 16]\n"   // vr
522
523        // r0 pin, x0, Samp
524
525        // r1 in
526        // r2 maxOutPt
527        // r3 maxInIdx
528
529        // r4 x1, i1, i3, out1
530        // r5 out0
531
532        // r6 frac
533        // r7 inputIndex
534        // r8 curOut
535
536        // r9 inc
537        // r10 vl
538        // r11 vr
539
540        // r12 temporary
541        // r13 sp
542        // r14
543
544        "3:\n"
545        "   cmp r8, r2\n"                   // curOut - maxCurOut
546        "   bcs 4f\n"
547
548#define ST_ONE_FRAME \
549    "   bic r6, r6, #0xC0000000\n"      /* phaseFraction & ... */\
550\
551    "   add r0, r1, r7, asl #2\n"       /* in + 2*inputIndex */\
552\
553    "   ldrsh r4, [r0]\n"               /* in[2*inputIndex] */\
554    "   ldr r5, [r8]\n"                 /* out[outputIndex] */\
555    "   ldrsh r12, [r0, #-4]\n"         /* in[2*inputIndex-2] */\
556    "   sub r4, r4, r12\n"              /* in[2*InputIndex] - in[2*InputIndex-2] */\
557    "   mov r4, r4, lsl #2\n"           /* <<2 */\
558    "   smulwt r4, r4, r6\n"            /* (x1-x0)*.. */\
559    "   add r12, r12, r4\n"             /* x0 - (..) */\
560    "   mla r5, r12, r10, r5\n"         /* vl*interp + out[] */\
561    "   ldr r4, [r8, #4]\n"             /* out[outputIndex+1] */\
562    "   str r5, [r8], #4\n"             /* out[outputIndex++] = ... */\
563\
564    "   ldrsh r12, [r0, #+2]\n"         /* in[2*inputIndex+1] */\
565    "   ldrsh r0, [r0, #-2]\n"          /* in[2*inputIndex-1] */\
566    "   sub r12, r12, r0\n"             /* in[2*InputIndex] - in[2*InputIndex-2] */\
567    "   mov r12, r12, lsl #2\n"         /* <<2 */\
568    "   smulwt r12, r12, r6\n"          /* (x1-x0)*.. */\
569    "   add r12, r0, r12\n"             /* x0 - (..) */\
570    "   mla r4, r12, r11, r4\n"         /* vr*interp + out[] */\
571    "   str r4, [r8], #4\n"             /* out[outputIndex++] = ... */\
572\
573    "   add r6, r6, r9\n"               /* phaseFraction + phaseIncrement */\
574    "   add r7, r7, r6, lsr #30\n"      /* inputIndex + phaseFraction>>30 */
575
576    ST_ONE_FRAME    // frame 1
577    ST_ONE_FRAME    // frame 1
578
579        "   cmp r7, r3\n"                       // inputIndex - maxInIdx
580        "   bcc 3b\n"
581        "4:\n"
582
583        "   bic r6, r6, #0xC0000000\n"              // phaseFraction & ...
584        // save modified values
585        "   ldr r0, [sp, #" ST_PARAM5 " + 20]\n"    // &phaseFraction
586        "   str r6, [r0]\n"                         // phaseFraction
587        "   ldr r0, [sp, #" ST_PARAM5 " + 8]\n"     // &inputIndex
588        "   str r7, [r0]\n"                         // inputIndex
589        "   ldr r0, [sp, #" ST_PARAM5 " + 4]\n"     // out
590        "   sub r8, r0\n"                           // curOut - out
591        "   asr r8, #2\n"                           // new outputIndex
592        "   ldr r0, [sp, #" ST_PARAM5 " + 0]\n"     // &outputIndex
593        "   str r8, [r0]\n"                         // save outputIndex
594
595        "   ldmfd   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, pc}\n"
596    );
597}
598
599#endif  // ASM_ARM_RESAMP1
600
601
602// ----------------------------------------------------------------------------
603
604} // namespace android
605