RSForEachExpand.cpp revision d88177580db4ddedf680854c51db333c97eabc59
1/*
2 * Copyright 2012, The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *     http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "bcc/Assert.h"
18#include "bcc/Renderscript/RSTransforms.h"
19
20#include <cstdlib>
21
22#include <llvm/IR/DerivedTypes.h>
23#include <llvm/IR/Function.h>
24#include <llvm/IR/Instructions.h>
25#include <llvm/IR/IRBuilder.h>
26#include <llvm/IR/MDBuilder.h>
27#include <llvm/IR/Module.h>
28#include <llvm/Pass.h>
29#include <llvm/Support/raw_ostream.h>
30#include <llvm/IR/DataLayout.h>
31#include <llvm/IR/Function.h>
32#include <llvm/IR/Type.h>
33#include <llvm/Transforms/Utils/BasicBlockUtils.h>
34
35#include "bcc/Config/Config.h"
36#include "bcc/Renderscript/RSInfo.h"
37#include "bcc/Support/Log.h"
38
39#include "bcinfo/MetadataExtractor.h"
40
41using namespace bcc;
42
43namespace {
44
45/* RSForEachExpandPass - This pass operates on functions that are able to be
46 * called via rsForEach() or "foreach_<NAME>". We create an inner loop for the
47 * ForEach-able function to be invoked over the appropriate data cells of the
48 * input/output allocations (adjusting other relevant parameters as we go). We
49 * support doing this for any ForEach-able compute kernels. The new function
50 * name is the original function name followed by ".expand". Note that we
51 * still generate code for the original function.
52 */
53class RSForEachExpandPass : public llvm::ModulePass {
54private:
55  static char ID;
56
57  llvm::Module *M;
58  llvm::LLVMContext *C;
59
60  const RSInfo::ExportForeachFuncListTy &mFuncs;
61
62  // Turns on optimization of allocation stride values.
63  bool mEnableStepOpt;
64
65  uint32_t getRootSignature(llvm::Function *F) {
66    const llvm::NamedMDNode *ExportForEachMetadata =
67        M->getNamedMetadata("#rs_export_foreach");
68
69    if (!ExportForEachMetadata) {
70      llvm::SmallVector<llvm::Type*, 8> RootArgTys;
71      for (llvm::Function::arg_iterator B = F->arg_begin(),
72                                        E = F->arg_end();
73           B != E;
74           ++B) {
75        RootArgTys.push_back(B->getType());
76      }
77
78      // For pre-ICS bitcode, we may not have signature information. In that
79      // case, we use the size of the RootArgTys to select the number of
80      // arguments.
81      return (1 << RootArgTys.size()) - 1;
82    }
83
84    if (ExportForEachMetadata->getNumOperands() == 0) {
85      return 0;
86    }
87
88    bccAssert(ExportForEachMetadata->getNumOperands() > 0);
89
90    // We only handle the case for legacy root() functions here, so this is
91    // hard-coded to look at only the first such function.
92    llvm::MDNode *SigNode = ExportForEachMetadata->getOperand(0);
93    if (SigNode != NULL && SigNode->getNumOperands() == 1) {
94      llvm::Value *SigVal = SigNode->getOperand(0);
95      if (SigVal->getValueID() == llvm::Value::MDStringVal) {
96        llvm::StringRef SigString =
97            static_cast<llvm::MDString*>(SigVal)->getString();
98        uint32_t Signature = 0;
99        if (SigString.getAsInteger(10, Signature)) {
100          ALOGE("Non-integer signature value '%s'", SigString.str().c_str());
101          return 0;
102        }
103        return Signature;
104      }
105    }
106
107    return 0;
108  }
109
110  // Get the actual value we should use to step through an allocation.
111  //
112  // Normally the value we use to step through an allocation is given to us by
113  // the driver. However, for certain primitive data types, we can derive an
114  // integer constant for the step value. We use this integer constant whenever
115  // possible to allow further compiler optimizations to take place.
116  //
117  // DL - Target Data size/layout information.
118  // T - Type of allocation (should be a pointer).
119  // OrigStep - Original step increment (root.expand() input from driver).
120  llvm::Value *getStepValue(llvm::DataLayout *DL, llvm::Type *T,
121                            llvm::Value *OrigStep) {
122    bccAssert(DL);
123    bccAssert(T);
124    bccAssert(OrigStep);
125    llvm::PointerType *PT = llvm::dyn_cast<llvm::PointerType>(T);
126    llvm::Type *VoidPtrTy = llvm::Type::getInt8PtrTy(*C);
127    if (mEnableStepOpt && T != VoidPtrTy && PT) {
128      llvm::Type *ET = PT->getElementType();
129      uint64_t ETSize = DL->getTypeAllocSize(ET);
130      llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*C);
131      return llvm::ConstantInt::get(Int32Ty, ETSize);
132    } else {
133      return OrigStep;
134    }
135  }
136
137  /// @brief Returns the type of the ForEach stub parameter structure.
138  ///
139  /// Renderscript uses a single structure in which all parameters are passed
140  /// to keep the signature of the expanded function independent of the
141  /// parameters passed to it.
142  llvm::Type *getForeachStubTy() {
143    llvm::Type *VoidPtrTy = llvm::Type::getInt8PtrTy(*C);
144    llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*C);
145    llvm::Type *SizeTy = Int32Ty;
146    /* Defined in frameworks/base/libs/rs/rs_hal.h:
147     *
148     * struct RsForEachStubParamStruct {
149     *   const void *in;
150     *   void *out;
151     *   const void *usr;
152     *   size_t usr_len;
153     *   uint32_t x;
154     *   uint32_t y;
155     *   uint32_t z;
156     *   uint32_t lod;
157     *   enum RsAllocationCubemapFace face;
158     *   uint32_t ar[16];
159     * };
160     */
161    llvm::SmallVector<llvm::Type*, 9> StructTys;
162    StructTys.push_back(VoidPtrTy);  // const void *in
163    StructTys.push_back(VoidPtrTy);  // void *out
164    StructTys.push_back(VoidPtrTy);  // const void *usr
165    StructTys.push_back(SizeTy);     // size_t usr_len
166    StructTys.push_back(Int32Ty);    // uint32_t x
167    StructTys.push_back(Int32Ty);    // uint32_t y
168    StructTys.push_back(Int32Ty);    // uint32_t z
169    StructTys.push_back(Int32Ty);    // uint32_t lod
170    StructTys.push_back(Int32Ty);    // enum RsAllocationCubemapFace
171    StructTys.push_back(llvm::ArrayType::get(Int32Ty, 16));  // uint32_t ar[16]
172
173    return llvm::StructType::create(StructTys, "RsForEachStubParamStruct");
174  }
175
176  /// @brief Create skeleton of the expanded function.
177  ///
178  /// This creates a function with the following signature:
179  ///
180  ///   void (const RsForEachStubParamStruct *p, uint32_t x1, uint32_t x2,
181  ///         uint32_t instep, uint32_t outstep)
182  ///
183  llvm::Function *createEmptyExpandedFunction(llvm::StringRef OldName) {
184    llvm::Type *ForEachStubPtrTy = getForeachStubTy()->getPointerTo();
185    llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*C);
186
187    llvm::SmallVector<llvm::Type*, 8> ParamTys;
188    ParamTys.push_back(ForEachStubPtrTy);  // const RsForEachStubParamStruct *p
189    ParamTys.push_back(Int32Ty);           // uint32_t x1
190    ParamTys.push_back(Int32Ty);           // uint32_t x2
191    ParamTys.push_back(Int32Ty);           // uint32_t instep
192    ParamTys.push_back(Int32Ty);           // uint32_t outstep
193
194    llvm::FunctionType *FT =
195        llvm::FunctionType::get(llvm::Type::getVoidTy(*C), ParamTys, false);
196    llvm::Function *F =
197        llvm::Function::Create(FT, llvm::GlobalValue::ExternalLinkage,
198                               OldName + ".expand", M);
199
200    llvm::Function::arg_iterator AI = F->arg_begin();
201
202    AI->setName("p");
203    AI++;
204    AI->setName("x1");
205    AI++;
206    AI->setName("x2");
207    AI++;
208    AI->setName("arg_instep");
209    AI++;
210    AI->setName("arg_outstep");
211    AI++;
212
213    assert(AI == F->arg_end());
214
215    llvm::BasicBlock *Begin = llvm::BasicBlock::Create(*C, "Begin", F);
216    llvm::IRBuilder<> Builder(Begin);
217    Builder.CreateRetVoid();
218
219    return F;
220  }
221
222  /// @brief Create an empty loop
223  ///
224  /// Create a loop of the form:
225  ///
226  /// for (i = LowerBound; i < UpperBound; i++)
227  ///   ;
228  ///
229  /// After the loop has been created, the builder is set such that
230  /// instructions can be added to the loop body.
231  ///
232  /// @param Builder The builder to use to build this loop. The current
233  ///                position of the builder is the position the loop
234  ///                will be inserted.
235  /// @param LowerBound The first value of the loop iterator
236  /// @param UpperBound The maximal value of the loop iterator
237  /// @param LoopIV A reference that will be set to the loop iterator.
238  /// @return The BasicBlock that will be executed after the loop.
239  llvm::BasicBlock *createLoop(llvm::IRBuilder<> &Builder,
240                               llvm::Value *LowerBound,
241                               llvm::Value *UpperBound,
242                               llvm::PHINode **LoopIV) {
243    assert(LowerBound->getType() == UpperBound->getType());
244
245    llvm::BasicBlock *CondBB, *AfterBB, *HeaderBB;
246    llvm::Value *Cond, *IVNext;
247    llvm::PHINode *IV;
248
249    CondBB = Builder.GetInsertBlock();
250    AfterBB = llvm::SplitBlock(CondBB, Builder.GetInsertPoint(), this);
251    HeaderBB = llvm::BasicBlock::Create(*C, "Loop", CondBB->getParent());
252
253    // if (LowerBound < Upperbound)
254    //   goto LoopHeader
255    // else
256    //   goto AfterBB
257    CondBB->getTerminator()->eraseFromParent();
258    Builder.SetInsertPoint(CondBB);
259    Cond = Builder.CreateICmpULT(LowerBound, UpperBound);
260    Builder.CreateCondBr(Cond, HeaderBB, AfterBB);
261
262    // iv = PHI [CondBB -> LowerBound], [LoopHeader -> NextIV ]
263    // iv.next = iv + 1
264    // if (iv.next < Upperbound)
265    //   goto LoopHeader
266    // else
267    //   goto AfterBB
268    Builder.SetInsertPoint(HeaderBB);
269    IV = Builder.CreatePHI(LowerBound->getType(), 2, "X");
270    IV->addIncoming(LowerBound, CondBB);
271    IVNext = Builder.CreateNUWAdd(IV, Builder.getInt32(1));
272    IV->addIncoming(IVNext, HeaderBB);
273    Cond = Builder.CreateICmpULT(IVNext, UpperBound);
274    Builder.CreateCondBr(Cond, HeaderBB, AfterBB);
275    AfterBB->setName("Exit");
276    Builder.SetInsertPoint(HeaderBB->getFirstNonPHI());
277    *LoopIV = IV;
278    return AfterBB;
279  }
280
281public:
282  RSForEachExpandPass(const RSInfo::ExportForeachFuncListTy &pForeachFuncs,
283                      bool pEnableStepOpt)
284      : ModulePass(ID), M(NULL), C(NULL), mFuncs(pForeachFuncs),
285        mEnableStepOpt(pEnableStepOpt) {
286  }
287
288  /* Performs the actual optimization on a selected function. On success, the
289   * Module will contain a new function of the name "<NAME>.expand" that
290   * invokes <NAME>() in a loop with the appropriate parameters.
291   */
292  bool ExpandFunction(llvm::Function *F, uint32_t Signature) {
293    ALOGV("Expanding ForEach-able Function %s", F->getName().str().c_str());
294
295    if (!Signature) {
296      Signature = getRootSignature(F);
297      if (!Signature) {
298        // We couldn't determine how to expand this function based on its
299        // function signature.
300        return false;
301      }
302    }
303
304    llvm::DataLayout DL(M);
305
306    llvm::Function *ExpandedFunc = createEmptyExpandedFunction(F->getName());
307
308    // Create and name the actual arguments to this expanded function.
309    llvm::SmallVector<llvm::Argument*, 8> ArgVec;
310    for (llvm::Function::arg_iterator B = ExpandedFunc->arg_begin(),
311                                      E = ExpandedFunc->arg_end();
312         B != E;
313         ++B) {
314      ArgVec.push_back(B);
315    }
316
317    if (ArgVec.size() != 5) {
318      ALOGE("Incorrect number of arguments to function: %zu",
319            ArgVec.size());
320      return false;
321    }
322    llvm::Value *Arg_p = ArgVec[0];
323    llvm::Value *Arg_x1 = ArgVec[1];
324    llvm::Value *Arg_x2 = ArgVec[2];
325    llvm::Value *Arg_instep = ArgVec[3];
326    llvm::Value *Arg_outstep = ArgVec[4];
327
328    llvm::Value *InStep = NULL;
329    llvm::Value *OutStep = NULL;
330
331    // Construct the actual function body.
332    llvm::IRBuilder<> Builder(ExpandedFunc->getEntryBlock().begin());
333
334    // Collect and construct the arguments for the kernel().
335    // Note that we load any loop-invariant arguments before entering the Loop.
336    llvm::Function::arg_iterator Args = F->arg_begin();
337
338    llvm::Type *InTy = NULL;
339    llvm::Value *InBasePtr = NULL;
340    if (bcinfo::MetadataExtractor::hasForEachSignatureIn(Signature)) {
341      InTy = Args->getType();
342      InStep = getStepValue(&DL, InTy, Arg_instep);
343      InStep->setName("instep");
344      InBasePtr = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 0));
345      Args++;
346    }
347
348    llvm::Type *OutTy = NULL;
349    llvm::Value *OutBasePtr = NULL;
350    if (bcinfo::MetadataExtractor::hasForEachSignatureOut(Signature)) {
351      OutTy = Args->getType();
352      OutStep = getStepValue(&DL, OutTy, Arg_outstep);
353      OutStep->setName("outstep");
354      OutBasePtr = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 1));
355      Args++;
356    }
357
358    llvm::Value *UsrData = NULL;
359    if (bcinfo::MetadataExtractor::hasForEachSignatureUsrData(Signature)) {
360      llvm::Type *UsrDataTy = Args->getType();
361      UsrData = Builder.CreatePointerCast(Builder.CreateLoad(
362          Builder.CreateStructGEP(Arg_p, 2)), UsrDataTy);
363      UsrData->setName("UsrData");
364      Args++;
365    }
366
367    if (bcinfo::MetadataExtractor::hasForEachSignatureX(Signature)) {
368      Args++;
369    }
370
371    llvm::Value *Y = NULL;
372    if (bcinfo::MetadataExtractor::hasForEachSignatureY(Signature)) {
373      Y = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 5), "Y");
374      Args++;
375    }
376
377    bccAssert(Args == F->arg_end());
378
379    llvm::PHINode *IV;
380    createLoop(Builder, Arg_x1, Arg_x2, &IV);
381
382    // Populate the actual call to kernel().
383    llvm::SmallVector<llvm::Value*, 8> RootArgs;
384
385    llvm::Value *InPtr = NULL;
386    llvm::Value *OutPtr = NULL;
387
388    // Calculate the current input and output pointers
389    //
390    // We always calculate the input/output pointers with a GEP operating on i8
391    // values and only cast at the very end to OutTy. This is because the step
392    // between two values is given in bytes.
393    //
394    // TODO: We could further optimize the output by using a GEP operation of
395    // type 'OutTy' in cases where the element type of the allocation allows.
396    if (OutBasePtr) {
397      llvm::Value *OutOffset = Builder.CreateSub(IV, Arg_x1);
398      OutOffset = Builder.CreateMul(OutOffset, OutStep);
399      OutPtr = Builder.CreateGEP(OutBasePtr, OutOffset);
400      OutPtr = Builder.CreatePointerCast(OutPtr, OutTy);
401    }
402    if (InBasePtr) {
403      llvm::Value *InOffset = Builder.CreateSub(IV, Arg_x1);
404      InOffset = Builder.CreateMul(InOffset, InStep);
405      InPtr = Builder.CreateGEP(InBasePtr, InOffset);
406      InPtr = Builder.CreatePointerCast(InPtr, InTy);
407    }
408
409    if (InPtr) {
410      RootArgs.push_back(InPtr);
411    }
412
413    if (OutPtr) {
414      RootArgs.push_back(OutPtr);
415    }
416
417    if (UsrData) {
418      RootArgs.push_back(UsrData);
419    }
420
421    llvm::Value *X = IV;
422    if (bcinfo::MetadataExtractor::hasForEachSignatureX(Signature)) {
423      RootArgs.push_back(X);
424    }
425
426    if (Y) {
427      RootArgs.push_back(Y);
428    }
429
430    Builder.CreateCall(F, RootArgs);
431
432    return true;
433  }
434
435  /* Expand a pass-by-value kernel.
436   */
437  bool ExpandKernel(llvm::Function *F, uint32_t Signature) {
438    bccAssert(bcinfo::MetadataExtractor::hasForEachSignatureKernel(Signature));
439    ALOGV("Expanding kernel Function %s", F->getName().str().c_str());
440
441    // TODO: Refactor this to share functionality with ExpandFunction.
442    llvm::DataLayout DL(M);
443
444    llvm::Function *ExpandedFunc = createEmptyExpandedFunction(F->getName());
445
446    // Create and name the actual arguments to this expanded function.
447    llvm::SmallVector<llvm::Argument*, 8> ArgVec;
448    for (llvm::Function::arg_iterator B = ExpandedFunc->arg_begin(),
449                                      E = ExpandedFunc->arg_end();
450         B != E;
451         ++B) {
452      ArgVec.push_back(B);
453    }
454
455    if (ArgVec.size() != 5) {
456      ALOGE("Incorrect number of arguments to function: %zu",
457            ArgVec.size());
458      return false;
459    }
460    llvm::Value *Arg_p = ArgVec[0];
461    llvm::Value *Arg_x1 = ArgVec[1];
462    llvm::Value *Arg_x2 = ArgVec[2];
463    llvm::Value *Arg_instep = ArgVec[3];
464    llvm::Value *Arg_outstep = ArgVec[4];
465
466    llvm::Value *InStep = NULL;
467    llvm::Value *OutStep = NULL;
468
469    // Construct the actual function body.
470    llvm::IRBuilder<> Builder(ExpandedFunc->getEntryBlock().begin());
471
472    // Create TBAA meta-data.
473    llvm::MDNode *TBAARenderScript, *TBAAAllocation, *TBAAPointer;
474
475    llvm::MDBuilder MDHelper(*C);
476    TBAARenderScript = MDHelper.createTBAARoot("RenderScript TBAA");
477    TBAAAllocation = MDHelper.createTBAANode("allocation", TBAARenderScript);
478    TBAAPointer = MDHelper.createTBAANode("pointer", TBAARenderScript);
479
480    // Collect and construct the arguments for the kernel().
481    // Note that we load any loop-invariant arguments before entering the Loop.
482    llvm::Function::arg_iterator Args = F->arg_begin();
483
484    llvm::Type *OutTy = NULL;
485    bool PassOutByReference = false;
486    llvm::LoadInst *OutBasePtr = NULL;
487    if (bcinfo::MetadataExtractor::hasForEachSignatureOut(Signature)) {
488      llvm::Type *OutBaseTy = F->getReturnType();
489      if (OutBaseTy->isVoidTy()) {
490        PassOutByReference = true;
491        OutTy = Args->getType();
492        Args++;
493      } else {
494        OutTy = OutBaseTy->getPointerTo();
495        // We don't increment Args, since we are using the actual return type.
496      }
497      OutStep = getStepValue(&DL, OutTy, Arg_outstep);
498      OutStep->setName("outstep");
499      OutBasePtr = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 1));
500      OutBasePtr->setMetadata("tbaa", TBAAPointer);
501    }
502
503    llvm::Type *InBaseTy = NULL;
504    llvm::Type *InTy = NULL;
505    llvm::LoadInst *InBasePtr = NULL;
506    if (bcinfo::MetadataExtractor::hasForEachSignatureIn(Signature)) {
507      InBaseTy = Args->getType();
508      InTy =InBaseTy->getPointerTo();
509      InStep = getStepValue(&DL, InTy, Arg_instep);
510      InStep->setName("instep");
511      InBasePtr = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 0));
512      InBasePtr->setMetadata("tbaa", TBAAPointer);
513      Args++;
514    }
515
516    // No usrData parameter on kernels.
517    bccAssert(
518        !bcinfo::MetadataExtractor::hasForEachSignatureUsrData(Signature));
519
520    if (bcinfo::MetadataExtractor::hasForEachSignatureX(Signature)) {
521      Args++;
522    }
523
524    llvm::Value *Y = NULL;
525    if (bcinfo::MetadataExtractor::hasForEachSignatureY(Signature)) {
526      Y = Builder.CreateLoad(Builder.CreateStructGEP(Arg_p, 5), "Y");
527      Args++;
528    }
529
530    bccAssert(Args == F->arg_end());
531
532    llvm::PHINode *IV;
533    createLoop(Builder, Arg_x1, Arg_x2, &IV);
534
535    // Populate the actual call to kernel().
536    llvm::SmallVector<llvm::Value*, 8> RootArgs;
537
538    llvm::Value *InPtr = NULL;
539    llvm::Value *OutPtr = NULL;
540
541    // Calculate the current input and output pointers
542    //
543    // We always calculate the input/output pointers with a GEP operating on i8
544    // values and only cast at the very end to OutTy. This is because the step
545    // between two values is given in bytes.
546    //
547    // TODO: We could further optimize the output by using a GEP operation of
548    // type 'OutTy' in cases where the element type of the allocation allows.
549    if (OutBasePtr) {
550      llvm::Value *OutOffset = Builder.CreateSub(IV, Arg_x1);
551      OutOffset = Builder.CreateMul(OutOffset, OutStep);
552      OutPtr = Builder.CreateGEP(OutBasePtr, OutOffset);
553      OutPtr = Builder.CreatePointerCast(OutPtr, OutTy);
554    }
555    if (InBasePtr) {
556      llvm::Value *InOffset = Builder.CreateSub(IV, Arg_x1);
557      InOffset = Builder.CreateMul(InOffset, InStep);
558      InPtr = Builder.CreateGEP(InBasePtr, InOffset);
559      InPtr = Builder.CreatePointerCast(InPtr, InTy);
560    }
561
562    if (PassOutByReference) {
563      RootArgs.push_back(OutPtr);
564    }
565
566    if (InPtr) {
567      llvm::LoadInst *In = Builder.CreateLoad(InPtr, "In");
568      In->setMetadata("tbaa", TBAAAllocation);
569      RootArgs.push_back(In);
570    }
571
572    llvm::Value *X = IV;
573    if (bcinfo::MetadataExtractor::hasForEachSignatureX(Signature)) {
574      RootArgs.push_back(X);
575    }
576
577    if (Y) {
578      RootArgs.push_back(Y);
579    }
580
581    llvm::Value *RetVal = Builder.CreateCall(F, RootArgs);
582
583    if (OutPtr && !PassOutByReference) {
584      llvm::StoreInst *Store = Builder.CreateStore(RetVal, OutPtr);
585      Store->setMetadata("tbaa", TBAAAllocation);
586    }
587
588    return true;
589  }
590
591  /// @brief Checks if pointers to allocation internals are exposed
592  ///
593  /// This function verifies if through the parameters passed to the kernel
594  /// or through calls to the runtime library the script gains access to
595  /// pointers pointing to data within a RenderScript Allocation.
596  /// If we know we control all loads from and stores to data within
597  /// RenderScript allocations and if we know the run-time internal accesses
598  /// are all annotated with RenderScript TBAA metadata, only then we
599  /// can safely use TBAA to distinguish between generic and from-allocation
600  /// pointers.
601  bool allocPointersExposed(llvm::Module &M) {
602    // Old style kernel function can expose pointers to elements within
603    // allocations.
604    // TODO: Extend analysis to allow simple cases of old-style kernels.
605    for (RSInfo::ExportForeachFuncListTy::const_iterator
606             func_iter = mFuncs.begin(), func_end = mFuncs.end();
607         func_iter != func_end; func_iter++) {
608      const char *Name = func_iter->first;
609      uint32_t Signature = func_iter->second;
610      if (M.getFunction(Name) &&
611          !bcinfo::MetadataExtractor::hasForEachSignatureKernel(Signature)) {
612        return true;
613      }
614    }
615
616    // Check for library functions that expose a pointer to an Allocation or
617    // that are not yet annotated with RenderScript-specific tbaa information.
618    static std::vector<std::string> Funcs;
619
620    // rsGetElementAt(...)
621    Funcs.push_back("_Z14rsGetElementAt13rs_allocationj");
622    Funcs.push_back("_Z14rsGetElementAt13rs_allocationjj");
623    Funcs.push_back("_Z14rsGetElementAt13rs_allocationjjj");
624    // rsSetElementAt()
625    Funcs.push_back("_Z14rsSetElementAt13rs_allocationPvj");
626    Funcs.push_back("_Z14rsSetElementAt13rs_allocationPvjj");
627    Funcs.push_back("_Z14rsSetElementAt13rs_allocationPvjjj");
628    // rsGetElementAtYuv_uchar_Y()
629    Funcs.push_back("_Z25rsGetElementAtYuv_uchar_Y13rs_allocationjj");
630    // rsGetElementAtYuv_uchar_U()
631    Funcs.push_back("_Z25rsGetElementAtYuv_uchar_U13rs_allocationjj");
632    // rsGetElementAtYuv_uchar_V()
633    Funcs.push_back("_Z25rsGetElementAtYuv_uchar_V13rs_allocationjj");
634
635    for (std::vector<std::string>::iterator FI = Funcs.begin(),
636                                            FE = Funcs.end();
637         FI != FE; ++FI) {
638      llvm::Function *F = M.getFunction(*FI);
639
640      if (!F) {
641        ALOGE("Missing run-time function '%s'", FI->c_str());
642        return true;
643      }
644
645      if (F->getNumUses() > 0) {
646        return true;
647      }
648    }
649
650    return false;
651  }
652
653  /// @brief Connect RenderScript TBAA metadata to C/C++ metadata
654  ///
655  /// The TBAA metadata used to annotate loads/stores from RenderScript
656  /// Allocations is generated in a separate TBAA tree with a "RenderScript TBAA"
657  /// root node. LLVM does assume may-alias for all nodes in unrelated alias
658  /// analysis trees. This function makes the RenderScript TBAA a subtree of the
659  /// normal C/C++ TBAA tree aside of normal C/C++ types. With the connected trees
660  /// every access to an Allocation is resolved to must-alias if compared to
661  /// a normal C/C++ access.
662  void connectRenderScriptTBAAMetadata(llvm::Module &M) {
663    llvm::MDBuilder MDHelper(*C);
664    llvm::MDNode *TBAARenderScript = MDHelper.createTBAARoot("RenderScript TBAA");
665
666    llvm::MDNode *TBAARoot = MDHelper.createTBAARoot("Simple C/C++ TBAA");
667    llvm::MDNode *TBAAMergedRS = MDHelper.createTBAANode("RenderScript", TBAARoot);
668
669    TBAARenderScript->replaceAllUsesWith(TBAAMergedRS);
670  }
671
672  virtual bool runOnModule(llvm::Module &M) {
673    bool Changed = false;
674    this->M = &M;
675    C = &M.getContext();
676
677    bool AllocsExposed = allocPointersExposed(M);
678
679    for (RSInfo::ExportForeachFuncListTy::const_iterator
680             func_iter = mFuncs.begin(), func_end = mFuncs.end();
681         func_iter != func_end; func_iter++) {
682      const char *name = func_iter->first;
683      uint32_t signature = func_iter->second;
684      llvm::Function *kernel = M.getFunction(name);
685      if (kernel) {
686        if (bcinfo::MetadataExtractor::hasForEachSignatureKernel(signature)) {
687          Changed |= ExpandKernel(kernel, signature);
688          kernel->setLinkage(llvm::GlobalValue::InternalLinkage);
689        } else if (kernel->getReturnType()->isVoidTy()) {
690          Changed |= ExpandFunction(kernel, signature);
691          kernel->setLinkage(llvm::GlobalValue::InternalLinkage);
692        } else {
693          // There are some graphics root functions that are not
694          // expanded, but that will be called directly. For those
695          // functions, we can not set the linkage to internal.
696        }
697      }
698    }
699
700    if (!AllocsExposed) {
701      connectRenderScriptTBAAMetadata(M);
702    }
703
704    return Changed;
705  }
706
707  virtual const char *getPassName() const {
708    return "ForEach-able Function Expansion";
709  }
710
711}; // end RSForEachExpandPass
712
713} // end anonymous namespace
714
715char RSForEachExpandPass::ID = 0;
716
717namespace bcc {
718
719llvm::ModulePass *
720createRSForEachExpandPass(const RSInfo::ExportForeachFuncListTy &pForeachFuncs,
721                          bool pEnableStepOpt){
722  return new RSForEachExpandPass(pForeachFuncs, pEnableStepOpt);
723}
724
725} // end namespace bcc
726