AudioResamplerDyn.cpp revision 075abae2a954bf3edf18ad1705c2c0f188454ae0
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "AudioResamplerDyn"
18//#define LOG_NDEBUG 0
19
20#include <malloc.h>
21#include <string.h>
22#include <stdlib.h>
23#include <dlfcn.h>
24#include <math.h>
25
26#include <cutils/compiler.h>
27#include <cutils/properties.h>
28#include <utils/Debug.h>
29#include <utils/Log.h>
30
31#include "AudioResamplerFirOps.h" // USE_NEON and USE_INLINE_ASSEMBLY defined here
32#include "AudioResamplerFirProcess.h"
33#include "AudioResamplerFirProcessNeon.h"
34#include "AudioResamplerFirGen.h" // requires math.h
35#include "AudioResamplerDyn.h"
36
37//#define DEBUG_RESAMPLER
38
39namespace android {
40
41/*
42 * InBuffer is a type agnostic input buffer.
43 *
44 * Layout of the state buffer for halfNumCoefs=8.
45 *
46 * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr]
47 *  S            I                                R
48 *
49 * S = mState
50 * I = mImpulse
51 * R = mRingFull
52 * p = past samples, convoluted with the (p)ositive side of sinc()
53 * n = future samples, convoluted with the (n)egative side of sinc()
54 * r = extra space for implementing the ring buffer
55 */
56
57template<typename TC, typename TI, typename TO>
58AudioResamplerDyn<TC, TI, TO>::InBuffer::InBuffer()
59    : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateCount(0)
60{
61}
62
63template<typename TC, typename TI, typename TO>
64AudioResamplerDyn<TC, TI, TO>::InBuffer::~InBuffer()
65{
66    init();
67}
68
69template<typename TC, typename TI, typename TO>
70void AudioResamplerDyn<TC, TI, TO>::InBuffer::init()
71{
72    free(mState);
73    mState = NULL;
74    mImpulse = NULL;
75    mRingFull = NULL;
76    mStateCount = 0;
77}
78
79// resizes the state buffer to accommodate the appropriate filter length
80template<typename TC, typename TI, typename TO>
81void AudioResamplerDyn<TC, TI, TO>::InBuffer::resize(int CHANNELS, int halfNumCoefs)
82{
83    // calculate desired state size
84    int stateCount = halfNumCoefs * CHANNELS * 2 * kStateSizeMultipleOfFilterLength;
85
86    // check if buffer needs resizing
87    if (mState
88            && stateCount == mStateCount
89            && mRingFull-mState == mStateCount-halfNumCoefs*CHANNELS) {
90        return;
91    }
92
93    // create new buffer
94    TI* state;
95    (void)posix_memalign(reinterpret_cast<void**>(&state), 32, stateCount*sizeof(*state));
96    memset(state, 0, stateCount*sizeof(*state));
97
98    // attempt to preserve state
99    if (mState) {
100        TI* srcLo = mImpulse - halfNumCoefs*CHANNELS;
101        TI* srcHi = mImpulse + halfNumCoefs*CHANNELS;
102        TI* dst = state;
103
104        if (srcLo < mState) {
105            dst += mState-srcLo;
106            srcLo = mState;
107        }
108        if (srcHi > mState + mStateCount) {
109            srcHi = mState + mStateCount;
110        }
111        memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo));
112        free(mState);
113    }
114
115    // set class member vars
116    mState = state;
117    mStateCount = stateCount;
118    mImpulse = state + halfNumCoefs*CHANNELS; // actually one sample greater than needed
119    mRingFull = state + mStateCount - halfNumCoefs*CHANNELS;
120}
121
122// copy in the input data into the head (impulse+halfNumCoefs) of the buffer.
123template<typename TC, typename TI, typename TO>
124template<int CHANNELS>
125void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAgain(TI*& impulse, const int halfNumCoefs,
126        const TI* const in, const size_t inputIndex)
127{
128    TI* head = impulse + halfNumCoefs*CHANNELS;
129    for (size_t i=0 ; i<CHANNELS ; i++) {
130        head[i] = in[inputIndex*CHANNELS + i];
131    }
132}
133
134// advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs)
135template<typename TC, typename TI, typename TO>
136template<int CHANNELS>
137void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAdvance(TI*& impulse, const int halfNumCoefs,
138        const TI* const in, const size_t inputIndex)
139{
140    impulse += CHANNELS;
141
142    if (CC_UNLIKELY(impulse >= mRingFull)) {
143        const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS;
144        memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI));
145        impulse -= shiftDown;
146    }
147    readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
148}
149
150template<typename TC, typename TI, typename TO>
151void AudioResamplerDyn<TC, TI, TO>::Constants::set(
152        int L, int halfNumCoefs, int inSampleRate, int outSampleRate)
153{
154    int bits = 0;
155    int lscale = inSampleRate/outSampleRate < 2 ? L - 1 :
156            static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate);
157    for (int i=lscale; i; ++bits, i>>=1)
158        ;
159    mL = L;
160    mShift = kNumPhaseBits - bits;
161    mHalfNumCoefs = halfNumCoefs;
162}
163
164template<typename TC, typename TI, typename TO>
165AudioResamplerDyn<TC, TI, TO>::AudioResamplerDyn(int bitDepth,
166        int inChannelCount, int32_t sampleRate, src_quality quality)
167    : AudioResampler(bitDepth, inChannelCount, sampleRate, quality),
168      mResampleFunc(0), mFilterSampleRate(0), mFilterQuality(DEFAULT_QUALITY),
169    mCoefBuffer(NULL)
170{
171    mVolumeSimd[0] = mVolumeSimd[1] = 0;
172    // The AudioResampler base class assumes we are always ready for 1:1 resampling.
173    // We reset mInSampleRate to 0, so setSampleRate() will calculate filters for
174    // setSampleRate() for 1:1. (May be removed if precalculated filters are used.)
175    mInSampleRate = 0;
176    mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better
177}
178
179template<typename TC, typename TI, typename TO>
180AudioResamplerDyn<TC, TI, TO>::~AudioResamplerDyn()
181{
182    free(mCoefBuffer);
183}
184
185template<typename TC, typename TI, typename TO>
186void AudioResamplerDyn<TC, TI, TO>::init()
187{
188    mFilterSampleRate = 0; // always trigger new filter generation
189    mInBuffer.init();
190}
191
192template<typename TC, typename TI, typename TO>
193void AudioResamplerDyn<TC, TI, TO>::setVolume(int16_t left, int16_t right)
194{
195    AudioResampler::setVolume(left, right);
196    // volume is applied on the output type.
197    if (is_same<TO, float>::value || is_same<TO, double>::value) {
198        const TO scale = 1. / (1UL << 12);
199        mVolumeSimd[0] = static_cast<TO>(left) * scale;
200        mVolumeSimd[1] = static_cast<TO>(right) * scale;
201    } else {
202        mVolumeSimd[0] = static_cast<int32_t>(left) << 16;
203        mVolumeSimd[1] = static_cast<int32_t>(right) << 16;
204    }
205}
206
207template<typename T> T max(T a, T b) {return a > b ? a : b;}
208
209template<typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;}
210
211template<typename TC, typename TI, typename TO>
212void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
213        double stopBandAtten, int inSampleRate, int outSampleRate, double tbwCheat)
214{
215    TC* buf;
216    static const double atten = 0.9998;   // to avoid ripple overflow
217    double fcr;
218    double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
219
220    (void)posix_memalign(reinterpret_cast<void**>(&buf), 32, (c.mL+1)*c.mHalfNumCoefs*sizeof(TC));
221    if (inSampleRate < outSampleRate) { // upsample
222        fcr = max(0.5*tbwCheat - tbw/2, tbw/2);
223    } else { // downsample
224        fcr = max(0.5*tbwCheat*outSampleRate/inSampleRate - tbw/2, tbw/2);
225    }
226    // create and set filter
227    firKaiserGen(buf, c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten);
228    c.mFirCoefs = buf;
229    if (mCoefBuffer) {
230        free(mCoefBuffer);
231    }
232    mCoefBuffer = buf;
233#ifdef DEBUG_RESAMPLER
234    // print basic filter stats
235    printf("L:%d  hnc:%d  stopBandAtten:%lf  fcr:%lf  atten:%lf  tbw:%lf\n",
236            c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten, tbw);
237    // test the filter and report results
238    double fp = (fcr - tbw/2)/c.mL;
239    double fs = (fcr + tbw/2)/c.mL;
240    double passMin, passMax, passRipple;
241    double stopMax, stopRipple;
242    testFir(buf, c.mL, c.mHalfNumCoefs, fp, fs, /*passSteps*/ 1000, /*stopSteps*/ 100000,
243            passMin, passMax, passRipple, stopMax, stopRipple);
244    printf("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, passMin, passMax, passRipple);
245    printf("stopband(%lf, %lf): %.8lf %.3lf\n", fs, 0.5, stopMax, stopRipple);
246#endif
247}
248
249// recursive gcd. Using objdump, it appears the tail recursion is converted to a while loop.
250static int gcd(int n, int m)
251{
252    if (m == 0) {
253        return n;
254    }
255    return gcd(m, n % m);
256}
257
258static bool isClose(int32_t newSampleRate, int32_t prevSampleRate,
259        int32_t filterSampleRate, int32_t outSampleRate)
260{
261
262    // different upsampling ratios do not need a filter change.
263    if (filterSampleRate != 0
264            && filterSampleRate < outSampleRate
265            && newSampleRate < outSampleRate)
266        return true;
267
268    // check design criteria again if downsampling is detected.
269    int pdiff = absdiff(newSampleRate, prevSampleRate);
270    int adiff = absdiff(newSampleRate, filterSampleRate);
271
272    // allow up to 6% relative change increments.
273    // allow up to 12% absolute change increments (from filter design)
274    return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3;
275}
276
277template<typename TC, typename TI, typename TO>
278void AudioResamplerDyn<TC, TI, TO>::setSampleRate(int32_t inSampleRate)
279{
280    if (mInSampleRate == inSampleRate) {
281        return;
282    }
283    int32_t oldSampleRate = mInSampleRate;
284    int32_t oldHalfNumCoefs = mConstants.mHalfNumCoefs;
285    uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift;
286    bool useS32 = false;
287
288    mInSampleRate = inSampleRate;
289
290    // TODO: Add precalculated Equiripple filters
291
292    if (mFilterQuality != getQuality() ||
293            !isClose(inSampleRate, oldSampleRate, mFilterSampleRate, mSampleRate)) {
294        mFilterSampleRate = inSampleRate;
295        mFilterQuality = getQuality();
296
297        // Begin Kaiser Filter computation
298        //
299        // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB.
300        // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters
301        //
302        // For s32 we keep the stop band attenuation at the same as 16b resolution, about
303        // 96-98dB
304        //
305
306        double stopBandAtten;
307        double tbwCheat = 1.; // how much we "cheat" into aliasing
308        int halfLength;
309        if (mFilterQuality == DYN_HIGH_QUALITY) {
310            // 32b coefficients, 64 length
311            useS32 = true;
312            stopBandAtten = 98.;
313            if (inSampleRate >= mSampleRate * 4) {
314                halfLength = 48;
315            } else if (inSampleRate >= mSampleRate * 2) {
316                halfLength = 40;
317            } else {
318                halfLength = 32;
319            }
320        } else if (mFilterQuality == DYN_LOW_QUALITY) {
321            // 16b coefficients, 16-32 length
322            useS32 = false;
323            stopBandAtten = 80.;
324            if (inSampleRate >= mSampleRate * 4) {
325                halfLength = 24;
326            } else if (inSampleRate >= mSampleRate * 2) {
327                halfLength = 16;
328            } else {
329                halfLength = 8;
330            }
331            if (inSampleRate <= mSampleRate) {
332                tbwCheat = 1.05;
333            } else {
334                tbwCheat = 1.03;
335            }
336        } else { // DYN_MED_QUALITY
337            // 16b coefficients, 32-64 length
338            // note: > 64 length filters with 16b coefs can have quantization noise problems
339            useS32 = false;
340            stopBandAtten = 84.;
341            if (inSampleRate >= mSampleRate * 4) {
342                halfLength = 32;
343            } else if (inSampleRate >= mSampleRate * 2) {
344                halfLength = 24;
345            } else {
346                halfLength = 16;
347            }
348            if (inSampleRate <= mSampleRate) {
349                tbwCheat = 1.03;
350            } else {
351                tbwCheat = 1.01;
352            }
353        }
354
355        // determine the number of polyphases in the filterbank.
356        // for 16b, it is desirable to have 2^(16/2) = 256 phases.
357        // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html
358        //
359        // We are a bit more lax on this.
360
361        int phases = mSampleRate / gcd(mSampleRate, inSampleRate);
362
363        // TODO: Once dynamic sample rate change is an option, the code below
364        // should be modified to execute only when dynamic sample rate change is enabled.
365        //
366        // as above, #phases less than 63 is too few phases for accurate linear interpolation.
367        // we increase the phases to compensate, but more phases means more memory per
368        // filter and more time to compute the filter.
369        //
370        // if we know that the filter will be used for dynamic sample rate changes,
371        // that would allow us skip this part for fixed sample rate resamplers.
372        //
373        while (phases<63) {
374            phases *= 2; // this code only needed to support dynamic rate changes
375        }
376
377        if (phases>=256) {  // too many phases, always interpolate
378            phases = 127;
379        }
380
381        // create the filter
382        mConstants.set(phases, halfLength, inSampleRate, mSampleRate);
383        createKaiserFir(mConstants, stopBandAtten,
384                inSampleRate, mSampleRate, tbwCheat);
385    } // End Kaiser filter
386
387    // update phase and state based on the new filter.
388    const Constants& c(mConstants);
389    mInBuffer.resize(mChannelCount, c.mHalfNumCoefs);
390    const uint32_t phaseWrapLimit = c.mL << c.mShift;
391    // try to preserve as much of the phase fraction as possible for on-the-fly changes
392    mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction)
393            * phaseWrapLimit / oldPhaseWrapLimit;
394    mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case.
395    mPhaseIncrement = static_cast<uint32_t>(static_cast<double>(phaseWrapLimit)
396            * inSampleRate / mSampleRate);
397
398    // determine which resampler to use
399    // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits")
400    int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0;
401    if (locked) {
402        mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase
403    }
404
405    // stride is the minimum number of filter coefficients processed per loop iteration.
406    // We currently only allow a stride of 16 to match with SIMD processing.
407    // This means that the filter length must be a multiple of 16,
408    // or half the filter length (mHalfNumCoefs) must be a multiple of 8.
409    //
410    // Note: A stride of 2 is achieved with non-SIMD processing.
411    int stride = ((c.mHalfNumCoefs & 7) == 0) ? 16 : 2;
412    LOG_ALWAYS_FATAL_IF(stride < 16, "Resampler stride must be 16 or more");
413    LOG_ALWAYS_FATAL_IF(mChannelCount > 8 || mChannelCount < 1,
414            "Resampler channels(%d) must be between 1 to 8", mChannelCount);
415    // stride 16 (falls back to stride 2 for machines that do not support NEON)
416    if (locked) {
417        switch (mChannelCount) {
418        case 1:
419            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, true, 16>;
420            break;
421        case 2:
422            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, true, 16>;
423            break;
424        case 3:
425            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, true, 16>;
426            break;
427        case 4:
428            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, true, 16>;
429            break;
430        case 5:
431            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, true, 16>;
432            break;
433        case 6:
434            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, true, 16>;
435            break;
436        case 7:
437            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, true, 16>;
438            break;
439        case 8:
440            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, true, 16>;
441            break;
442        }
443    } else {
444        switch (mChannelCount) {
445        case 1:
446            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, false, 16>;
447            break;
448        case 2:
449            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, false, 16>;
450            break;
451        case 3:
452            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, false, 16>;
453            break;
454        case 4:
455            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, false, 16>;
456            break;
457        case 5:
458            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, false, 16>;
459            break;
460        case 6:
461            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, false, 16>;
462            break;
463        case 7:
464            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, false, 16>;
465            break;
466        case 8:
467            mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, false, 16>;
468            break;
469        }
470    }
471#ifdef DEBUG_RESAMPLER
472    printf("channels:%d  %s  stride:%d  %s  coef:%d  shift:%d\n",
473            mChannelCount, locked ? "locked" : "interpolated",
474            stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift);
475#endif
476}
477
478template<typename TC, typename TI, typename TO>
479void AudioResamplerDyn<TC, TI, TO>::resample(int32_t* out, size_t outFrameCount,
480            AudioBufferProvider* provider)
481{
482    (this->*mResampleFunc)(reinterpret_cast<TO*>(out), outFrameCount, provider);
483}
484
485template<typename TC, typename TI, typename TO>
486template<int CHANNELS, bool LOCKED, int STRIDE>
487void AudioResamplerDyn<TC, TI, TO>::resample(TO* out, size_t outFrameCount,
488        AudioBufferProvider* provider)
489{
490    // TODO Mono -> Mono is not supported. OUTPUT_CHANNELS reflects minimum of stereo out.
491    const int OUTPUT_CHANNELS = (CHANNELS < 2) ? 2 : CHANNELS;
492    const Constants& c(mConstants);
493    const TC* const coefs = mConstants.mFirCoefs;
494    TI* impulse = mInBuffer.getImpulse();
495    size_t inputIndex = 0;
496    uint32_t phaseFraction = mPhaseFraction;
497    const uint32_t phaseIncrement = mPhaseIncrement;
498    size_t outputIndex = 0;
499    size_t outputSampleCount = outFrameCount * OUTPUT_CHANNELS;
500    const uint32_t phaseWrapLimit = c.mL << c.mShift;
501    size_t inFrameCount = (phaseIncrement * (uint64_t)outFrameCount + phaseFraction)
502            / phaseWrapLimit;
503    // sanity check that inFrameCount is in signed 32 bit integer range.
504    ALOG_ASSERT(0 <= inFrameCount && inFrameCount < (1U << 31));
505
506    //ALOGV("inFrameCount:%d  outFrameCount:%d"
507    //        "  phaseIncrement:%u  phaseFraction:%u  phaseWrapLimit:%u",
508    //        inFrameCount, outFrameCount, phaseIncrement, phaseFraction, phaseWrapLimit);
509
510    // NOTE: be very careful when modifying the code here. register
511    // pressure is very high and a small change might cause the compiler
512    // to generate far less efficient code.
513    // Always sanity check the result with objdump or test-resample.
514
515    // the following logic is a bit convoluted to keep the main processing loop
516    // as tight as possible with register allocation.
517    while (outputIndex < outputSampleCount) {
518        //ALOGV("LOOP: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
519        //        "  phaseFraction:%u  phaseWrapLimit:%u",
520        //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
521
522        // check inputIndex overflow
523        ALOG_ASSERT(inputIndex <= mBuffer.frameCount, "inputIndex%d > frameCount%d",
524                inputIndex, mBuffer.frameCount);
525        // Buffer is empty, fetch a new one if necessary (inFrameCount > 0).
526        // We may not fetch a new buffer if the existing data is sufficient.
527        while (mBuffer.frameCount == 0 && inFrameCount > 0) {
528            mBuffer.frameCount = inFrameCount;
529            provider->getNextBuffer(&mBuffer,
530                    calculateOutputPTS(outputIndex / OUTPUT_CHANNELS));
531            if (mBuffer.raw == NULL) {
532                goto resample_exit;
533            }
534            inFrameCount -= mBuffer.frameCount;
535            if (phaseFraction >= phaseWrapLimit) { // read in data
536                mInBuffer.template readAdvance<CHANNELS>(
537                        impulse, c.mHalfNumCoefs,
538                        reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
539                inputIndex++;
540                phaseFraction -= phaseWrapLimit;
541                while (phaseFraction >= phaseWrapLimit) {
542                    if (inputIndex >= mBuffer.frameCount) {
543                        inputIndex = 0;
544                        provider->releaseBuffer(&mBuffer);
545                        break;
546                    }
547                    mInBuffer.template readAdvance<CHANNELS>(
548                            impulse, c.mHalfNumCoefs,
549                            reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
550                    inputIndex++;
551                    phaseFraction -= phaseWrapLimit;
552                }
553            }
554        }
555        const TI* const in = reinterpret_cast<const TI*>(mBuffer.raw);
556        const size_t frameCount = mBuffer.frameCount;
557        const int coefShift = c.mShift;
558        const int halfNumCoefs = c.mHalfNumCoefs;
559        const TO* const volumeSimd = mVolumeSimd;
560
561        // main processing loop
562        while (CC_LIKELY(outputIndex < outputSampleCount)) {
563            // caution: fir() is inlined and may be large.
564            // output will be loaded with the appropriate values
565            //
566            // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs]
567            // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs.
568            //
569            //ALOGV("LOOP2: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
570            //        "  phaseFraction:%u  phaseWrapLimit:%u",
571            //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
572            ALOG_ASSERT(phaseFraction < phaseWrapLimit);
573            fir<CHANNELS, LOCKED, STRIDE>(
574                    &out[outputIndex],
575                    phaseFraction, phaseWrapLimit,
576                    coefShift, halfNumCoefs, coefs,
577                    impulse, volumeSimd);
578
579            outputIndex += OUTPUT_CHANNELS;
580
581            phaseFraction += phaseIncrement;
582            while (phaseFraction >= phaseWrapLimit) {
583                if (inputIndex >= frameCount) {
584                    goto done;  // need a new buffer
585                }
586                mInBuffer.template readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
587                inputIndex++;
588                phaseFraction -= phaseWrapLimit;
589            }
590        }
591done:
592        // We arrive here when we're finished or when the input buffer runs out.
593        // Regardless we need to release the input buffer if we've acquired it.
594        if (inputIndex > 0) {  // we've acquired a buffer (alternatively could check frameCount)
595            ALOG_ASSERT(inputIndex == frameCount, "inputIndex(%d) != frameCount(%d)",
596                    inputIndex, frameCount);  // must have been fully read.
597            inputIndex = 0;
598            provider->releaseBuffer(&mBuffer);
599            ALOG_ASSERT(mBuffer.frameCount == 0);
600        }
601    }
602
603resample_exit:
604    // inputIndex must be zero in all three cases:
605    // (1) the buffer never was been acquired; (2) the buffer was
606    // released at "done:"; or (3) getNextBuffer() failed.
607    ALOG_ASSERT(inputIndex == 0, "Releasing: inputindex:%d frameCount:%d  phaseFraction:%u",
608            inputIndex, mBuffer.frameCount, phaseFraction);
609    ALOG_ASSERT(mBuffer.frameCount == 0); // there must be no frames in the buffer
610    mInBuffer.setImpulse(impulse);
611    mPhaseFraction = phaseFraction;
612}
613
614/* instantiate templates used by AudioResampler::create */
615template class AudioResamplerDyn<float, float, float>;
616template class AudioResamplerDyn<int16_t, int16_t, int32_t>;
617template class AudioResamplerDyn<int32_t, int16_t, int32_t>;
618
619// ----------------------------------------------------------------------------
620}; // namespace android
621