1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "OpenGLRenderer"
18
19// The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
20#define CASTER_Z_CAP_RATIO 0.95f
21
22// When there is no umbra, then just fake the umbra using
23// centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
24#define FAKE_UMBRA_SIZE_RATIO 0.05f
25
26// When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
27// That is consider pretty fine tessllated polygon so far.
28// This is just to prevent using too much some memory when edge slicing is not
29// needed any more.
30#define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
31/**
32 * Extra vertices for the corner for smoother corner.
33 * Only for outer loop.
34 * Note that we use such extra memory to avoid an extra loop.
35 */
36// For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
37// Set to 1 if we don't want to have any.
38#define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
39
40// For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
41// therefore, the maximum number of extra vertices will be twice bigger.
42#define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER  (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
43
44// For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
45#define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
46
47
48#include <math.h>
49#include <stdlib.h>
50#include <utils/Log.h>
51
52#include "ShadowTessellator.h"
53#include "SpotShadow.h"
54#include "Vertex.h"
55#include "utils/MathUtils.h"
56
57// TODO: After we settle down the new algorithm, we can remove the old one and
58// its utility functions.
59// Right now, we still need to keep it for comparison purpose and future expansion.
60namespace android {
61namespace uirenderer {
62
63static const float EPSILON = 1e-7;
64
65/**
66 * For each polygon's vertex, the light center will project it to the receiver
67 * as one of the outline vertex.
68 * For each outline vertex, we need to store the position and normal.
69 * Normal here is defined against the edge by the current vertex and the next vertex.
70 */
71struct OutlineData {
72    Vector2 position;
73    Vector2 normal;
74    float radius;
75};
76
77/**
78 * For each vertex, we need to keep track of its angle, whether it is penumbra or
79 * umbra, and its corresponding vertex index.
80 */
81struct SpotShadow::VertexAngleData {
82    // The angle to the vertex from the centroid.
83    float mAngle;
84    // True is the vertex comes from penumbra, otherwise it comes from umbra.
85    bool mIsPenumbra;
86    // The index of the vertex described by this data.
87    int mVertexIndex;
88    void set(float angle, bool isPenumbra, int index) {
89        mAngle = angle;
90        mIsPenumbra = isPenumbra;
91        mVertexIndex = index;
92    }
93};
94
95/**
96 * Calculate the angle between and x and a y coordinate.
97 * The atan2 range from -PI to PI.
98 */
99static float angle(const Vector2& point, const Vector2& center) {
100    return atan2(point.y - center.y, point.x - center.x);
101}
102
103/**
104 * Calculate the intersection of a ray with the line segment defined by two points.
105 *
106 * Returns a negative value in error conditions.
107
108 * @param rayOrigin The start of the ray
109 * @param dx The x vector of the ray
110 * @param dy The y vector of the ray
111 * @param p1 The first point defining the line segment
112 * @param p2 The second point defining the line segment
113 * @return The distance along the ray if it intersects with the line segment, negative if otherwise
114 */
115static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
116        const Vector2& p1, const Vector2& p2) {
117    // The math below is derived from solving this formula, basically the
118    // intersection point should stay on both the ray and the edge of (p1, p2).
119    // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
120
121    float divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
122    if (divisor == 0) return -1.0f; // error, invalid divisor
123
124#if DEBUG_SHADOW
125    float interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
126    if (interpVal < 0 || interpVal > 1) {
127        ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
128    }
129#endif
130
131    float distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
132            rayOrigin.x * (p2.y - p1.y)) / divisor;
133
134    return distance; // may be negative in error cases
135}
136
137/**
138 * Sort points by their X coordinates
139 *
140 * @param points the points as a Vector2 array.
141 * @param pointsLength the number of vertices of the polygon.
142 */
143void SpotShadow::xsort(Vector2* points, int pointsLength) {
144    quicksortX(points, 0, pointsLength - 1);
145}
146
147/**
148 * compute the convex hull of a collection of Points
149 *
150 * @param points the points as a Vector2 array.
151 * @param pointsLength the number of vertices of the polygon.
152 * @param retPoly pre allocated array of floats to put the vertices
153 * @return the number of points in the polygon 0 if no intersection
154 */
155int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
156    xsort(points, pointsLength);
157    int n = pointsLength;
158    Vector2 lUpper[n];
159    lUpper[0] = points[0];
160    lUpper[1] = points[1];
161
162    int lUpperSize = 2;
163
164    for (int i = 2; i < n; i++) {
165        lUpper[lUpperSize] = points[i];
166        lUpperSize++;
167
168        while (lUpperSize > 2 && !ccw(
169                lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
170                lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
171                lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
172            // Remove the middle point of the three last
173            lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
174            lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
175            lUpperSize--;
176        }
177    }
178
179    Vector2 lLower[n];
180    lLower[0] = points[n - 1];
181    lLower[1] = points[n - 2];
182
183    int lLowerSize = 2;
184
185    for (int i = n - 3; i >= 0; i--) {
186        lLower[lLowerSize] = points[i];
187        lLowerSize++;
188
189        while (lLowerSize > 2 && !ccw(
190                lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
191                lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
192                lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
193            // Remove the middle point of the three last
194            lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
195            lLowerSize--;
196        }
197    }
198
199    // output points in CW ordering
200    const int total = lUpperSize + lLowerSize - 2;
201    int outIndex = total - 1;
202    for (int i = 0; i < lUpperSize; i++) {
203        retPoly[outIndex] = lUpper[i];
204        outIndex--;
205    }
206
207    for (int i = 1; i < lLowerSize - 1; i++) {
208        retPoly[outIndex] = lLower[i];
209        outIndex--;
210    }
211    // TODO: Add test harness which verify that all the points are inside the hull.
212    return total;
213}
214
215/**
216 * Test whether the 3 points form a counter clockwise turn.
217 *
218 * @return true if a right hand turn
219 */
220bool SpotShadow::ccw(float ax, float ay, float bx, float by,
221        float cx, float cy) {
222    return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
223}
224
225/**
226 * Sort points about a center point
227 *
228 * @param poly The in and out polyogon as a Vector2 array.
229 * @param polyLength The number of vertices of the polygon.
230 * @param center the center ctr[0] = x , ctr[1] = y to sort around.
231 */
232void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
233    quicksortCirc(poly, 0, polyLength - 1, center);
234}
235
236/**
237 * Swap points pointed to by i and j
238 */
239void SpotShadow::swap(Vector2* points, int i, int j) {
240    Vector2 temp = points[i];
241    points[i] = points[j];
242    points[j] = temp;
243}
244
245/**
246 * quick sort implementation about the center.
247 */
248void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
249        const Vector2& center) {
250    int i = low, j = high;
251    int p = low + (high - low) / 2;
252    float pivot = angle(points[p], center);
253    while (i <= j) {
254        while (angle(points[i], center) > pivot) {
255            i++;
256        }
257        while (angle(points[j], center) < pivot) {
258            j--;
259        }
260
261        if (i <= j) {
262            swap(points, i, j);
263            i++;
264            j--;
265        }
266    }
267    if (low < j) quicksortCirc(points, low, j, center);
268    if (i < high) quicksortCirc(points, i, high, center);
269}
270
271/**
272 * Sort points by x axis
273 *
274 * @param points points to sort
275 * @param low start index
276 * @param high end index
277 */
278void SpotShadow::quicksortX(Vector2* points, int low, int high) {
279    int i = low, j = high;
280    int p = low + (high - low) / 2;
281    float pivot = points[p].x;
282    while (i <= j) {
283        while (points[i].x < pivot) {
284            i++;
285        }
286        while (points[j].x > pivot) {
287            j--;
288        }
289
290        if (i <= j) {
291            swap(points, i, j);
292            i++;
293            j--;
294        }
295    }
296    if (low < j) quicksortX(points, low, j);
297    if (i < high) quicksortX(points, i, high);
298}
299
300/**
301 * Test whether a point is inside the polygon.
302 *
303 * @param testPoint the point to test
304 * @param poly the polygon
305 * @return true if the testPoint is inside the poly.
306 */
307bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
308        const Vector2* poly, int len) {
309    bool c = false;
310    float testx = testPoint.x;
311    float testy = testPoint.y;
312    for (int i = 0, j = len - 1; i < len; j = i++) {
313        float startX = poly[j].x;
314        float startY = poly[j].y;
315        float endX = poly[i].x;
316        float endY = poly[i].y;
317
318        if (((endY > testy) != (startY > testy))
319            && (testx < (startX - endX) * (testy - endY)
320             / (startY - endY) + endX)) {
321            c = !c;
322        }
323    }
324    return c;
325}
326
327/**
328 * Make the polygon turn clockwise.
329 *
330 * @param polygon the polygon as a Vector2 array.
331 * @param len the number of points of the polygon
332 */
333void SpotShadow::makeClockwise(Vector2* polygon, int len) {
334    if (polygon == 0  || len == 0) {
335        return;
336    }
337    if (!ShadowTessellator::isClockwise(polygon, len)) {
338        reverse(polygon, len);
339    }
340}
341
342/**
343 * Reverse the polygon
344 *
345 * @param polygon the polygon as a Vector2 array
346 * @param len the number of points of the polygon
347 */
348void SpotShadow::reverse(Vector2* polygon, int len) {
349    int n = len / 2;
350    for (int i = 0; i < n; i++) {
351        Vector2 tmp = polygon[i];
352        int k = len - 1 - i;
353        polygon[i] = polygon[k];
354        polygon[k] = tmp;
355    }
356}
357
358/**
359 * Compute a horizontal circular polygon about point (x , y , height) of radius
360 * (size)
361 *
362 * @param points number of the points of the output polygon.
363 * @param lightCenter the center of the light.
364 * @param size the light size.
365 * @param ret result polygon.
366 */
367void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
368        float size, Vector3* ret) {
369    // TODO: Caching all the sin / cos values and store them in a look up table.
370    for (int i = 0; i < points; i++) {
371        float angle = 2 * i * M_PI / points;
372        ret[i].x = cosf(angle) * size + lightCenter.x;
373        ret[i].y = sinf(angle) * size + lightCenter.y;
374        ret[i].z = lightCenter.z;
375    }
376}
377
378/**
379 * From light center, project one vertex to the z=0 surface and get the outline.
380 *
381 * @param outline The result which is the outline position.
382 * @param lightCenter The center of light.
383 * @param polyVertex The input polygon's vertex.
384 *
385 * @return float The ratio of (polygon.z / light.z - polygon.z)
386 */
387float SpotShadow::projectCasterToOutline(Vector2& outline,
388        const Vector3& lightCenter, const Vector3& polyVertex) {
389    float lightToPolyZ = lightCenter.z - polyVertex.z;
390    float ratioZ = CASTER_Z_CAP_RATIO;
391    if (lightToPolyZ != 0) {
392        // If any caster's vertex is almost above the light, we just keep it as 95%
393        // of the height of the light.
394        ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
395    }
396
397    outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
398    outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
399    return ratioZ;
400}
401
402/**
403 * Generate the shadow spot light of shape lightPoly and a object poly
404 *
405 * @param isCasterOpaque whether the caster is opaque
406 * @param lightCenter the center of the light
407 * @param lightSize the radius of the light
408 * @param poly x,y,z vertexes of a convex polygon that occludes the light source
409 * @param polyLength number of vertexes of the occluding polygon
410 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
411 *                            empty strip if error.
412 */
413void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
414        float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
415        VertexBuffer& shadowTriangleStrip) {
416    if (CC_UNLIKELY(lightCenter.z <= 0)) {
417        ALOGW("Relative Light Z is not positive. No spot shadow!");
418        return;
419    }
420    if (CC_UNLIKELY(polyLength < 3)) {
421#if DEBUG_SHADOW
422        ALOGW("Invalid polygon length. No spot shadow!");
423#endif
424        return;
425    }
426    OutlineData outlineData[polyLength];
427    Vector2 outlineCentroid;
428    // Calculate the projected outline for each polygon's vertices from the light center.
429    //
430    //                       O     Light
431    //                      /
432    //                    /
433    //                   .     Polygon vertex
434    //                 /
435    //               /
436    //              O     Outline vertices
437    //
438    // Ratio = (Poly - Outline) / (Light - Poly)
439    // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
440    // Outline's radius / Light's radius = Ratio
441
442    // Compute the last outline vertex to make sure we can get the normal and outline
443    // in one single loop.
444    projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
445            poly[polyLength - 1]);
446
447    // Take the outline's polygon, calculate the normal for each outline edge.
448    int currentNormalIndex = polyLength - 1;
449    int nextNormalIndex = 0;
450
451    for (int i = 0; i < polyLength; i++) {
452        float ratioZ = projectCasterToOutline(outlineData[i].position,
453                lightCenter, poly[i]);
454        outlineData[i].radius = ratioZ * lightSize;
455
456        outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
457                outlineData[currentNormalIndex].position,
458                outlineData[nextNormalIndex].position);
459        currentNormalIndex = (currentNormalIndex + 1) % polyLength;
460        nextNormalIndex++;
461    }
462
463    projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
464
465    int penumbraIndex = 0;
466    // Then each polygon's vertex produce at minmal 2 penumbra vertices.
467    // Since the size can be dynamic here, we keep track of the size and update
468    // the real size at the end.
469    int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
470    Vector2 penumbra[allocatedPenumbraLength];
471    int totalExtraCornerSliceNumber = 0;
472
473    Vector2 umbra[polyLength];
474
475    // When centroid is covered by all circles from outline, then we consider
476    // the umbra is invalid, and we will tune down the shadow strength.
477    bool hasValidUmbra = true;
478    // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
479    float minRaitoVI = FLT_MAX;
480
481    for (int i = 0; i < polyLength; i++) {
482        // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
483        // There is no guarantee that the penumbra is still convex, but for
484        // each outline vertex, it will connect to all its corresponding penumbra vertices as
485        // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
486        //
487        // Penumbra Vertices marked as Pi
488        // Outline Vertices marked as Vi
489        //                                            (P3)
490        //          (P2)                               |     ' (P4)
491        //   (P1)'   |                                 |   '
492        //         ' |                                 | '
493        // (P0)  ------------------------------------------------(P5)
494        //           | (V0)                            |(V1)
495        //           |                                 |
496        //           |                                 |
497        //           |                                 |
498        //           |                                 |
499        //           |                                 |
500        //           |                                 |
501        //           |                                 |
502        //           |                                 |
503        //       (V3)-----------------------------------(V2)
504        int preNormalIndex = (i + polyLength - 1) % polyLength;
505
506        const Vector2& previousNormal = outlineData[preNormalIndex].normal;
507        const Vector2& currentNormal = outlineData[i].normal;
508
509        // Depending on how roundness we want for each corner, we can subdivide
510        // further here and/or introduce some heuristic to decide how much the
511        // subdivision should be.
512        int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
513                previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
514
515        int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
516        totalExtraCornerSliceNumber += currentExtraSliceNumber;
517#if DEBUG_SHADOW
518        ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
519        ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
520        ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
521#endif
522        if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
523            currentCornerSliceNumber = 1;
524        }
525        for (int k = 0; k <= currentCornerSliceNumber; k++) {
526            Vector2 avgNormal =
527                    (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
528                    currentCornerSliceNumber;
529            avgNormal.normalize();
530            penumbra[penumbraIndex++] = outlineData[i].position +
531                    avgNormal * outlineData[i].radius;
532        }
533
534
535        // Compute the umbra by the intersection from the outline's centroid!
536        //
537        //       (V) ------------------------------------
538        //           |          '                       |
539        //           |         '                        |
540        //           |       ' (I)                      |
541        //           |    '                             |
542        //           | '             (C)                |
543        //           |                                  |
544        //           |                                  |
545        //           |                                  |
546        //           |                                  |
547        //           ------------------------------------
548        //
549        // Connect a line b/t the outline vertex (V) and the centroid (C), it will
550        // intersect with the outline vertex's circle at point (I).
551        // Now, ratioVI = VI / VC, ratioIC = IC / VC
552        // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
553        //
554        // When all of the outline circles cover the the outline centroid, (like I is
555        // on the other side of C), there is no real umbra any more, so we just fake
556        // a small area around the centroid as the umbra, and tune down the spot
557        // shadow's umbra strength to simulate the effect the whole shadow will
558        // become lighter in this case.
559        // The ratio can be simulated by using the inverse of maximum of ratioVI for
560        // all (V).
561        float distOutline = (outlineData[i].position - outlineCentroid).length();
562        if (CC_UNLIKELY(distOutline == 0)) {
563            // If the outline has 0 area, then there is no spot shadow anyway.
564            ALOGW("Outline has 0 area, no spot shadow!");
565            return;
566        }
567
568        float ratioVI = outlineData[i].radius / distOutline;
569        minRaitoVI = MathUtils::min(minRaitoVI, ratioVI);
570        if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
571            ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
572        }
573        // When we know we don't have valid umbra, don't bother to compute the
574        // values below. But we can't skip the loop yet since we want to know the
575        // maximum ratio.
576        float ratioIC = 1 - ratioVI;
577        umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
578    }
579
580    hasValidUmbra = (minRaitoVI <= 1.0);
581    float shadowStrengthScale = 1.0;
582    if (!hasValidUmbra) {
583#if DEBUG_SHADOW
584        ALOGW("The object is too close to the light or too small, no real umbra!");
585#endif
586        for (int i = 0; i < polyLength; i++) {
587            umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
588                    outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
589        }
590        shadowStrengthScale = 1.0 / minRaitoVI;
591    }
592
593    int penumbraLength = penumbraIndex;
594    int umbraLength = polyLength;
595
596#if DEBUG_SHADOW
597    ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength);
598    dumpPolygon(poly, polyLength, "input poly");
599    dumpPolygon(penumbra, penumbraLength, "penumbra");
600    dumpPolygon(umbra, umbraLength, "umbra");
601    ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
602#endif
603
604    // The penumbra and umbra needs to be in convex shape to keep consistency
605    // and quality.
606    // Since we are still shooting rays to penumbra, it needs to be convex.
607    // Umbra can be represented as a fan from the centroid, but visually umbra
608    // looks nicer when it is convex.
609    Vector2 finalUmbra[umbraLength];
610    Vector2 finalPenumbra[penumbraLength];
611    int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
612    int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
613
614    generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra,
615            finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength,
616            shadowTriangleStrip, outlineCentroid);
617
618}
619
620/**
621 * This is only for experimental purpose.
622 * After intersections are calculated, we could smooth the polygon if needed.
623 * So far, we don't think it is more appealing yet.
624 *
625 * @param level The level of smoothness.
626 * @param rays The total number of rays.
627 * @param rayDist (In and Out) The distance for each ray.
628 *
629 */
630void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
631    for (int k = 0; k < level; k++) {
632        for (int i = 0; i < rays; i++) {
633            float p1 = rayDist[(rays - 1 + i) % rays];
634            float p2 = rayDist[i];
635            float p3 = rayDist[(i + 1) % rays];
636            rayDist[i] = (p1 + p2 * 2 + p3) / 4;
637        }
638    }
639}
640
641// Index pair is meant for storing the tessellation information for the penumbra
642// area. One index must come from exterior tangent of the circles, the other one
643// must come from the interior tangent of the circles.
644struct IndexPair {
645    int outerIndex;
646    int innerIndex;
647};
648
649// For one penumbra vertex, find the cloest umbra vertex and return its index.
650inline int getClosestUmbraIndex(const Vector2& pivot, const Vector2* polygon, int polygonLength) {
651    float minLengthSquared = FLT_MAX;
652    int resultIndex = -1;
653    bool hasDecreased = false;
654    // Starting with some negative offset, assuming both umbra and penumbra are starting
655    // at the same angle, this can help to find the result faster.
656    // Normally, loop 3 times, we can find the closest point.
657    int offset = polygonLength - 2;
658    for (int i = 0; i < polygonLength; i++) {
659        int currentIndex = (i + offset) % polygonLength;
660        float currentLengthSquared = (pivot - polygon[currentIndex]).lengthSquared();
661        if (currentLengthSquared < minLengthSquared) {
662            if (minLengthSquared != FLT_MAX) {
663                hasDecreased = true;
664            }
665            minLengthSquared = currentLengthSquared;
666            resultIndex = currentIndex;
667        } else if (currentLengthSquared > minLengthSquared && hasDecreased) {
668            // Early break b/c we have found the closet one and now the length
669            // is increasing again.
670            break;
671        }
672    }
673    if(resultIndex == -1) {
674        ALOGE("resultIndex is -1, the polygon must be invalid!");
675        resultIndex = 0;
676    }
677    return resultIndex;
678}
679
680// Allow some epsilon here since the later ray intersection did allow for some small
681// floating point error, when the intersection point is slightly outside the segment.
682inline bool sameDirections(bool isPositiveCross, float a, float b) {
683    if (isPositiveCross) {
684        return a >= -EPSILON && b >= -EPSILON;
685    } else {
686        return a <= EPSILON && b <= EPSILON;
687    }
688}
689
690// Find the right polygon edge to shoot the ray at.
691inline int findPolyIndex(bool isPositiveCross, int startPolyIndex, const Vector2& umbraDir,
692        const Vector2* polyToCentroid, int polyLength) {
693    // Make sure we loop with a bound.
694    for (int i = 0; i < polyLength; i++) {
695        int currentIndex = (i + startPolyIndex) % polyLength;
696        const Vector2& currentToCentroid = polyToCentroid[currentIndex];
697        const Vector2& nextToCentroid = polyToCentroid[(currentIndex + 1) % polyLength];
698
699        float currentCrossUmbra = currentToCentroid.cross(umbraDir);
700        float umbraCrossNext = umbraDir.cross(nextToCentroid);
701        if (sameDirections(isPositiveCross, currentCrossUmbra, umbraCrossNext)) {
702#if DEBUG_SHADOW
703            ALOGD("findPolyIndex loop %d times , index %d", i, currentIndex );
704#endif
705            return currentIndex;
706        }
707    }
708    LOG_ALWAYS_FATAL("Can't find the right polygon's edge from startPolyIndex %d", startPolyIndex);
709    return -1;
710}
711
712// Generate the index pair for penumbra / umbra vertices, and more penumbra vertices
713// if needed.
714inline void genNewPenumbraAndPairWithUmbra(const Vector2* penumbra, int penumbraLength,
715        const Vector2* umbra, int umbraLength, Vector2* newPenumbra, int& newPenumbraIndex,
716        IndexPair* verticesPair, int& verticesPairIndex) {
717    // In order to keep everything in just one loop, we need to pre-compute the
718    // closest umbra vertex for the last penumbra vertex.
719    int previousClosestUmbraIndex = getClosestUmbraIndex(penumbra[penumbraLength - 1],
720            umbra, umbraLength);
721    for (int i = 0; i < penumbraLength; i++) {
722        const Vector2& currentPenumbraVertex = penumbra[i];
723        // For current penumbra vertex, starting from previousClosestUmbraIndex,
724        // then check the next one until the distance increase.
725        // The last one before the increase is the umbra vertex we need to pair with.
726        float currentLengthSquared =
727                (currentPenumbraVertex - umbra[previousClosestUmbraIndex]).lengthSquared();
728        int currentClosestUmbraIndex = previousClosestUmbraIndex;
729        int indexDelta = 0;
730        for (int j = 1; j < umbraLength; j++) {
731            int newUmbraIndex = (previousClosestUmbraIndex + j) % umbraLength;
732            float newLengthSquared = (currentPenumbraVertex - umbra[newUmbraIndex]).lengthSquared();
733            if (newLengthSquared > currentLengthSquared) {
734                // currentClosestUmbraIndex is the umbra vertex's index which has
735                // currently found smallest distance, so we can simply break here.
736                break;
737            } else {
738                currentLengthSquared = newLengthSquared;
739                indexDelta++;
740                currentClosestUmbraIndex = newUmbraIndex;
741            }
742        }
743
744        if (indexDelta > 1) {
745            // For those umbra don't have  penumbra, generate new penumbra vertices by interpolation.
746            //
747            // Assuming Pi for penumbra vertices, and Ui for umbra vertices.
748            // In the case like below P1 paired with U1 and P2 paired with  U5.
749            // U2 to U4 are unpaired umbra vertices.
750            //
751            // P1                                        P2
752            // |                                          |
753            // U1     U2                   U3     U4     U5
754            //
755            // We will need to generate 3 more penumbra vertices P1.1, P1.2, P1.3
756            // to pair with U2 to U4.
757            //
758            // P1     P1.1                P1.2   P1.3    P2
759            // |       |                   |      |      |
760            // U1     U2                   U3     U4     U5
761            //
762            // That distance ratio b/t Ui to U1 and Ui to U5 decides its paired penumbra
763            // vertex's location.
764            int newPenumbraNumber = indexDelta - 1;
765
766            float accumulatedDeltaLength[newPenumbraNumber];
767            float totalDeltaLength = 0;
768
769            // To save time, cache the previous umbra vertex info outside the loop
770            // and update each loop.
771            Vector2 previousClosestUmbra = umbra[previousClosestUmbraIndex];
772            Vector2 skippedUmbra;
773            // Use umbra data to precompute the length b/t unpaired umbra vertices,
774            // and its ratio against the total length.
775            for (int k = 0; k < indexDelta; k++) {
776                int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
777                skippedUmbra = umbra[skippedUmbraIndex];
778                float currentDeltaLength = (skippedUmbra - previousClosestUmbra).length();
779
780                totalDeltaLength += currentDeltaLength;
781                accumulatedDeltaLength[k] = totalDeltaLength;
782
783                previousClosestUmbra = skippedUmbra;
784            }
785
786            const Vector2& previousPenumbra = penumbra[(i + penumbraLength - 1) % penumbraLength];
787            // Then for each unpaired umbra vertex, create a new penumbra by the ratio,
788            // and pair them togehter.
789            for (int k = 0; k < newPenumbraNumber; k++) {
790                float weightForCurrentPenumbra = 1.0f;
791                if (totalDeltaLength != 0.0f) {
792                    weightForCurrentPenumbra = accumulatedDeltaLength[k] / totalDeltaLength;
793                }
794                float weightForPreviousPenumbra = 1.0f - weightForCurrentPenumbra;
795
796                Vector2 interpolatedPenumbra = currentPenumbraVertex * weightForCurrentPenumbra +
797                    previousPenumbra * weightForPreviousPenumbra;
798
799                int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
800                verticesPair[verticesPairIndex++] = {newPenumbraIndex, skippedUmbraIndex};
801                newPenumbra[newPenumbraIndex++] = interpolatedPenumbra;
802            }
803        }
804        verticesPair[verticesPairIndex++] = {newPenumbraIndex, currentClosestUmbraIndex};
805        newPenumbra[newPenumbraIndex++] = currentPenumbraVertex;
806
807        previousClosestUmbraIndex = currentClosestUmbraIndex;
808    }
809}
810
811// Precompute all the polygon's vector, return true if the reference cross product is positive.
812inline bool genPolyToCentroid(const Vector2* poly2d, int polyLength,
813        const Vector2& centroid, Vector2* polyToCentroid) {
814    for (int j = 0; j < polyLength; j++) {
815        polyToCentroid[j] = poly2d[j] - centroid;
816        // Normalize these vectors such that we can use epsilon comparison after
817        // computing their cross products with another normalized vector.
818        polyToCentroid[j].normalize();
819    }
820    float refCrossProduct = 0;
821    for (int j = 0; j < polyLength; j++) {
822        refCrossProduct = polyToCentroid[j].cross(polyToCentroid[(j + 1) % polyLength]);
823        if (refCrossProduct != 0) {
824            break;
825        }
826    }
827
828    return refCrossProduct > 0;
829}
830
831// For one umbra vertex, shoot an ray from centroid to it.
832// If the ray hit the polygon first, then return the intersection point as the
833// closer vertex.
834inline Vector2 getCloserVertex(const Vector2& umbraVertex, const Vector2& centroid,
835        const Vector2* poly2d, int polyLength, const Vector2* polyToCentroid,
836        bool isPositiveCross, int& previousPolyIndex) {
837    Vector2 umbraToCentroid = umbraVertex - centroid;
838    float distanceToUmbra = umbraToCentroid.length();
839    umbraToCentroid = umbraToCentroid / distanceToUmbra;
840
841    // previousPolyIndex is updated for each item such that we can minimize the
842    // looping inside findPolyIndex();
843    previousPolyIndex = findPolyIndex(isPositiveCross, previousPolyIndex,
844            umbraToCentroid, polyToCentroid, polyLength);
845
846    float dx = umbraToCentroid.x;
847    float dy = umbraToCentroid.y;
848    float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
849            poly2d[previousPolyIndex], poly2d[(previousPolyIndex + 1) % polyLength]);
850    if (distanceToIntersectPoly < 0) {
851        distanceToIntersectPoly = 0;
852    }
853
854    // Pick the closer one as the occluded area vertex.
855    Vector2 closerVertex;
856    if (distanceToIntersectPoly < distanceToUmbra) {
857        closerVertex.x = centroid.x + dx * distanceToIntersectPoly;
858        closerVertex.y = centroid.y + dy * distanceToIntersectPoly;
859    } else {
860        closerVertex = umbraVertex;
861    }
862
863    return closerVertex;
864}
865
866/**
867 * Generate a triangle strip given two convex polygon
868**/
869void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
870        Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
871        const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
872        const Vector2& centroid) {
873    bool hasOccludedUmbraArea = false;
874    Vector2 poly2d[polyLength];
875
876    if (isCasterOpaque) {
877        for (int i = 0; i < polyLength; i++) {
878            poly2d[i].x = poly[i].x;
879            poly2d[i].y = poly[i].y;
880        }
881        // Make sure the centroid is inside the umbra, otherwise, fall back to the
882        // approach as if there is no occluded umbra area.
883        if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
884            hasOccludedUmbraArea = true;
885        }
886    }
887
888    // For each penumbra vertex, find its corresponding closest umbra vertex index.
889    //
890    // Penumbra Vertices marked as Pi
891    // Umbra Vertices marked as Ui
892    //                                            (P3)
893    //          (P2)                               |     ' (P4)
894    //   (P1)'   |                                 |   '
895    //         ' |                                 | '
896    // (P0)  ------------------------------------------------(P5)
897    //           | (U0)                            |(U1)
898    //           |                                 |
899    //           |                                 |(U2)     (P5.1)
900    //           |                                 |
901    //           |                                 |
902    //           |                                 |
903    //           |                                 |
904    //           |                                 |
905    //           |                                 |
906    //       (U4)-----------------------------------(U3)      (P6)
907    //
908    // At least, like P0, P1, P2, they will find the matching umbra as U0.
909    // If we jump over some umbra vertex without matching penumbra vertex, then
910    // we will generate some new penumbra vertex by interpolation. Like P6 is
911    // matching U3, but U2 is not matched with any penumbra vertex.
912    // So interpolate P5.1 out and match U2.
913    // In this way, every umbra vertex will have a matching penumbra vertex.
914    //
915    // The total pair number can be as high as umbraLength + penumbraLength.
916    const int maxNewPenumbraLength = umbraLength + penumbraLength;
917    IndexPair verticesPair[maxNewPenumbraLength];
918    int verticesPairIndex = 0;
919
920    // Cache all the existing penumbra vertices and newly interpolated vertices into a
921    // a new array.
922    Vector2 newPenumbra[maxNewPenumbraLength];
923    int newPenumbraIndex = 0;
924
925    // For each penumbra vertex, find its closet umbra vertex by comparing the
926    // neighbor umbra vertices.
927    genNewPenumbraAndPairWithUmbra(penumbra, penumbraLength, umbra, umbraLength, newPenumbra,
928            newPenumbraIndex, verticesPair, verticesPairIndex);
929    ShadowTessellator::checkOverflow(verticesPairIndex, maxNewPenumbraLength, "Spot pair");
930    ShadowTessellator::checkOverflow(newPenumbraIndex, maxNewPenumbraLength, "Spot new penumbra");
931#if DEBUG_SHADOW
932    for (int i = 0; i < umbraLength; i++) {
933        ALOGD("umbra i %d,  [%f, %f]", i, umbra[i].x, umbra[i].y);
934    }
935    for (int i = 0; i < newPenumbraIndex; i++) {
936        ALOGD("new penumbra i %d,  [%f, %f]", i, newPenumbra[i].x, newPenumbra[i].y);
937    }
938    for (int i = 0; i < verticesPairIndex; i++) {
939        ALOGD("index i %d,  [%d, %d]", i, verticesPair[i].outerIndex, verticesPair[i].innerIndex);
940    }
941#endif
942
943    // For the size of vertex buffer, we need 3 rings, one has newPenumbraSize,
944    // one has umbraLength, the last one has at most umbraLength.
945    //
946    // For the size of index buffer, the umbra area needs (2 * umbraLength + 2).
947    // The penumbra one can vary a bit, but it is bounded by (2 * verticesPairIndex + 2).
948    // And 2 more for jumping between penumbra to umbra.
949    const int newPenumbraLength = newPenumbraIndex;
950    const int totalVertexCount = newPenumbraLength + umbraLength * 2;
951    const int totalIndexCount = 2 * umbraLength + 2 * verticesPairIndex + 6;
952    AlphaVertex* shadowVertices =
953            shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
954    uint16_t* indexBuffer =
955            shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
956    int vertexBufferIndex = 0;
957    int indexBufferIndex = 0;
958
959    // Fill the IB and VB for the penumbra area.
960    for (int i = 0; i < newPenumbraLength; i++) {
961        AlphaVertex::set(&shadowVertices[vertexBufferIndex++], newPenumbra[i].x,
962                newPenumbra[i].y, 0.0f);
963    }
964    for (int i = 0; i < umbraLength; i++) {
965        AlphaVertex::set(&shadowVertices[vertexBufferIndex++], umbra[i].x, umbra[i].y,
966                M_PI);
967    }
968
969    for (int i = 0; i < verticesPairIndex; i++) {
970        indexBuffer[indexBufferIndex++] = verticesPair[i].outerIndex;
971        // All umbra index need to be offseted by newPenumbraSize.
972        indexBuffer[indexBufferIndex++] = verticesPair[i].innerIndex + newPenumbraLength;
973    }
974    indexBuffer[indexBufferIndex++] = verticesPair[0].outerIndex;
975    indexBuffer[indexBufferIndex++] = verticesPair[0].innerIndex + newPenumbraLength;
976
977    // Now fill the IB and VB for the umbra area.
978    // First duplicated the index from previous strip and the first one for the
979    // degenerated triangles.
980    indexBuffer[indexBufferIndex] = indexBuffer[indexBufferIndex - 1];
981    indexBufferIndex++;
982    indexBuffer[indexBufferIndex++] = newPenumbraLength + 0;
983    // Save the first VB index for umbra area in order to close the loop.
984    int savedStartIndex = vertexBufferIndex;
985
986    if (hasOccludedUmbraArea) {
987        // Precompute all the polygon's vector, and the reference cross product,
988        // in order to find the right polygon edge for the ray to intersect.
989        Vector2 polyToCentroid[polyLength];
990        bool isPositiveCross = genPolyToCentroid(poly2d, polyLength, centroid, polyToCentroid);
991
992        // Because both the umbra and polygon are going in the same direction,
993        // we can save the previous polygon index to make sure we have less polygon
994        // vertex to compute for each ray.
995        int previousPolyIndex = 0;
996        for (int i = 0; i < umbraLength; i++) {
997            // Shoot a ray from centroid to each umbra vertices and pick the one with
998            // shorter distance to the centroid, b/t the umbra vertex or the intersection point.
999            Vector2 closerVertex = getCloserVertex(umbra[i], centroid, poly2d, polyLength,
1000                    polyToCentroid, isPositiveCross, previousPolyIndex);
1001
1002            // We already stored the umbra vertices, just need to add the occlued umbra's ones.
1003            indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
1004            indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1005            AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
1006                    closerVertex.x, closerVertex.y, M_PI);
1007        }
1008    } else {
1009        // If there is no occluded umbra at all, then draw the triangle fan
1010        // starting from the centroid to all umbra vertices.
1011        int lastCentroidIndex = vertexBufferIndex;
1012        AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
1013                centroid.y, M_PI);
1014        for (int i = 0; i < umbraLength; i++) {
1015            indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
1016            indexBuffer[indexBufferIndex++] = lastCentroidIndex;
1017        }
1018    }
1019    // Closing the umbra area triangle's loop here.
1020    indexBuffer[indexBufferIndex++] = newPenumbraLength;
1021    indexBuffer[indexBufferIndex++] = savedStartIndex;
1022
1023    // At the end, update the real index and vertex buffer size.
1024    shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
1025    shadowTriangleStrip.updateIndexCount(indexBufferIndex);
1026    ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
1027    ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
1028
1029    shadowTriangleStrip.setMode(VertexBuffer::kIndices);
1030    shadowTriangleStrip.computeBounds<AlphaVertex>();
1031}
1032
1033#if DEBUG_SHADOW
1034
1035#define TEST_POINT_NUMBER 128
1036/**
1037 * Calculate the bounds for generating random test points.
1038 */
1039void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
1040        Vector2& upperBound) {
1041    if (inVector.x < lowerBound.x) {
1042        lowerBound.x = inVector.x;
1043    }
1044
1045    if (inVector.y < lowerBound.y) {
1046        lowerBound.y = inVector.y;
1047    }
1048
1049    if (inVector.x > upperBound.x) {
1050        upperBound.x = inVector.x;
1051    }
1052
1053    if (inVector.y > upperBound.y) {
1054        upperBound.y = inVector.y;
1055    }
1056}
1057
1058/**
1059 * For debug purpose, when things go wrong, dump the whole polygon data.
1060 */
1061void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
1062    for (int i = 0; i < polyLength; i++) {
1063        ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1064    }
1065}
1066
1067/**
1068 * For debug purpose, when things go wrong, dump the whole polygon data.
1069 */
1070void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
1071    for (int i = 0; i < polyLength; i++) {
1072        ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1073    }
1074}
1075
1076/**
1077 * Test whether the polygon is convex.
1078 */
1079bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
1080        const char* name) {
1081    bool isConvex = true;
1082    for (int i = 0; i < polygonLength; i++) {
1083        Vector2 start = polygon[i];
1084        Vector2 middle = polygon[(i + 1) % polygonLength];
1085        Vector2 end = polygon[(i + 2) % polygonLength];
1086
1087        float delta = (float(middle.x) - start.x) * (float(end.y) - start.y) -
1088                (float(middle.y) - start.y) * (float(end.x) - start.x);
1089        bool isCCWOrCoLinear = (delta >= EPSILON);
1090
1091        if (isCCWOrCoLinear) {
1092            ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
1093                    "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
1094                    name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
1095            isConvex = false;
1096            break;
1097        }
1098    }
1099    return isConvex;
1100}
1101
1102/**
1103 * Test whether or not the polygon (intersection) is within the 2 input polygons.
1104 * Using Marte Carlo method, we generate a random point, and if it is inside the
1105 * intersection, then it must be inside both source polygons.
1106 */
1107void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
1108        const Vector2* poly2, int poly2Length,
1109        const Vector2* intersection, int intersectionLength) {
1110    // Find the min and max of x and y.
1111    Vector2 lowerBound = {FLT_MAX, FLT_MAX};
1112    Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
1113    for (int i = 0; i < poly1Length; i++) {
1114        updateBound(poly1[i], lowerBound, upperBound);
1115    }
1116    for (int i = 0; i < poly2Length; i++) {
1117        updateBound(poly2[i], lowerBound, upperBound);
1118    }
1119
1120    bool dumpPoly = false;
1121    for (int k = 0; k < TEST_POINT_NUMBER; k++) {
1122        // Generate a random point between minX, minY and maxX, maxY.
1123        float randomX = rand() / float(RAND_MAX);
1124        float randomY = rand() / float(RAND_MAX);
1125
1126        Vector2 testPoint;
1127        testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
1128        testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
1129
1130        // If the random point is in both poly 1 and 2, then it must be intersection.
1131        if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
1132            if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
1133                dumpPoly = true;
1134                ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1135                        " not in the poly1",
1136                        testPoint.x, testPoint.y);
1137            }
1138
1139            if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
1140                dumpPoly = true;
1141                ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1142                        " not in the poly2",
1143                        testPoint.x, testPoint.y);
1144            }
1145        }
1146    }
1147
1148    if (dumpPoly) {
1149        dumpPolygon(intersection, intersectionLength, "intersection");
1150        for (int i = 1; i < intersectionLength; i++) {
1151            Vector2 delta = intersection[i] - intersection[i - 1];
1152            ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
1153        }
1154
1155        dumpPolygon(poly1, poly1Length, "poly 1");
1156        dumpPolygon(poly2, poly2Length, "poly 2");
1157    }
1158}
1159#endif
1160
1161}; // namespace uirenderer
1162}; // namespace android
1163