Layer.cpp revision e048a4374c4e355c361f5eec0482ac85df0c73fe
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdlib.h>
20#include <stdint.h>
21#include <sys/types.h>
22#include <math.h>
23
24#include <cutils/compiler.h>
25#include <cutils/native_handle.h>
26#include <cutils/properties.h>
27
28#include <utils/Errors.h>
29#include <utils/Log.h>
30#include <utils/StopWatch.h>
31#include <utils/Trace.h>
32
33#include <ui/GraphicBuffer.h>
34#include <ui/PixelFormat.h>
35
36#include <gui/Surface.h>
37
38#include "clz.h"
39#include "Colorizer.h"
40#include "DisplayDevice.h"
41#include "Layer.h"
42#include "SurfaceFlinger.h"
43#include "SurfaceTextureLayer.h"
44
45#include "DisplayHardware/HWComposer.h"
46
47#include "RenderEngine/RenderEngine.h"
48
49#define DEBUG_RESIZE    0
50
51namespace android {
52
53// ---------------------------------------------------------------------------
54
55int32_t Layer::sSequence = 1;
56
57Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client,
58        const String8& name, uint32_t w, uint32_t h, uint32_t flags)
59    :   contentDirty(false),
60        sequence(uint32_t(android_atomic_inc(&sSequence))),
61        mFlinger(flinger),
62        mTextureName(-1U),
63        mPremultipliedAlpha(true),
64        mName("unnamed"),
65        mDebug(false),
66        mFormat(PIXEL_FORMAT_NONE),
67        mOpaqueLayer(true),
68        mTransactionFlags(0),
69        mQueuedFrames(0),
70        mCurrentTransform(0),
71        mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE),
72        mCurrentOpacity(true),
73        mRefreshPending(false),
74        mFrameLatencyNeeded(false),
75        mFiltering(false),
76        mNeedsFiltering(false),
77        mMesh(Mesh::TRIANGLE_FAN, 4, 2, 2),
78        mSecure(false),
79        mProtectedByApp(false),
80        mHasSurface(false),
81        mClientRef(client)
82{
83    mCurrentCrop.makeInvalid();
84    mFlinger->getRenderEngine().genTextures(1, &mTextureName);
85
86    uint32_t layerFlags = 0;
87    if (flags & ISurfaceComposerClient::eHidden)
88        layerFlags = layer_state_t::eLayerHidden;
89
90    if (flags & ISurfaceComposerClient::eNonPremultiplied)
91        mPremultipliedAlpha = false;
92
93    mName = name;
94
95    mCurrentState.active.w = w;
96    mCurrentState.active.h = h;
97    mCurrentState.active.crop.makeInvalid();
98    mCurrentState.z = 0;
99    mCurrentState.alpha = 0xFF;
100    mCurrentState.layerStack = 0;
101    mCurrentState.flags = layerFlags;
102    mCurrentState.sequence = 0;
103    mCurrentState.transform.set(0, 0);
104    mCurrentState.requested = mCurrentState.active;
105
106    // drawing state & current state are identical
107    mDrawingState = mCurrentState;
108
109    nsecs_t displayPeriod =
110            flinger->getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
111    mFrameTracker.setDisplayRefreshPeriod(displayPeriod);
112}
113
114void Layer::onFirstRef() {
115    // Creates a custom BufferQueue for SurfaceFlingerConsumer to use
116    mBufferQueue = new SurfaceTextureLayer(mFlinger);
117    mSurfaceFlingerConsumer = new SurfaceFlingerConsumer(mBufferQueue, mTextureName);
118    mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
119    mSurfaceFlingerConsumer->setFrameAvailableListener(this);
120    mSurfaceFlingerConsumer->setName(mName);
121
122#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
123#warning "disabling triple buffering"
124    mSurfaceFlingerConsumer->setDefaultMaxBufferCount(2);
125#else
126    mSurfaceFlingerConsumer->setDefaultMaxBufferCount(3);
127#endif
128
129    const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice());
130    updateTransformHint(hw);
131}
132
133Layer::~Layer() {
134    sp<Client> c(mClientRef.promote());
135    if (c != 0) {
136        c->detachLayer(this);
137    }
138    mFlinger->deleteTextureAsync(mTextureName);
139    mFrameTracker.logAndResetStats(mName);
140}
141
142// ---------------------------------------------------------------------------
143// callbacks
144// ---------------------------------------------------------------------------
145
146void Layer::onLayerDisplayed(const sp<const DisplayDevice>& hw,
147        HWComposer::HWCLayerInterface* layer) {
148    if (layer) {
149        layer->onDisplayed();
150        mSurfaceFlingerConsumer->setReleaseFence(layer->getAndResetReleaseFence());
151    }
152}
153
154void Layer::onFrameAvailable() {
155    android_atomic_inc(&mQueuedFrames);
156    mFlinger->signalLayerUpdate();
157}
158
159// called with SurfaceFlinger::mStateLock from the drawing thread after
160// the layer has been remove from the current state list (and just before
161// it's removed from the drawing state list)
162void Layer::onRemoved() {
163    mSurfaceFlingerConsumer->abandon();
164}
165
166// ---------------------------------------------------------------------------
167// set-up
168// ---------------------------------------------------------------------------
169
170const String8& Layer::getName() const {
171    return mName;
172}
173
174status_t Layer::setBuffers( uint32_t w, uint32_t h,
175                            PixelFormat format, uint32_t flags)
176{
177    uint32_t const maxSurfaceDims = min(
178            mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims());
179
180    // never allow a surface larger than what our underlying GL implementation
181    // can handle.
182    if ((uint32_t(w)>maxSurfaceDims) || (uint32_t(h)>maxSurfaceDims)) {
183        ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h));
184        return BAD_VALUE;
185    }
186
187    mFormat = format;
188
189    mSecure = (flags & ISurfaceComposerClient::eSecure) ? true : false;
190    mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false;
191    mOpaqueLayer = (flags & ISurfaceComposerClient::eOpaque);
192    mCurrentOpacity = getOpacityForFormat(format);
193
194    mSurfaceFlingerConsumer->setDefaultBufferSize(w, h);
195    mSurfaceFlingerConsumer->setDefaultBufferFormat(format);
196    mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
197
198    return NO_ERROR;
199}
200
201sp<IBinder> Layer::getHandle() {
202    Mutex::Autolock _l(mLock);
203
204    LOG_ALWAYS_FATAL_IF(mHasSurface,
205            "Layer::getHandle() has already been called");
206
207    mHasSurface = true;
208
209    /*
210     * The layer handle is just a BBinder object passed to the client
211     * (remote process) -- we don't keep any reference on our side such that
212     * the dtor is called when the remote side let go of its reference.
213     *
214     * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
215     * this layer when the handle is destroyed.
216     */
217
218    class Handle : public BBinder, public LayerCleaner {
219        wp<const Layer> mOwner;
220    public:
221        Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
222            : LayerCleaner(flinger, layer), mOwner(layer) {
223        }
224    };
225
226    return new Handle(mFlinger, this);
227}
228
229sp<IGraphicBufferProducer> Layer::getBufferQueue() const {
230    return mBufferQueue;
231}
232
233// ---------------------------------------------------------------------------
234// h/w composer set-up
235// ---------------------------------------------------------------------------
236
237Rect Layer::getContentCrop() const {
238    // this is the crop rectangle that applies to the buffer
239    // itself (as opposed to the window)
240    Rect crop;
241    if (!mCurrentCrop.isEmpty()) {
242        // if the buffer crop is defined, we use that
243        crop = mCurrentCrop;
244    } else if (mActiveBuffer != NULL) {
245        // otherwise we use the whole buffer
246        crop = mActiveBuffer->getBounds();
247    } else {
248        // if we don't have a buffer yet, we use an empty/invalid crop
249        crop.makeInvalid();
250    }
251    return crop;
252}
253
254static Rect reduce(const Rect& win, const Region& exclude) {
255    if (CC_LIKELY(exclude.isEmpty())) {
256        return win;
257    }
258    if (exclude.isRect()) {
259        return win.reduce(exclude.getBounds());
260    }
261    return Region(win).subtract(exclude).getBounds();
262}
263
264Rect Layer::computeBounds() const {
265    const Layer::State& s(getDrawingState());
266    Rect win(s.active.w, s.active.h);
267    if (!s.active.crop.isEmpty()) {
268        win.intersect(s.active.crop, &win);
269    }
270    // subtract the transparent region and snap to the bounds
271    return reduce(win, s.activeTransparentRegion);
272}
273
274FloatRect Layer::computeCrop(const sp<const DisplayDevice>& hw) const {
275    // the content crop is the area of the content that gets scaled to the
276    // layer's size.
277    FloatRect crop(getContentCrop());
278
279    // the active.crop is the area of the window that gets cropped, but not
280    // scaled in any ways.
281    const State& s(getDrawingState());
282
283    // apply the projection's clipping to the window crop in
284    // layerstack space, and convert-back to layer space.
285    // if there are no window scaling involved, this operation will map to full
286    // pixels in the buffer.
287    // FIXME: the 3 lines below can produce slightly incorrect clipping when we have
288    // a viewport clipping and a window transform. we should use floating point to fix this.
289    Rect activeCrop(s.transform.transform(s.active.crop));
290    activeCrop.intersect(hw->getViewport(), &activeCrop);
291    activeCrop = s.transform.inverse().transform(activeCrop);
292
293    // paranoia: make sure the window-crop is constrained in the
294    // window's bounds
295    activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop);
296
297    // subtract the transparent region and snap to the bounds
298    activeCrop = reduce(activeCrop, s.activeTransparentRegion);
299
300    if (!activeCrop.isEmpty()) {
301        // Transform the window crop to match the buffer coordinate system,
302        // which means using the inverse of the current transform set on the
303        // SurfaceFlingerConsumer.
304        uint32_t invTransform = mCurrentTransform;
305        int winWidth = s.active.w;
306        int winHeight = s.active.h;
307        if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
308            invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
309                    NATIVE_WINDOW_TRANSFORM_FLIP_H;
310            winWidth = s.active.h;
311            winHeight = s.active.w;
312        }
313        const Rect winCrop = activeCrop.transform(
314                invTransform, s.active.w, s.active.h);
315
316        // below, crop is intersected with winCrop expressed in crop's coordinate space
317        float xScale = crop.getWidth()  / float(winWidth);
318        float yScale = crop.getHeight() / float(winHeight);
319
320        float insetL = winCrop.left                 * xScale;
321        float insetT = winCrop.top                  * yScale;
322        float insetR = (winWidth  - winCrop.right ) * xScale;
323        float insetB = (winHeight - winCrop.bottom) * yScale;
324
325        crop.left   += insetL;
326        crop.top    += insetT;
327        crop.right  -= insetR;
328        crop.bottom -= insetB;
329    }
330    return crop;
331}
332
333void Layer::setGeometry(
334    const sp<const DisplayDevice>& hw,
335        HWComposer::HWCLayerInterface& layer)
336{
337    layer.setDefaultState();
338
339    // enable this layer
340    layer.setSkip(false);
341
342    if (isSecure() && !hw->isSecure()) {
343        layer.setSkip(true);
344    }
345
346    // this gives us only the "orientation" component of the transform
347    const State& s(getDrawingState());
348    if (!isOpaque() || s.alpha != 0xFF) {
349        layer.setBlending(mPremultipliedAlpha ?
350                HWC_BLENDING_PREMULT :
351                HWC_BLENDING_COVERAGE);
352    }
353
354    // apply the layer's transform, followed by the display's global transform
355    // here we're guaranteed that the layer's transform preserves rects
356    Rect frame(s.transform.transform(computeBounds()));
357    frame.intersect(hw->getViewport(), &frame);
358    const Transform& tr(hw->getTransform());
359    layer.setFrame(tr.transform(frame));
360    layer.setCrop(computeCrop(hw));
361    layer.setPlaneAlpha(s.alpha);
362
363    /*
364     * Transformations are applied in this order:
365     * 1) buffer orientation/flip/mirror
366     * 2) state transformation (window manager)
367     * 3) layer orientation (screen orientation)
368     * (NOTE: the matrices are multiplied in reverse order)
369     */
370
371    const Transform bufferOrientation(mCurrentTransform);
372    const Transform transform(tr * s.transform * bufferOrientation);
373
374    // this gives us only the "orientation" component of the transform
375    const uint32_t orientation = transform.getOrientation();
376    if (orientation & Transform::ROT_INVALID) {
377        // we can only handle simple transformation
378        layer.setSkip(true);
379    } else {
380        layer.setTransform(orientation);
381    }
382}
383
384void Layer::setPerFrameData(const sp<const DisplayDevice>& hw,
385        HWComposer::HWCLayerInterface& layer) {
386    // we have to set the visible region on every frame because
387    // we currently free it during onLayerDisplayed(), which is called
388    // after HWComposer::commit() -- every frame.
389    // Apply this display's projection's viewport to the visible region
390    // before giving it to the HWC HAL.
391    const Transform& tr = hw->getTransform();
392    Region visible = tr.transform(visibleRegion.intersect(hw->getViewport()));
393    layer.setVisibleRegionScreen(visible);
394
395    // NOTE: buffer can be NULL if the client never drew into this
396    // layer yet, or if we ran out of memory
397    layer.setBuffer(mActiveBuffer);
398}
399
400void Layer::setAcquireFence(const sp<const DisplayDevice>& hw,
401        HWComposer::HWCLayerInterface& layer) {
402    int fenceFd = -1;
403
404    // TODO: there is a possible optimization here: we only need to set the
405    // acquire fence the first time a new buffer is acquired on EACH display.
406
407    if (layer.getCompositionType() == HWC_OVERLAY) {
408        sp<Fence> fence = mSurfaceFlingerConsumer->getCurrentFence();
409        if (fence->isValid()) {
410            fenceFd = fence->dup();
411            if (fenceFd == -1) {
412                ALOGW("failed to dup layer fence, skipping sync: %d", errno);
413            }
414        }
415    }
416    layer.setAcquireFenceFd(fenceFd);
417}
418
419// ---------------------------------------------------------------------------
420// drawing...
421// ---------------------------------------------------------------------------
422
423void Layer::draw(const sp<const DisplayDevice>& hw, const Region& clip) const {
424    onDraw(hw, clip);
425}
426
427void Layer::draw(const sp<const DisplayDevice>& hw) {
428    onDraw( hw, Region(hw->bounds()) );
429}
430
431void Layer::onDraw(const sp<const DisplayDevice>& hw, const Region& clip) const
432{
433    ATRACE_CALL();
434
435    if (CC_UNLIKELY(mActiveBuffer == 0)) {
436        // the texture has not been created yet, this Layer has
437        // in fact never been drawn into. This happens frequently with
438        // SurfaceView because the WindowManager can't know when the client
439        // has drawn the first time.
440
441        // If there is nothing under us, we paint the screen in black, otherwise
442        // we just skip this update.
443
444        // figure out if there is something below us
445        Region under;
446        const SurfaceFlinger::LayerVector& drawingLayers(
447                mFlinger->mDrawingState.layersSortedByZ);
448        const size_t count = drawingLayers.size();
449        for (size_t i=0 ; i<count ; ++i) {
450            const sp<Layer>& layer(drawingLayers[i]);
451            if (layer.get() == static_cast<Layer const*>(this))
452                break;
453            under.orSelf( hw->getTransform().transform(layer->visibleRegion) );
454        }
455        // if not everything below us is covered, we plug the holes!
456        Region holes(clip.subtract(under));
457        if (!holes.isEmpty()) {
458            clearWithOpenGL(hw, holes, 0, 0, 0, 1);
459        }
460        return;
461    }
462
463    // Bind the current buffer to the GL texture, and wait for it to be
464    // ready for us to draw into.
465    status_t err = mSurfaceFlingerConsumer->bindTextureImage();
466    if (err != NO_ERROR) {
467        ALOGW("onDraw: bindTextureImage failed (err=%d)", err);
468        // Go ahead and draw the buffer anyway; no matter what we do the screen
469        // is probably going to have something visibly wrong.
470    }
471
472    bool blackOutLayer = isProtected() || (isSecure() && !hw->isSecure());
473
474    RenderEngine& engine(mFlinger->getRenderEngine());
475
476    if (!blackOutLayer) {
477        // TODO: we could be more subtle with isFixedSize()
478        const bool useFiltering = getFiltering() || needsFiltering(hw) || isFixedSize();
479
480        // Query the texture matrix given our current filtering mode.
481        float textureMatrix[16];
482        mSurfaceFlingerConsumer->setFilteringEnabled(useFiltering);
483        mSurfaceFlingerConsumer->getTransformMatrix(textureMatrix);
484
485        // Set things up for texturing.
486        engine.setupLayerTexturing(mTextureName, useFiltering, textureMatrix);
487    } else {
488        engine.setupLayerBlackedOut();
489    }
490    drawWithOpenGL(hw, clip);
491    engine.disableTexturing();
492}
493
494
495void Layer::clearWithOpenGL(const sp<const DisplayDevice>& hw, const Region& clip,
496        float red, float green, float blue, float alpha) const
497{
498    computeGeometry(hw, mMesh);
499    mFlinger->getRenderEngine().fillWithColor(mMesh, red, green, blue, alpha);
500}
501
502void Layer::clearWithOpenGL(
503        const sp<const DisplayDevice>& hw, const Region& clip) const {
504    clearWithOpenGL(hw, clip, 0,0,0,0);
505}
506
507void Layer::drawWithOpenGL(
508        const sp<const DisplayDevice>& hw, const Region& clip) const {
509    const uint32_t fbHeight = hw->getHeight();
510    const State& s(getDrawingState());
511
512    computeGeometry(hw, mMesh);
513
514    /*
515     * NOTE: the way we compute the texture coordinates here produces
516     * different results than when we take the HWC path -- in the later case
517     * the "source crop" is rounded to texel boundaries.
518     * This can produce significantly different results when the texture
519     * is scaled by a large amount.
520     *
521     * The GL code below is more logical (imho), and the difference with
522     * HWC is due to a limitation of the HWC API to integers -- a question
523     * is suspend is wether we should ignore this problem or revert to
524     * GL composition when a buffer scaling is applied (maybe with some
525     * minimal value)? Or, we could make GL behave like HWC -- but this feel
526     * like more of a hack.
527     */
528    const Rect win(computeBounds());
529
530    float left   = float(win.left)   / float(s.active.w);
531    float top    = float(win.top)    / float(s.active.h);
532    float right  = float(win.right)  / float(s.active.w);
533    float bottom = float(win.bottom) / float(s.active.h);
534
535    // TODO: we probably want to generate the texture coords with the mesh
536    // here we assume that we only have 4 vertices
537    Mesh::VertexArray texCoords(mMesh.getTexCoordArray());
538    texCoords[0].s = left;
539    texCoords[0].t = 1.0f - top;
540    texCoords[1].s = left;
541    texCoords[1].t = 1.0f - bottom;
542    texCoords[2].s = right;
543    texCoords[2].t = 1.0f - bottom;
544    texCoords[3].s = right;
545    texCoords[3].t = 1.0f - top;
546
547    RenderEngine& engine(mFlinger->getRenderEngine());
548    engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(), s.alpha);
549    engine.drawMesh(mMesh);
550    engine.disableBlending();
551}
552
553void Layer::setFiltering(bool filtering) {
554    mFiltering = filtering;
555}
556
557bool Layer::getFiltering() const {
558    return mFiltering;
559}
560
561// As documented in libhardware header, formats in the range
562// 0x100 - 0x1FF are specific to the HAL implementation, and
563// are known to have no alpha channel
564// TODO: move definition for device-specific range into
565// hardware.h, instead of using hard-coded values here.
566#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
567
568bool Layer::getOpacityForFormat(uint32_t format) {
569    if (HARDWARE_IS_DEVICE_FORMAT(format)) {
570        return true;
571    }
572    switch (format) {
573        case HAL_PIXEL_FORMAT_RGBA_8888:
574        case HAL_PIXEL_FORMAT_BGRA_8888:
575        case HAL_PIXEL_FORMAT_sRGB_A_8888:
576            return false;
577    }
578    // in all other case, we have no blending (also for unknown formats)
579    return true;
580}
581
582// ----------------------------------------------------------------------------
583// local state
584// ----------------------------------------------------------------------------
585
586void Layer::computeGeometry(const sp<const DisplayDevice>& hw, Mesh& mesh) const
587{
588    const Layer::State& s(getDrawingState());
589    const Transform tr(hw->getTransform() * s.transform);
590    const uint32_t hw_h = hw->getHeight();
591    Rect win(s.active.w, s.active.h);
592    if (!s.active.crop.isEmpty()) {
593        win.intersect(s.active.crop, &win);
594    }
595    // subtract the transparent region and snap to the bounds
596    win = reduce(win, s.activeTransparentRegion);
597
598    Mesh::VertexArray position(mesh.getPositionArray());
599    tr.transform(position[0], win.left,  win.top);
600    tr.transform(position[1], win.left,  win.bottom);
601    tr.transform(position[2], win.right, win.bottom);
602    tr.transform(position[3], win.right, win.top);
603    for (size_t i=0 ; i<4 ; i++) {
604        position[i].y = hw_h - position[i].y;
605    }
606}
607
608bool Layer::isOpaque() const
609{
610    // if we don't have a buffer yet, we're translucent regardless of the
611    // layer's opaque flag.
612    if (mActiveBuffer == 0) {
613        return false;
614    }
615
616    // if the layer has the opaque flag, then we're always opaque,
617    // otherwise we use the current buffer's format.
618    return mOpaqueLayer || mCurrentOpacity;
619}
620
621bool Layer::isProtected() const
622{
623    const sp<GraphicBuffer>& activeBuffer(mActiveBuffer);
624    return (activeBuffer != 0) &&
625            (activeBuffer->getUsage() & GRALLOC_USAGE_PROTECTED);
626}
627
628bool Layer::isFixedSize() const {
629    return mCurrentScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE;
630}
631
632bool Layer::isCropped() const {
633    return !mCurrentCrop.isEmpty();
634}
635
636bool Layer::needsFiltering(const sp<const DisplayDevice>& hw) const {
637    return mNeedsFiltering || hw->needsFiltering();
638}
639
640void Layer::setVisibleRegion(const Region& visibleRegion) {
641    // always called from main thread
642    this->visibleRegion = visibleRegion;
643}
644
645void Layer::setCoveredRegion(const Region& coveredRegion) {
646    // always called from main thread
647    this->coveredRegion = coveredRegion;
648}
649
650void Layer::setVisibleNonTransparentRegion(const Region&
651        setVisibleNonTransparentRegion) {
652    // always called from main thread
653    this->visibleNonTransparentRegion = setVisibleNonTransparentRegion;
654}
655
656// ----------------------------------------------------------------------------
657// transaction
658// ----------------------------------------------------------------------------
659
660uint32_t Layer::doTransaction(uint32_t flags) {
661    ATRACE_CALL();
662
663    const Layer::State& s(getDrawingState());
664    const Layer::State& c(getCurrentState());
665
666    const bool sizeChanged = (c.requested.w != s.requested.w) ||
667                             (c.requested.h != s.requested.h);
668
669    if (sizeChanged) {
670        // the size changed, we need to ask our client to request a new buffer
671        ALOGD_IF(DEBUG_RESIZE,
672                "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n"
673                "  current={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
674                "            requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n"
675                "  drawing={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
676                "            requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n",
677                this, getName().string(), mCurrentTransform, mCurrentScalingMode,
678                c.active.w, c.active.h,
679                c.active.crop.left,
680                c.active.crop.top,
681                c.active.crop.right,
682                c.active.crop.bottom,
683                c.active.crop.getWidth(),
684                c.active.crop.getHeight(),
685                c.requested.w, c.requested.h,
686                c.requested.crop.left,
687                c.requested.crop.top,
688                c.requested.crop.right,
689                c.requested.crop.bottom,
690                c.requested.crop.getWidth(),
691                c.requested.crop.getHeight(),
692                s.active.w, s.active.h,
693                s.active.crop.left,
694                s.active.crop.top,
695                s.active.crop.right,
696                s.active.crop.bottom,
697                s.active.crop.getWidth(),
698                s.active.crop.getHeight(),
699                s.requested.w, s.requested.h,
700                s.requested.crop.left,
701                s.requested.crop.top,
702                s.requested.crop.right,
703                s.requested.crop.bottom,
704                s.requested.crop.getWidth(),
705                s.requested.crop.getHeight());
706
707        // record the new size, form this point on, when the client request
708        // a buffer, it'll get the new size.
709        mSurfaceFlingerConsumer->setDefaultBufferSize(
710                c.requested.w, c.requested.h);
711    }
712
713    if (!isFixedSize()) {
714
715        const bool resizePending = (c.requested.w != c.active.w) ||
716                                   (c.requested.h != c.active.h);
717
718        if (resizePending) {
719            // don't let Layer::doTransaction update the drawing state
720            // if we have a pending resize, unless we are in fixed-size mode.
721            // the drawing state will be updated only once we receive a buffer
722            // with the correct size.
723            //
724            // in particular, we want to make sure the clip (which is part
725            // of the geometry state) is latched together with the size but is
726            // latched immediately when no resizing is involved.
727
728            flags |= eDontUpdateGeometryState;
729        }
730    }
731
732    // always set active to requested, unless we're asked not to
733    // this is used by Layer, which special cases resizes.
734    if (flags & eDontUpdateGeometryState)  {
735    } else {
736        Layer::State& editCurrentState(getCurrentState());
737        editCurrentState.active = c.requested;
738    }
739
740    if (s.active != c.active) {
741        // invalidate and recompute the visible regions if needed
742        flags |= Layer::eVisibleRegion;
743    }
744
745    if (c.sequence != s.sequence) {
746        // invalidate and recompute the visible regions if needed
747        flags |= eVisibleRegion;
748        this->contentDirty = true;
749
750        // we may use linear filtering, if the matrix scales us
751        const uint8_t type = c.transform.getType();
752        mNeedsFiltering = (!c.transform.preserveRects() ||
753                (type >= Transform::SCALE));
754    }
755
756    // Commit the transaction
757    commitTransaction();
758    return flags;
759}
760
761void Layer::commitTransaction() {
762    mDrawingState = mCurrentState;
763}
764
765uint32_t Layer::getTransactionFlags(uint32_t flags) {
766    return android_atomic_and(~flags, &mTransactionFlags) & flags;
767}
768
769uint32_t Layer::setTransactionFlags(uint32_t flags) {
770    return android_atomic_or(flags, &mTransactionFlags);
771}
772
773bool Layer::setPosition(float x, float y) {
774    if (mCurrentState.transform.tx() == x && mCurrentState.transform.ty() == y)
775        return false;
776    mCurrentState.sequence++;
777    mCurrentState.transform.set(x, y);
778    setTransactionFlags(eTransactionNeeded);
779    return true;
780}
781bool Layer::setLayer(uint32_t z) {
782    if (mCurrentState.z == z)
783        return false;
784    mCurrentState.sequence++;
785    mCurrentState.z = z;
786    setTransactionFlags(eTransactionNeeded);
787    return true;
788}
789bool Layer::setSize(uint32_t w, uint32_t h) {
790    if (mCurrentState.requested.w == w && mCurrentState.requested.h == h)
791        return false;
792    mCurrentState.requested.w = w;
793    mCurrentState.requested.h = h;
794    setTransactionFlags(eTransactionNeeded);
795    return true;
796}
797bool Layer::setAlpha(uint8_t alpha) {
798    if (mCurrentState.alpha == alpha)
799        return false;
800    mCurrentState.sequence++;
801    mCurrentState.alpha = alpha;
802    setTransactionFlags(eTransactionNeeded);
803    return true;
804}
805bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix) {
806    mCurrentState.sequence++;
807    mCurrentState.transform.set(
808            matrix.dsdx, matrix.dsdy, matrix.dtdx, matrix.dtdy);
809    setTransactionFlags(eTransactionNeeded);
810    return true;
811}
812bool Layer::setTransparentRegionHint(const Region& transparent) {
813    mCurrentState.requestedTransparentRegion = transparent;
814    setTransactionFlags(eTransactionNeeded);
815    return true;
816}
817bool Layer::setFlags(uint8_t flags, uint8_t mask) {
818    const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask);
819    if (mCurrentState.flags == newFlags)
820        return false;
821    mCurrentState.sequence++;
822    mCurrentState.flags = newFlags;
823    setTransactionFlags(eTransactionNeeded);
824    return true;
825}
826bool Layer::setCrop(const Rect& crop) {
827    if (mCurrentState.requested.crop == crop)
828        return false;
829    mCurrentState.sequence++;
830    mCurrentState.requested.crop = crop;
831    setTransactionFlags(eTransactionNeeded);
832    return true;
833}
834
835bool Layer::setLayerStack(uint32_t layerStack) {
836    if (mCurrentState.layerStack == layerStack)
837        return false;
838    mCurrentState.sequence++;
839    mCurrentState.layerStack = layerStack;
840    setTransactionFlags(eTransactionNeeded);
841    return true;
842}
843
844// ----------------------------------------------------------------------------
845// pageflip handling...
846// ----------------------------------------------------------------------------
847
848bool Layer::onPreComposition() {
849    mRefreshPending = false;
850    return mQueuedFrames > 0;
851}
852
853void Layer::onPostComposition() {
854    if (mFrameLatencyNeeded) {
855        nsecs_t desiredPresentTime = mSurfaceFlingerConsumer->getTimestamp();
856        mFrameTracker.setDesiredPresentTime(desiredPresentTime);
857
858        sp<Fence> frameReadyFence = mSurfaceFlingerConsumer->getCurrentFence();
859        if (frameReadyFence->isValid()) {
860            mFrameTracker.setFrameReadyFence(frameReadyFence);
861        } else {
862            // There was no fence for this frame, so assume that it was ready
863            // to be presented at the desired present time.
864            mFrameTracker.setFrameReadyTime(desiredPresentTime);
865        }
866
867        const HWComposer& hwc = mFlinger->getHwComposer();
868        sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY);
869        if (presentFence->isValid()) {
870            mFrameTracker.setActualPresentFence(presentFence);
871        } else {
872            // The HWC doesn't support present fences, so use the refresh
873            // timestamp instead.
874            nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
875            mFrameTracker.setActualPresentTime(presentTime);
876        }
877
878        mFrameTracker.advanceFrame();
879        mFrameLatencyNeeded = false;
880    }
881}
882
883bool Layer::isVisible() const {
884    const Layer::State& s(mDrawingState);
885    return !(s.flags & layer_state_t::eLayerHidden) && s.alpha
886            && (mActiveBuffer != NULL);
887}
888
889Region Layer::latchBuffer(bool& recomputeVisibleRegions)
890{
891    ATRACE_CALL();
892
893    Region outDirtyRegion;
894    if (mQueuedFrames > 0) {
895
896        // if we've already called updateTexImage() without going through
897        // a composition step, we have to skip this layer at this point
898        // because we cannot call updateTeximage() without a corresponding
899        // compositionComplete() call.
900        // we'll trigger an update in onPreComposition().
901        if (mRefreshPending) {
902            return outDirtyRegion;
903        }
904
905        // Capture the old state of the layer for comparisons later
906        const bool oldOpacity = isOpaque();
907        sp<GraphicBuffer> oldActiveBuffer = mActiveBuffer;
908
909        struct Reject : public SurfaceFlingerConsumer::BufferRejecter {
910            Layer::State& front;
911            Layer::State& current;
912            bool& recomputeVisibleRegions;
913            Reject(Layer::State& front, Layer::State& current,
914                    bool& recomputeVisibleRegions)
915                : front(front), current(current),
916                  recomputeVisibleRegions(recomputeVisibleRegions) {
917            }
918
919            virtual bool reject(const sp<GraphicBuffer>& buf,
920                    const IGraphicBufferConsumer::BufferItem& item) {
921                if (buf == NULL) {
922                    return false;
923                }
924
925                uint32_t bufWidth  = buf->getWidth();
926                uint32_t bufHeight = buf->getHeight();
927
928                // check that we received a buffer of the right size
929                // (Take the buffer's orientation into account)
930                if (item.mTransform & Transform::ROT_90) {
931                    swap(bufWidth, bufHeight);
932                }
933
934                bool isFixedSize = item.mScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE;
935                if (front.active != front.requested) {
936
937                    if (isFixedSize ||
938                            (bufWidth == front.requested.w &&
939                             bufHeight == front.requested.h))
940                    {
941                        // Here we pretend the transaction happened by updating the
942                        // current and drawing states. Drawing state is only accessed
943                        // in this thread, no need to have it locked
944                        front.active = front.requested;
945
946                        // We also need to update the current state so that
947                        // we don't end-up overwriting the drawing state with
948                        // this stale current state during the next transaction
949                        //
950                        // NOTE: We don't need to hold the transaction lock here
951                        // because State::active is only accessed from this thread.
952                        current.active = front.active;
953
954                        // recompute visible region
955                        recomputeVisibleRegions = true;
956                    }
957
958                    ALOGD_IF(DEBUG_RESIZE,
959                            "latchBuffer/reject: buffer (%ux%u, tr=%02x), scalingMode=%d\n"
960                            "  drawing={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
961                            "            requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n",
962                            bufWidth, bufHeight, item.mTransform, item.mScalingMode,
963                            front.active.w, front.active.h,
964                            front.active.crop.left,
965                            front.active.crop.top,
966                            front.active.crop.right,
967                            front.active.crop.bottom,
968                            front.active.crop.getWidth(),
969                            front.active.crop.getHeight(),
970                            front.requested.w, front.requested.h,
971                            front.requested.crop.left,
972                            front.requested.crop.top,
973                            front.requested.crop.right,
974                            front.requested.crop.bottom,
975                            front.requested.crop.getWidth(),
976                            front.requested.crop.getHeight());
977                }
978
979                if (!isFixedSize) {
980                    if (front.active.w != bufWidth ||
981                        front.active.h != bufHeight) {
982                        // reject this buffer
983                        return true;
984                    }
985                }
986
987                // if the transparent region has changed (this test is
988                // conservative, but that's fine, worst case we're doing
989                // a bit of extra work), we latch the new one and we
990                // trigger a visible-region recompute.
991                if (!front.activeTransparentRegion.isTriviallyEqual(
992                        front.requestedTransparentRegion)) {
993                    front.activeTransparentRegion = front.requestedTransparentRegion;
994
995                    // We also need to update the current state so that
996                    // we don't end-up overwriting the drawing state with
997                    // this stale current state during the next transaction
998                    //
999                    // NOTE: We don't need to hold the transaction lock here
1000                    // because State::active is only accessed from this thread.
1001                    current.activeTransparentRegion = front.activeTransparentRegion;
1002
1003                    // recompute visible region
1004                    recomputeVisibleRegions = true;
1005                }
1006
1007                return false;
1008            }
1009        };
1010
1011
1012        Reject r(mDrawingState, getCurrentState(), recomputeVisibleRegions);
1013
1014        status_t updateResult = mSurfaceFlingerConsumer->updateTexImage(&r);
1015        if (updateResult == BufferQueue::PRESENT_LATER) {
1016            // Producer doesn't want buffer to be displayed yet.  Signal a
1017            // layer update so we check again at the next opportunity.
1018            mFlinger->signalLayerUpdate();
1019            return outDirtyRegion;
1020        }
1021
1022        // Decrement the queued-frames count.  Signal another event if we
1023        // have more frames pending.
1024        if (android_atomic_dec(&mQueuedFrames) > 1) {
1025            mFlinger->signalLayerUpdate();
1026        }
1027
1028        if (updateResult != NO_ERROR) {
1029            // something happened!
1030            recomputeVisibleRegions = true;
1031            return outDirtyRegion;
1032        }
1033
1034        // update the active buffer
1035        mActiveBuffer = mSurfaceFlingerConsumer->getCurrentBuffer();
1036        if (mActiveBuffer == NULL) {
1037            // this can only happen if the very first buffer was rejected.
1038            return outDirtyRegion;
1039        }
1040
1041        mRefreshPending = true;
1042        mFrameLatencyNeeded = true;
1043        if (oldActiveBuffer == NULL) {
1044             // the first time we receive a buffer, we need to trigger a
1045             // geometry invalidation.
1046            recomputeVisibleRegions = true;
1047         }
1048
1049        Rect crop(mSurfaceFlingerConsumer->getCurrentCrop());
1050        const uint32_t transform(mSurfaceFlingerConsumer->getCurrentTransform());
1051        const uint32_t scalingMode(mSurfaceFlingerConsumer->getCurrentScalingMode());
1052        if ((crop != mCurrentCrop) ||
1053            (transform != mCurrentTransform) ||
1054            (scalingMode != mCurrentScalingMode))
1055        {
1056            mCurrentCrop = crop;
1057            mCurrentTransform = transform;
1058            mCurrentScalingMode = scalingMode;
1059            recomputeVisibleRegions = true;
1060        }
1061
1062        if (oldActiveBuffer != NULL) {
1063            uint32_t bufWidth  = mActiveBuffer->getWidth();
1064            uint32_t bufHeight = mActiveBuffer->getHeight();
1065            if (bufWidth != uint32_t(oldActiveBuffer->width) ||
1066                bufHeight != uint32_t(oldActiveBuffer->height)) {
1067                recomputeVisibleRegions = true;
1068            }
1069        }
1070
1071        mCurrentOpacity = getOpacityForFormat(mActiveBuffer->format);
1072        if (oldOpacity != isOpaque()) {
1073            recomputeVisibleRegions = true;
1074        }
1075
1076        // FIXME: postedRegion should be dirty & bounds
1077        const Layer::State& s(getDrawingState());
1078        Region dirtyRegion(Rect(s.active.w, s.active.h));
1079
1080        // transform the dirty region to window-manager space
1081        outDirtyRegion = (s.transform.transform(dirtyRegion));
1082    }
1083    return outDirtyRegion;
1084}
1085
1086uint32_t Layer::getEffectiveUsage(uint32_t usage) const
1087{
1088    // TODO: should we do something special if mSecure is set?
1089    if (mProtectedByApp) {
1090        // need a hardware-protected path to external video sink
1091        usage |= GraphicBuffer::USAGE_PROTECTED;
1092    }
1093    usage |= GraphicBuffer::USAGE_HW_COMPOSER;
1094    return usage;
1095}
1096
1097void Layer::updateTransformHint(const sp<const DisplayDevice>& hw) const {
1098    uint32_t orientation = 0;
1099    if (!mFlinger->mDebugDisableTransformHint) {
1100        // The transform hint is used to improve performance, but we can
1101        // only have a single transform hint, it cannot
1102        // apply to all displays.
1103        const Transform& planeTransform(hw->getTransform());
1104        orientation = planeTransform.getOrientation();
1105        if (orientation & Transform::ROT_INVALID) {
1106            orientation = 0;
1107        }
1108    }
1109    mSurfaceFlingerConsumer->setTransformHint(orientation);
1110}
1111
1112// ----------------------------------------------------------------------------
1113// debugging
1114// ----------------------------------------------------------------------------
1115
1116void Layer::dump(String8& result, Colorizer& colorizer) const
1117{
1118    const Layer::State& s(getDrawingState());
1119
1120    colorizer.colorize(result, Colorizer::GREEN);
1121    result.appendFormat(
1122            "+ %s %p (%s)\n",
1123            getTypeId(), this, getName().string());
1124    colorizer.reset(result);
1125
1126    s.activeTransparentRegion.dump(result, "transparentRegion");
1127    visibleRegion.dump(result, "visibleRegion");
1128    sp<Client> client(mClientRef.promote());
1129
1130    result.appendFormat(            "      "
1131            "layerStack=%4d, z=%9d, pos=(%g,%g), size=(%4d,%4d), crop=(%4d,%4d,%4d,%4d), "
1132            "isOpaque=%1d, invalidate=%1d, "
1133            "alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n"
1134            "      client=%p\n",
1135            s.layerStack, s.z, s.transform.tx(), s.transform.ty(), s.active.w, s.active.h,
1136            s.active.crop.left, s.active.crop.top,
1137            s.active.crop.right, s.active.crop.bottom,
1138            isOpaque(), contentDirty,
1139            s.alpha, s.flags,
1140            s.transform[0][0], s.transform[0][1],
1141            s.transform[1][0], s.transform[1][1],
1142            client.get());
1143
1144    sp<const GraphicBuffer> buf0(mActiveBuffer);
1145    uint32_t w0=0, h0=0, s0=0, f0=0;
1146    if (buf0 != 0) {
1147        w0 = buf0->getWidth();
1148        h0 = buf0->getHeight();
1149        s0 = buf0->getStride();
1150        f0 = buf0->format;
1151    }
1152    result.appendFormat(
1153            "      "
1154            "format=%2d, activeBuffer=[%4ux%4u:%4u,%3X],"
1155            " queued-frames=%d, mRefreshPending=%d\n",
1156            mFormat, w0, h0, s0,f0,
1157            mQueuedFrames, mRefreshPending);
1158
1159    if (mSurfaceFlingerConsumer != 0) {
1160        mSurfaceFlingerConsumer->dump(result, "            ");
1161    }
1162}
1163
1164void Layer::dumpStats(String8& result) const {
1165    mFrameTracker.dump(result);
1166}
1167
1168void Layer::clearStats() {
1169    mFrameTracker.clear();
1170}
1171
1172void Layer::logFrameStats() {
1173    mFrameTracker.logAndResetStats(mName);
1174}
1175
1176// ---------------------------------------------------------------------------
1177
1178Layer::LayerCleaner::LayerCleaner(const sp<SurfaceFlinger>& flinger,
1179        const sp<Layer>& layer)
1180    : mFlinger(flinger), mLayer(layer) {
1181}
1182
1183Layer::LayerCleaner::~LayerCleaner() {
1184    // destroy client resources
1185    mFlinger->onLayerDestroyed(mLayer);
1186}
1187
1188// ---------------------------------------------------------------------------
1189}; // namespace android
1190
1191#if defined(__gl_h_)
1192#error "don't include gl/gl.h in this file"
1193#endif
1194
1195#if defined(__gl2_h_)
1196#error "don't include gl2/gl2.h in this file"
1197#endif
1198