186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung/*
286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Copyright (C) 2013 The Android Open Source Project
386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Licensed under the Apache License, Version 2.0 (the "License");
586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * you may not use this file except in compliance with the License.
686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * You may obtain a copy of the License at
786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *      http://www.apache.org/licenses/LICENSE-2.0
986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
1086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Unless required by applicable law or agreed to in writing, software
1186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * distributed under the License is distributed on an "AS IS" BASIS,
1286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
1386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * See the License for the specific language governing permissions and
1486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * limitations under the License.
1586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung */
1686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
1786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung#ifndef ANDROID_AUDIO_RESAMPLER_FIR_GEN_H
1886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung#define ANDROID_AUDIO_RESAMPLER_FIR_GEN_H
1986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
2086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungnamespace android {
2186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
2286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung/*
236582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * generates a sine wave at equal steps.
2486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
256582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * As most of our functions use sine or cosine at equal steps,
266582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * it is very efficient to compute them that way (single multiply and subtract),
276582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * rather than invoking the math library sin() or cos() each time.
286582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
296582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * SineGen uses Goertzel's Algorithm (as a generator not a filter)
306582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * to calculate sine(wstart + n * wstep) or cosine(wstart + n * wstep)
316582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * by stepping through 0, 1, ... n.
326582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
336582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * e^i(wstart+wstep) = 2cos(wstep) * e^i(wstart) - e^i(wstart-wstep)
346582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
356582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * or looking at just the imaginary sine term, as the cosine follows identically:
366582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
376582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * sin(wstart+wstep) = 2cos(wstep) * sin(wstart) - sin(wstart-wstep)
386582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
396582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * Goertzel's algorithm is more efficient than the angle addition formula,
406582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * e^i(wstart+wstep) = e^i(wstart) * e^i(wstep), which takes up to
416582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * 4 multiplies and 2 adds (or 3* and 3+) and requires both sine and
426582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * cosine generation due to the complex * complex multiply (full rotation).
436582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
446582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * See: http://en.wikipedia.org/wiki/Goertzel_algorithm
4586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
4686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung */
4786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
486582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hungclass SineGen {
496582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hungpublic:
506582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    SineGen(double wstart, double wstep, bool cosine = false) {
516582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        if (cosine) {
526582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung            mCurrent = cos(wstart);
536582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung            mPrevious = cos(wstart - wstep);
546582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        } else {
556582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung            mCurrent = sin(wstart);
566582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung            mPrevious = sin(wstart - wstep);
576582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        }
586582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        mTwoCos = 2.*cos(wstep);
5986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    }
606582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    SineGen(double expNow, double expPrev, double twoCosStep) {
616582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        mCurrent = expNow;
626582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        mPrevious = expPrev;
636582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        mTwoCos = twoCosStep;
646582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    }
656582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    inline double value() const {
666582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        return mCurrent;
676582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    }
686582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    inline void advance() {
696582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double tmp = mCurrent;
706582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        mCurrent = mCurrent*mTwoCos - mPrevious;
716582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        mPrevious = tmp;
726582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    }
736582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    inline double valueAdvance() {
746582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double tmp = mCurrent;
756582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        mCurrent = mCurrent*mTwoCos - mPrevious;
766582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        mPrevious = tmp;
776582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        return tmp;
786582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    }
796582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
806582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hungprivate:
816582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    double mCurrent; // current value of sine/cosine
826582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    double mPrevious; // previous value of sine/cosine
836582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    double mTwoCos; // stepping factor
846582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung};
856582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
866582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung/*
876582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * generates a series of sine generators, phase offset by fixed steps.
886582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
896582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * This is used to generate polyphase sine generators, one per polyphase
906582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * in the filter code below.
916582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
926582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * The SineGen returned by value() starts at innerStart = outerStart + n*outerStep;
936582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * increments by innerStep.
946582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
956582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung */
966582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
976582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hungclass SineGenGen {
986582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hungpublic:
996582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    SineGenGen(double outerStart, double outerStep, double innerStep, bool cosine = false)
1006582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung            : mSineInnerCur(outerStart, outerStep, cosine),
1016582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung              mSineInnerPrev(outerStart-innerStep, outerStep, cosine)
1026582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    {
1036582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        mTwoCos = 2.*cos(innerStep);
1046582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    }
1056582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    inline SineGen value() {
1066582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        return SineGen(mSineInnerCur.value(), mSineInnerPrev.value(), mTwoCos);
1076582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    }
1086582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    inline void advance() {
1096582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        mSineInnerCur.advance();
1106582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        mSineInnerPrev.advance();
1116582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    }
1126582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    inline SineGen valueAdvance() {
1136582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        return SineGen(mSineInnerCur.valueAdvance(), mSineInnerPrev.valueAdvance(), mTwoCos);
1146582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    }
1156582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
1166582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hungprivate:
1176582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    SineGen mSineInnerCur; // generate the inner sine values (stepped by outerStep).
1186582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    SineGen mSineInnerPrev; // generate the inner sine previous values
1196582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                            // (behind by innerStep, stepped by outerStep).
1206582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    double mTwoCos; // the inner stepping factor for the returned SineGen.
1216582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung};
12286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
12386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstatic inline double sqr(double x) {
12486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    return x * x;
12586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}
12686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
12786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung/*
12886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * rounds a double to the nearest integer for FIR coefficients.
12986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
13086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * One variant uses noise shaping, which must keep error history
13186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * to work (the err parameter, initialized to 0).
13286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * The other variant is a non-noise shaped version for
13386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * S32 coefficients (noise shaping doesn't gain much).
13486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
1356582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * Caution: No bounds saturation is applied, but isn't needed in this case.
13686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
13786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param x is the value to round.
13886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
13986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param maxval is the maximum integer scale factor expressed as an int64 (for headroom).
14086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Typically this may be the maximum positive integer+1 (using the fact that double precision
14186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * FIR coefficients generated here are never that close to 1.0 to pose an overflow condition).
14286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
14386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param err is the previous error (actual - rounded) for the previous rounding op.
1446582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * For 16b coefficients this can improve stopband dB performance by up to 2dB.
1456582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
1466582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * Many variants exist for the noise shaping: http://en.wikipedia.org/wiki/Noise_shaping
14786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
14886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung */
14986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
15086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstatic inline int64_t toint(double x, int64_t maxval, double& err) {
15186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double val = x * maxval;
1526582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    double ival = floor(val + 0.5 + err*0.2);
15386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    err = val - ival;
15486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    return static_cast<int64_t>(ival);
15586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}
15686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
15786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstatic inline int64_t toint(double x, int64_t maxval) {
15886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    return static_cast<int64_t>(floor(x * maxval + 0.5));
15986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}
16086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
16186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung/*
16286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Modified Bessel function of the first kind
16386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * http://en.wikipedia.org/wiki/Bessel_function
16486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
1656582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * The formulas are taken from Abramowitz and Stegun,
1666582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * _Handbook of Mathematical Functions_ (links below):
16786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
16886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * http://people.math.sfu.ca/~cbm/aands/page_375.htm
16986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * http://people.math.sfu.ca/~cbm/aands/page_378.htm
17086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
17186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * http://dlmf.nist.gov/10.25
17286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * http://dlmf.nist.gov/10.40
17386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
17486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Note we assume x is nonnegative (the function is symmetric,
17586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * pass in the absolute value as needed).
17686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
17786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * Constants are compile time derived with templates I0Term<> and
17886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * I0ATerm<> to the precision of the compiler.  The series can be expanded
17986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * to any precision needed, but currently set around 24b precision.
18086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
18186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * We use a bit of template math here, constexpr would probably be
18286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * more appropriate for a C++11 compiler.
18386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
1846582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * For the intermediate range 3.75 < x < 15, we use minimax polynomial fit.
1856582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
18686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung */
18786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
18886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungtemplate <int N>
18986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstruct I0Term {
1906582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    static const double value = I0Term<N-1>::value / (4. * N * N);
19186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung};
19286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
19386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungtemplate <>
19486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstruct I0Term<0> {
19586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    static const double value = 1.;
19686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung};
19786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
19886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungtemplate <int N>
19986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstruct I0ATerm {
20086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    static const double value = I0ATerm<N-1>::value * (2.*N-1.) * (2.*N-1.) / (8. * N);
20186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung};
20286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
20386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungtemplate <>
20486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstruct I0ATerm<0> { // 1/sqrt(2*PI);
20586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    static const double value = 0.398942280401432677939946059934381868475858631164934657665925;
20686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung};
20786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
2086582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung#if USE_HORNERS_METHOD
2096582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung/* Polynomial evaluation of A + Bx + Cx^2 + Dx^3 + ...
2106582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * using Horner's Method: http://en.wikipedia.org/wiki/Horner's_method
2116582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
2126582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * This has fewer multiplications than Estrin's method below, but has back to back
2136582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * floating point dependencies.
2146582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
2156582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * On ARM this appears to work slower, so USE_HORNERS_METHOD is not default enabled.
2166582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung */
2176582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
2186582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hunginline double Poly2(double A, double B, double x) {
2196582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    return A + x * B;
2206582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung}
2216582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
2226582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hunginline double Poly4(double A, double B, double C, double D, double x) {
2236582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    return A + x * (B + x * (C + x * (D)));
2246582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung}
2256582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
2266582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hunginline double Poly7(double A, double B, double C, double D, double E, double F, double G,
2276582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double x) {
2286582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    return A + x * (B + x * (C + x * (D + x * (E + x * (F + x * (G))))));
2296582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung}
2306582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
2316582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hunginline double Poly9(double A, double B, double C, double D, double E, double F, double G,
2326582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double H, double I, double x) {
2336582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    return A + x * (B + x * (C + x * (D + x * (E + x * (F + x * (G + x * (H + x * (I))))))));
2346582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung}
2356582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
2366582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung#else
2376582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung/* Polynomial evaluation of A + Bx + Cx^2 + Dx^3 + ...
2386582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * using Estrin's Method: http://en.wikipedia.org/wiki/Estrin's_scheme
2396582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
2406582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * This is typically faster, perhaps gains about 5-10% overall on ARM processors
2416582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * over Horner's method above.
2426582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung */
2436582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
2446582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hunginline double Poly2(double A, double B, double x) {
2456582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    return A + B * x;
2466582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung}
2476582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
2486582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hunginline double Poly3(double A, double B, double C, double x, double x2) {
2496582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    return Poly2(A, B, x) + C * x2;
2506582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung}
2516582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
2526582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hunginline double Poly3(double A, double B, double C, double x) {
2536582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    return Poly2(A, B, x) + C * x * x;
2546582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung}
2556582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
2566582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hunginline double Poly4(double A, double B, double C, double D, double x, double x2) {
2576582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    return Poly2(A, B, x) + Poly2(C, D, x) * x2; // same as poly2(poly2, poly2, x2);
2586582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung}
2596582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
2606582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hunginline double Poly4(double A, double B, double C, double D, double x) {
2616582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    return Poly4(A, B, C, D, x, x * x);
2626582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung}
2636582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
2646582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hunginline double Poly7(double A, double B, double C, double D, double E, double F, double G,
2656582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double x) {
2666582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    double x2 = x * x;
2676582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    return Poly4(A, B, C, D, x, x2) + Poly3(E, F, G, x, x2) * (x2 * x2);
2686582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung}
2696582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
2706582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hunginline double Poly8(double A, double B, double C, double D, double E, double F, double G,
2716582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double H, double x, double x2, double x4) {
2726582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    return Poly4(A, B, C, D, x, x2) + Poly4(E, F, G, H, x, x2) * x4;
2736582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung}
2746582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
2756582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hunginline double Poly9(double A, double B, double C, double D, double E, double F, double G,
2766582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double H, double I, double x) {
2776582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    double x2 = x * x;
2786582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung#if 1
2796582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    // It does not seem faster to explicitly decompose Poly8 into Poly4, but
2806582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    // could depend on compiler floating point scheduling.
2816582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    double x4 = x2 * x2;
2826582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    return Poly8(A, B, C, D, E, F, G, H, x, x2, x4) + I * (x4 * x4);
2836582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung#else
2846582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    double val = Poly4(A, B, C, D, x, x2);
2856582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    double x4 = x2 * x2;
2866582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    return val + Poly4(E, F, G, H, x, x2) * x4 + I * (x4 * x4);
2876582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung#endif
2886582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung}
2896582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung#endif
2906582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
29186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstatic inline double I0(double x) {
2926582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    if (x < 3.75) {
2936582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        x *= x;
2946582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        return Poly7(I0Term<0>::value, I0Term<1>::value,
2956582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                I0Term<2>::value, I0Term<3>::value,
2966582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                I0Term<4>::value, I0Term<5>::value,
2976582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                I0Term<6>::value, x); // e < 1.6e-7
2986582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    }
2996582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    if (1) {
3006582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        /*
3016582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * Series expansion coefs are easy to calculate, but are expanded around 0,
3026582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * so error is unequal over the interval 0 < x < 3.75, the error being
3036582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * significantly better near 0.
3046582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         *
3056582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * A better solution is to use precise minimax polynomial fits.
3066582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         *
3076582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * We use a slightly more complicated solution for 3.75 < x < 15, based on
3086582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * the tables in Blair and Edwards, "Stable Rational Minimax Approximations
3096582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * to the Modified Bessel Functions I0(x) and I1(x)", Chalk Hill Nuclear Laboratory,
3106582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * AECL-4928.
3116582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         *
3126582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/06/178/6178667.pdf
3136582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         *
3146582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * See Table 11 for 0 < x < 15; e < 10^(-7.13).
3156582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         *
3166582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * Note: Beta cannot exceed 15 (hence Stopband cannot exceed 144dB = 24b).
3176582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         *
3186582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * This speeds up overall computation by about 40% over using the else clause below,
3196582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * which requires sqrt and exp.
3206582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         *
3216582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         */
3226582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
32386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        x *= x;
3246582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double num = Poly9(-0.13544938430e9, -0.33153754512e8,
3256582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                -0.19406631946e7, -0.48058318783e5,
3266582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                -0.63269783360e3, -0.49520779070e1,
3276582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                -0.24970910370e-1, -0.74741159550e-4,
3286582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                -0.18257612460e-6, x);
3296582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double y = x - 225.; // reflection around 15 (squared)
3306582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double den = Poly4(-0.34598737196e8, 0.23852643181e6,
3316582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                -0.70699387620e3, 0.10000000000e1, y);
3326582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        return num / den;
3336582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
3346582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung#if IO_EXTENDED_BETA
3356582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        /* Table 42 for x > 15; e < 10^(-8.11).
3366582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * This is used for Beta>15, but is disabled here as
3376582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * we never use Beta that high.
3386582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         *
3396582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * NOTE: This should be enabled only for x > 15.
3406582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         */
3416582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
3426582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double y = 1./x;
3436582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double z = y - (1./15);
3446582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double num = Poly2(0.415079861746e1, -0.5149092496e1, z);
3456582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double den = Poly3(0.103150763823e2, -0.14181687413e2,
3466582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                0.1000000000e1, z);
3476582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        return exp(x) * sqrt(y) * num / den;
3486582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung#endif
3496582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    } else {
3506582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        /*
3516582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * NOT USED, but reference for large Beta.
3526582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         *
3536582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * Abramowitz and Stegun asymptotic formula.
3546582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         * works for x > 3.75.
3556582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung         */
3566582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double y = 1./x;
3576582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        return exp(x) * sqrt(y) *
3586582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                // note: reciprocal squareroot may be easier!
3596582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                // http://en.wikipedia.org/wiki/Fast_inverse_square_root
3606582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                Poly9(I0ATerm<0>::value, I0ATerm<1>::value,
3616582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                        I0ATerm<2>::value, I0ATerm<3>::value,
3626582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                        I0ATerm<4>::value, I0ATerm<5>::value,
3636582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                        I0ATerm<6>::value, I0ATerm<7>::value,
3646582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                        I0ATerm<8>::value, y); // (... e) < 1.9e-7
36586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    }
36686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}
36786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
368bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung/* A speed optimized version of the Modified Bessel I0() which incorporates
369bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung * the sqrt and numerator multiply and denominator divide into the computation.
370bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung * This speeds up filter computation by about 10-15%.
371bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung */
372bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hungstatic inline double I0SqrRat(double x2, double num, double den) {
373bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung    if (x2 < (3.75 * 3.75)) {
374bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung        return Poly7(I0Term<0>::value, I0Term<1>::value,
375bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung                I0Term<2>::value, I0Term<3>::value,
376bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung                I0Term<4>::value, I0Term<5>::value,
377bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung                I0Term<6>::value, x2) * num / den; // e < 1.6e-7
378bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung    }
379bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung    num *= Poly9(-0.13544938430e9, -0.33153754512e8,
380bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung            -0.19406631946e7, -0.48058318783e5,
381bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung            -0.63269783360e3, -0.49520779070e1,
382bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung            -0.24970910370e-1, -0.74741159550e-4,
383bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung            -0.18257612460e-6, x2); // e < 10^(-7.13).
384bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung    double y = x2 - 225.; // reflection around 15 (squared)
385bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung    den *= Poly4(-0.34598737196e8, 0.23852643181e6,
386bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung            -0.70699387620e3, 0.10000000000e1, y);
387bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung    return num / den;
388bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung}
389bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung
39086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung/*
39186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * calculates the transition bandwidth for a Kaiser filter
39286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
3936582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * Formula 3.2.8, Vaidyanathan, _Multirate Systems and Filter Banks_, p. 48
3946582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * Formula 7.76, Oppenheim and Schafer, _Discrete-time Signal Processing, 3e_, p. 542
39586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
39686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param halfNumCoef is half the number of coefficients per filter phase.
3976582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
39886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param stopBandAtten is the stop band attenuation desired.
3996582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
40086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @return the transition bandwidth in normalized frequency (0 <= f <= 0.5)
40186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung */
40286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstatic inline double firKaiserTbw(int halfNumCoef, double stopBandAtten) {
4036582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    return (stopBandAtten - 7.95)/((2.*14.36)*halfNumCoef);
40486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}
40586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
40686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung/*
4076582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * calculates the fir transfer response of the overall polyphase filter at w.
4086582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
4096582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * Calculates the DTFT transfer coefficient H(w) for 0 <= w <= PI, utilizing the
4106582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * fact that h[n] is symmetric (cosines only, no complex arithmetic).
4116582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
4126582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * We use Goertzel's algorithm to accelerate the computation to essentially
4136582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * a single multiply and 2 adds per filter coefficient h[].
41486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
4156582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * Be careful be careful to consider that h[n] is the overall polyphase filter,
4166582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * with L phases, so rescaling H(w)/L is probably what you expect for "unity gain",
4176582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * as you only use one of the polyphases at a time.
41886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung */
41986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungtemplate <typename T>
42086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstatic inline double firTransfer(const T* coef, int L, int halfNumCoef, double w) {
4216582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    double accum = static_cast<double>(coef[0])*0.5;  // "center coefficient" from first bank
4226582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    coef += halfNumCoef;    // skip first filterbank (picked up by the last filterbank).
4236582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung#if SLOW_FIRTRANSFER
4246582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    /* Original code for reference.  This is equivalent to the code below, but slower. */
42586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    for (int i=1 ; i<=L ; ++i) {
42686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        for (int j=0, ix=i ; j<halfNumCoef ; ++j, ix+=L) {
42786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            accum += cos(ix*w)*static_cast<double>(*coef++);
42886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        }
42986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    }
4306582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung#else
4316582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    /*
4326582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     * Our overall filter is stored striped by polyphases, not a contiguous h[n].
4336582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     * We could fetch coefficients in a non-contiguous fashion
4346582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     * but that will not scale to vector processing.
4356582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     *
4366582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     * We apply Goertzel's algorithm directly to each polyphase filter bank instead of
4376582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     * using cosine generation/multiplication, thereby saving one multiply per inner loop.
4386582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     *
4396582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     * See: http://en.wikipedia.org/wiki/Goertzel_algorithm
4406582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     * Also: Oppenheim and Schafer, _Discrete Time Signal Processing, 3e_, p. 720.
4416582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     *
4426582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     * We use the basic recursion to incorporate the cosine steps into real sequence x[n]:
4436582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     * s[n] = x[n] + (2cosw)*s[n-1] + s[n-2]
4446582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     *
4456582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     * y[n] = s[n] - e^(iw)s[n-1]
4466582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     *      = sum_{k=-\infty}^{n} x[k]e^(-iw(n-k))
4476582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     *      = e^(-iwn) sum_{k=0}^{n} x[k]e^(iwk)
4486582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     *
4496582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     * The summation contains the frequency steps we want multiplied by the source
4506582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     * (similar to a DTFT).
4516582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     *
4526582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     * Using symmetry, and just the real part (be careful, this must happen
4536582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     * after any internal complex multiplications), the polyphase filterbank
4546582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     * transfer function is:
4556582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     *
4566582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     * Hpp[n, w, w_0] = sum_{k=0}^{n} x[k] * cos(wk + w_0)
4576582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     *                = Re{ e^(iwn + iw_0) y[n]}
4586582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     *                = cos(wn+w_0) * s[n] - cos(w(n+1)+w_0) * s[n-1]
4596582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     *
4606582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     * using the fact that s[n] of real x[n] is real.
4616582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     *
4626582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung     */
4636582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    double dcos = 2. * cos(L*w);
4646582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    int start = ((halfNumCoef)*L + 1);
4656582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    SineGen cc((start - L) * w, w, true); // cosine
4666582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    SineGen cp(start * w, w, true); // cosine
4676582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    for (int i=1 ; i<=L ; ++i) {
4686582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double sc = 0;
4696582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double sp = 0;
4706582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        for (int j=0 ; j<halfNumCoef ; ++j) {
4716582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung            double tmp = sc;
4726582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung            sc  = static_cast<double>(*coef++) + dcos*sc - sp;
4736582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung            sp = tmp;
4746582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        }
4756582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        // If we are awfully clever, we can apply Goertzel's algorithm
4766582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        // again on the sc and sp sequences returned here.
4776582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        accum += cc.valueAdvance() * sc - cp.valueAdvance() * sp;
4786582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    }
4796582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung#endif
48086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    return accum*2.;
48186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}
48286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
48386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung/*
4846582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * evaluates the minimum and maximum |H(f)| bound in a band region.
4856582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
4866582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * This is usually done with equally spaced increments in the target band in question.
4876582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * The passband is often very small, and sampled that way. The stopband is often much
4886582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * larger.
4896582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
4906582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * We use the fact that the overall polyphase filter has an additional bank at the end
4916582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * for interpolation; hence it is overspecified for the H(f) computation.  Thus the
4926582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * first polyphase is never actually checked, excepting its first term.
4936582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
4946582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * In this code we use the firTransfer() evaluator above, which uses Goertzel's
4956582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * algorithm to calculate the transfer function at each point.
4966582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
4976582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * TODO: An alternative with equal spacing is the FFT/DFT.  An alternative with unequal
4986582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * spacing is a chirp transform.
49986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
50086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param coef is the designed polyphase filter banks
50186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
50286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param L is the number of phases (for interpolation)
50386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
50486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param halfNumCoef should be half the number of coefficients for a single
50586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * polyphase.
50686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
50786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param fstart is the normalized frequency start.
50886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
50986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param fend is the normalized frequency end.
51086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
51186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param steps is the number of steps to take (sampling) between frequency start and end
51286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
51386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param firMin returns the minimum transfer |H(f)| found
51486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
51586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param firMax returns the maximum transfer |H(f)| found
51686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
51786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * 0 <= f <= 0.5.
51886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * This is used to test passband and stopband performance.
51986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung */
52086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungtemplate <typename T>
52186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstatic void testFir(const T* coef, int L, int halfNumCoef,
52286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        double fstart, double fend, int steps, double &firMin, double &firMax) {
52386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double wstart = fstart*(2.*M_PI);
52486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double wend = fend*(2.*M_PI);
52586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double wstep = (wend - wstart)/steps;
52686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double fmax, fmin;
52786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double trf = firTransfer(coef, L, halfNumCoef, wstart);
52886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    if (trf<0) {
52986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        trf = -trf;
53086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    }
53186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    fmin = fmax = trf;
53286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    wstart += wstep;
53386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    for (int i=1; i<steps; ++i) {
53486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        trf = firTransfer(coef, L, halfNumCoef, wstart);
53586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        if (trf<0) {
53686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            trf = -trf;
53786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        }
53886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        if (trf>fmax) {
53986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            fmax = trf;
54086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        }
54186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        else if (trf<fmin) {
54286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            fmin = trf;
54386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        }
54486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        wstart += wstep;
54586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    }
54686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    // renormalize - this is only needed for integer filter types
54786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    double norm = 1./((1ULL<<(sizeof(T)*8-1))*L);
54886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
54986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    firMin = fmin * norm;
55086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    firMax = fmax * norm;
55186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}
55286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
55386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung/*
5546582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * evaluates the |H(f)| lowpass band characteristics.
5556582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
5566582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * This function tests the lowpass characteristics for the overall polyphase filter,
5576582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * and is used to verify the design.  For this case, fp should be set to the
5586582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * passband normalized frequency from 0 to 0.5 for the overall filter (thus it
5596582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * is the designed polyphase bank value / L).  Likewise for fs.
5606582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
5616582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * @param coef is the designed polyphase filter banks
5626582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
5636582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * @param L is the number of phases (for interpolation)
5646582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
5656582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * @param halfNumCoef should be half the number of coefficients for a single
5666582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * polyphase.
5676582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
5686582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * @param fp is the passband normalized frequency, 0 < fp < fs < 0.5.
5696582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
5706582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * @param fs is the stopband normalized frequency, 0 < fp < fs < 0.5.
5716582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
5726582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * @param passSteps is the number of passband sampling steps.
5736582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
5746582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * @param stopSteps is the number of stopband sampling steps.
5756582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
5766582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * @param passMin is the minimum value in the passband
5776582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
5786582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * @param passMax is the maximum value in the passband (useful for scaling).  This should
5796582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * be less than 1., to avoid sine wave test overflow.
5806582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
5816582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * @param passRipple is the passband ripple.  Typically this should be less than 0.1 for
5826582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * an audio filter.  Generally speaker/headphone device characteristics will dominate
5836582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * the passband term.
5846582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
5856582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * @param stopMax is the maximum value in the stopband.
5866582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
5876582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * @param stopRipple is the stopband ripple, also known as stopband attenuation.
5886582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * Typically this should be greater than ~80dB for low quality, and greater than
5896582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * ~100dB for full 16b quality, otherwise aliasing may become noticeable.
5906582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
5916582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung */
5926582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hungtemplate <typename T>
5936582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hungstatic void testFir(const T* coef, int L, int halfNumCoef,
5946582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double fp, double fs, int passSteps, int stopSteps,
5956582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double &passMin, double &passMax, double &passRipple,
5966582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double &stopMax, double &stopRipple) {
5976582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    double fmin, fmax;
5986582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    testFir(coef, L, halfNumCoef, 0., fp, passSteps, fmin, fmax);
5996582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    double d1 = (fmax - fmin)/2.;
6006582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    passMin = fmin;
6016582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    passMax = fmax;
6026582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    passRipple = -20.*log10(1. - d1); // passband ripple
6036582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    testFir(coef, L, halfNumCoef, fs, 0.5, stopSteps, fmin, fmax);
6046582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    // fmin is really not important for the stopband.
6056582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    stopMax = fmax;
6066582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    stopRipple = -20.*log10(fmax); // stopband ripple/attenuation
6076582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung}
6086582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
6096582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung/*
6106582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * Calculates the overall polyphase filter based on a windowed sinc function.
61186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
61286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * The windowed sinc is an odd length symmetric filter of exactly L*halfNumCoef*2+1
61386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * taps for the entire kernel.  This is then decomposed into L+1 polyphase filterbanks.
61486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * The last filterbank is used for interpolation purposes (and is mostly composed
61586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * of the first bank shifted by one sample), and is unnecessary if one does
61686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * not do interpolation.
61786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
6186582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * We use the last filterbank for some transfer function calculation purposes,
6196582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung * so it needs to be generated anyways.
6206582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung *
62186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param coef is the caller allocated space for coefficients.  This should be
62286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * exactly (L+1)*halfNumCoef in size.
62386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
62486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param L is the number of phases (for interpolation)
62586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
62686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param halfNumCoef should be half the number of coefficients for a single
62786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * polyphase.
62886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
62986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param stopBandAtten is the stopband value, should be >50dB.
63086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
63186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param fcr is cutoff frequency/sampling rate (<0.5).  At this point, the energy
63286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * should be 6dB less. (fcr is where the amplitude drops by half).  Use the
63386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * firKaiserTbw() to calculate the transition bandwidth.  fcr is the midpoint
63486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * between the stop band and the pass band (fstop+fpass)/2.
63586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung *
63686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung * @param atten is the attenuation (generally slightly less than 1).
63786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung */
63886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
63986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungtemplate <typename T>
64086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hungstatic inline void firKaiserGen(T* coef, int L, int halfNumCoef,
64186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        double stopBandAtten, double fcr, double atten) {
64286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //
6436582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    // Formula 3.2.5, 3.2.7, Vaidyanathan, _Multirate Systems and Filter Banks_, p. 48
6446582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    // Formula 7.75, Oppenheim and Schafer, _Discrete-time Signal Processing, 3e_, p. 542
64586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //
64686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    // See also: http://melodi.ee.washington.edu/courses/ee518/notes/lec17.pdf
64786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //
64886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    // Kaiser window and beta parameter
64986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //
65086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //         | 0.1102*(A - 8.7)                         A > 50
65186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //  beta = | 0.5842*(A - 21)^0.4 + 0.07886*(A - 21)   21 <= A <= 50
65286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //         | 0.                                       A < 21
65386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //
65486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    // with A is the desired stop-band attenuation in dBFS
65586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //
65686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //    30 dB    2.210
65786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //    40 dB    3.384
65886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //    50 dB    4.538
65986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //    60 dB    5.658
66086eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //    70 dB    6.764
66186eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //    80 dB    7.865
66286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //    90 dB    8.960
66386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    //   100 dB   10.056
66486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
66586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    const int N = L * halfNumCoef; // non-negative half
66686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    const double beta = 0.1102 * (stopBandAtten - 8.7); // >= 50dB always
6676582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    const double xstep = (2. * M_PI) * fcr / L;
66886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    const double xfrac = 1. / N;
6696582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    const double yscale = atten * L / (I0(beta) * M_PI);
670bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung    const double sqrbeta = sqr(beta);
6716582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
6726582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    // We use sine generators, which computes sines on regular step intervals.
6736582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    // This speeds up overall computation about 40% from computing the sine directly.
6746582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
6756582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung    SineGenGen sgg(0., xstep, L*xstep); // generates sine generators (one per polyphase)
6766582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
67786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    for (int i=0 ; i<=L ; ++i) { // generate an extra set of coefs for interpolation
6786582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
6796582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        // computation for a single polyphase of the overall filter.
6806582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        SineGen sg = sgg.valueAdvance(); // current sine generator for "j" inner loop.
6816582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung        double err = 0; // for noise shaping on int16_t coefficients (over each polyphase)
6826582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
68386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        for (int j=0, ix=i ; j<halfNumCoef ; ++j, ix+=L) {
6846582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung            double y;
6856582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung            if (CC_LIKELY(ix)) {
6866582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                double x = static_cast<double>(ix);
6876582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung
6886582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                // sine generator: sg.valueAdvance() returns sin(ix*xstep);
689bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung                // y = I0(beta * sqrt(1.0 - sqr(x * xfrac))) * yscale * sg.valueAdvance() / x;
690bafa561d0c9363c5307b6b1daa498bd3ae36089dAndy Hung                y = I0SqrRat(sqrbeta * (1.0 - sqr(x * xfrac)), yscale * sg.valueAdvance(), x);
6916582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung            } else {
6926582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                y = 2. * atten * fcr; // center of filter, sinc(0) = 1.
6936582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung                sg.advance();
6946582f2b14a21e630654c5522ef9ad64e80d5058dAndy Hung            }
69586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
69686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            if (is_same<T, int16_t>::value) { // int16_t needs noise shaping
69786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung                *coef++ = static_cast<T>(toint(y, 1ULL<<(sizeof(T)*8-1), err));
698430b61c72094882bc48693dfc10c256a6ae36ee9Andy Hung            } else if (is_same<T, int32_t>::value) {
69986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung                *coef++ = static_cast<T>(toint(y, 1ULL<<(sizeof(T)*8-1)));
700430b61c72094882bc48693dfc10c256a6ae36ee9Andy Hung            } else { // assumed float or double
701430b61c72094882bc48693dfc10c256a6ae36ee9Andy Hung                *coef++ = static_cast<T>(y);
70286eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung            }
70386eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung        }
70486eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung    }
70586eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}
70686eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
70786eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung}; // namespace android
70886eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung
70986eae0e5931103e040ac2cdd023ef5db252e09f6Andy Hung#endif /*ANDROID_AUDIO_RESAMPLER_FIR_GEN_H*/
710