fs_mgr.c revision 4eaf905858c6a1d7cf0639bed3e8de3bd7987646
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <stdio.h>
18#include <stdlib.h>
19#include <string.h>
20#include <unistd.h>
21#include <fcntl.h>
22#include <ctype.h>
23#include <sys/mount.h>
24#include <sys/stat.h>
25#include <errno.h>
26#include <sys/types.h>
27#include <sys/wait.h>
28#include <libgen.h>
29#include <time.h>
30#include <sys/swap.h>
31/* XXX These need to be obtained from kernel headers. See b/9336527 */
32#define SWAP_FLAG_PREFER        0x8000
33#define SWAP_FLAG_PRIO_MASK     0x7fff
34#define SWAP_FLAG_PRIO_SHIFT    0
35#define SWAP_FLAG_DISCARD       0x10000
36
37#include <linux/loop.h>
38#include <private/android_filesystem_config.h>
39#include <cutils/partition_utils.h>
40#include <cutils/properties.h>
41#include <logwrap/logwrap.h>
42
43#include "mincrypt/rsa.h"
44#include "mincrypt/sha.h"
45#include "mincrypt/sha256.h"
46
47#include "fs_mgr_priv.h"
48#include "fs_mgr_priv_verity.h"
49
50#define KEY_LOC_PROP   "ro.crypto.keyfile.userdata"
51#define KEY_IN_FOOTER  "footer"
52
53#define E2FSCK_BIN      "/system/bin/e2fsck"
54#define MKSWAP_BIN      "/system/bin/mkswap"
55
56#define FSCK_LOG_FILE   "/dev/fscklogs/log"
57
58#define ZRAM_CONF_DEV   "/sys/block/zram0/disksize"
59
60#define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a)))
61
62struct flag_list {
63    const char *name;
64    unsigned flag;
65};
66
67static struct flag_list mount_flags[] = {
68    { "noatime",    MS_NOATIME },
69    { "noexec",     MS_NOEXEC },
70    { "nosuid",     MS_NOSUID },
71    { "nodev",      MS_NODEV },
72    { "nodiratime", MS_NODIRATIME },
73    { "ro",         MS_RDONLY },
74    { "rw",         0 },
75    { "remount",    MS_REMOUNT },
76    { "bind",       MS_BIND },
77    { "rec",        MS_REC },
78    { "unbindable", MS_UNBINDABLE },
79    { "private",    MS_PRIVATE },
80    { "slave",      MS_SLAVE },
81    { "shared",     MS_SHARED },
82    { "defaults",   0 },
83    { 0,            0 },
84};
85
86static struct flag_list fs_mgr_flags[] = {
87    { "wait",        MF_WAIT },
88    { "check",       MF_CHECK },
89    { "encryptable=",MF_CRYPT },
90    { "nonremovable",MF_NONREMOVABLE },
91    { "voldmanaged=",MF_VOLDMANAGED},
92    { "length=",     MF_LENGTH },
93    { "recoveryonly",MF_RECOVERYONLY },
94    { "swapprio=",   MF_SWAPPRIO },
95    { "zramsize=",   MF_ZRAMSIZE },
96    { "verify",      MF_VERIFY },
97    { "noemulatedsd", MF_NOEMULATEDSD },
98    { "defaults",    0 },
99    { 0,             0 },
100};
101
102struct fs_mgr_flag_values {
103    char *key_loc;
104    long long part_length;
105    char *label;
106    int partnum;
107    int swap_prio;
108    unsigned int zram_size;
109};
110
111/*
112 * gettime() - returns the time in seconds of the system's monotonic clock or
113 * zero on error.
114 */
115static time_t gettime(void)
116{
117    struct timespec ts;
118    int ret;
119
120    ret = clock_gettime(CLOCK_MONOTONIC, &ts);
121    if (ret < 0) {
122        ERROR("clock_gettime(CLOCK_MONOTONIC) failed: %s\n", strerror(errno));
123        return 0;
124    }
125
126    return ts.tv_sec;
127}
128
129static int wait_for_file(const char *filename, int timeout)
130{
131    struct stat info;
132    time_t timeout_time = gettime() + timeout;
133    int ret = -1;
134
135    while (gettime() < timeout_time && ((ret = stat(filename, &info)) < 0))
136        usleep(10000);
137
138    return ret;
139}
140
141static int parse_flags(char *flags, struct flag_list *fl,
142                       struct fs_mgr_flag_values *flag_vals,
143                       char *fs_options, int fs_options_len)
144{
145    int f = 0;
146    int i;
147    char *p;
148    char *savep;
149
150    /* initialize flag values.  If we find a relevant flag, we'll
151     * update the value */
152    if (flag_vals) {
153        memset(flag_vals, 0, sizeof(*flag_vals));
154        flag_vals->partnum = -1;
155        flag_vals->swap_prio = -1; /* negative means it wasn't specified. */
156    }
157
158    /* initialize fs_options to the null string */
159    if (fs_options && (fs_options_len > 0)) {
160        fs_options[0] = '\0';
161    }
162
163    p = strtok_r(flags, ",", &savep);
164    while (p) {
165        /* Look for the flag "p" in the flag list "fl"
166         * If not found, the loop exits with fl[i].name being null.
167         */
168        for (i = 0; fl[i].name; i++) {
169            if (!strncmp(p, fl[i].name, strlen(fl[i].name))) {
170                f |= fl[i].flag;
171                if ((fl[i].flag == MF_CRYPT) && flag_vals) {
172                    /* The encryptable flag is followed by an = and the
173                     * location of the keys.  Get it and return it.
174                     */
175                    flag_vals->key_loc = strdup(strchr(p, '=') + 1);
176                } else if ((fl[i].flag == MF_LENGTH) && flag_vals) {
177                    /* The length flag is followed by an = and the
178                     * size of the partition.  Get it and return it.
179                     */
180                    flag_vals->part_length = strtoll(strchr(p, '=') + 1, NULL, 0);
181                } else if ((fl[i].flag == MF_VOLDMANAGED) && flag_vals) {
182                    /* The voldmanaged flag is followed by an = and the
183                     * label, a colon and the partition number or the
184                     * word "auto", e.g.
185                     *   voldmanaged=sdcard:3
186                     * Get and return them.
187                     */
188                    char *label_start;
189                    char *label_end;
190                    char *part_start;
191
192                    label_start = strchr(p, '=') + 1;
193                    label_end = strchr(p, ':');
194                    if (label_end) {
195                        flag_vals->label = strndup(label_start,
196                                                   (int) (label_end - label_start));
197                        part_start = strchr(p, ':') + 1;
198                        if (!strcmp(part_start, "auto")) {
199                            flag_vals->partnum = -1;
200                        } else {
201                            flag_vals->partnum = strtol(part_start, NULL, 0);
202                        }
203                    } else {
204                        ERROR("Warning: voldmanaged= flag malformed\n");
205                    }
206                } else if ((fl[i].flag == MF_SWAPPRIO) && flag_vals) {
207                    flag_vals->swap_prio = strtoll(strchr(p, '=') + 1, NULL, 0);
208                } else if ((fl[i].flag == MF_ZRAMSIZE) && flag_vals) {
209                    flag_vals->zram_size = strtoll(strchr(p, '=') + 1, NULL, 0);
210                }
211                break;
212            }
213        }
214
215        if (!fl[i].name) {
216            if (fs_options) {
217                /* It's not a known flag, so it must be a filesystem specific
218                 * option.  Add it to fs_options if it was passed in.
219                 */
220                strlcat(fs_options, p, fs_options_len);
221                strlcat(fs_options, ",", fs_options_len);
222            } else {
223                /* fs_options was not passed in, so if the flag is unknown
224                 * it's an error.
225                 */
226                ERROR("Warning: unknown flag %s\n", p);
227            }
228        }
229        p = strtok_r(NULL, ",", &savep);
230    }
231
232out:
233    if (fs_options && fs_options[0]) {
234        /* remove the last trailing comma from the list of options */
235        fs_options[strlen(fs_options) - 1] = '\0';
236    }
237
238    return f;
239}
240
241/* Read a line of text till the next newline character.
242 * If no newline is found before the buffer is full, continue reading till a new line is seen,
243 * then return an empty buffer.  This effectively ignores lines that are too long.
244 * On EOF, return null.
245 */
246static char *fs_getline(char *buf, int size, FILE *file)
247{
248    int cnt = 0;
249    int eof = 0;
250    int eol = 0;
251    int c;
252
253    if (size < 1) {
254        return NULL;
255    }
256
257    while (cnt < (size - 1)) {
258        c = getc(file);
259        if (c == EOF) {
260            eof = 1;
261            break;
262        }
263
264        *(buf + cnt) = c;
265        cnt++;
266
267        if (c == '\n') {
268            eol = 1;
269            break;
270        }
271    }
272
273    /* Null terminate what we've read */
274    *(buf + cnt) = '\0';
275
276    if (eof) {
277        if (cnt) {
278            return buf;
279        } else {
280            return NULL;
281        }
282    } else if (eol) {
283        return buf;
284    } else {
285        /* The line is too long.  Read till a newline or EOF.
286         * If EOF, return null, if newline, return an empty buffer.
287         */
288        while(1) {
289            c = getc(file);
290            if (c == EOF) {
291                return NULL;
292            } else if (c == '\n') {
293                *buf = '\0';
294                return buf;
295            }
296        }
297    }
298}
299
300struct fstab *fs_mgr_read_fstab(const char *fstab_path)
301{
302    FILE *fstab_file;
303    int cnt, entries;
304    int len;
305    char line[256];
306    const char *delim = " \t";
307    char *save_ptr, *p;
308    struct fstab *fstab;
309    struct fstab_rec *recs;
310    struct fs_mgr_flag_values flag_vals;
311#define FS_OPTIONS_LEN 1024
312    char tmp_fs_options[FS_OPTIONS_LEN];
313
314    fstab_file = fopen(fstab_path, "r");
315    if (!fstab_file) {
316        ERROR("Cannot open file %s\n", fstab_path);
317        return 0;
318    }
319
320    entries = 0;
321    while (fs_getline(line, sizeof(line), fstab_file)) {
322        /* if the last character is a newline, shorten the string by 1 byte */
323        len = strlen(line);
324        if (line[len - 1] == '\n') {
325            line[len - 1] = '\0';
326        }
327        /* Skip any leading whitespace */
328        p = line;
329        while (isspace(*p)) {
330            p++;
331        }
332        /* ignore comments or empty lines */
333        if (*p == '#' || *p == '\0')
334            continue;
335        entries++;
336    }
337
338    if (!entries) {
339        ERROR("No entries found in fstab\n");
340        return 0;
341    }
342
343    /* Allocate and init the fstab structure */
344    fstab = calloc(1, sizeof(struct fstab));
345    fstab->num_entries = entries;
346    fstab->fstab_filename = strdup(fstab_path);
347    fstab->recs = calloc(fstab->num_entries, sizeof(struct fstab_rec));
348
349    fseek(fstab_file, 0, SEEK_SET);
350
351    cnt = 0;
352    while (fs_getline(line, sizeof(line), fstab_file)) {
353        /* if the last character is a newline, shorten the string by 1 byte */
354        len = strlen(line);
355        if (line[len - 1] == '\n') {
356            line[len - 1] = '\0';
357        }
358
359        /* Skip any leading whitespace */
360        p = line;
361        while (isspace(*p)) {
362            p++;
363        }
364        /* ignore comments or empty lines */
365        if (*p == '#' || *p == '\0')
366            continue;
367
368        /* If a non-comment entry is greater than the size we allocated, give an
369         * error and quit.  This can happen in the unlikely case the file changes
370         * between the two reads.
371         */
372        if (cnt >= entries) {
373            ERROR("Tried to process more entries than counted\n");
374            break;
375        }
376
377        if (!(p = strtok_r(line, delim, &save_ptr))) {
378            ERROR("Error parsing mount source\n");
379            return 0;
380        }
381        fstab->recs[cnt].blk_device = strdup(p);
382
383        if (!(p = strtok_r(NULL, delim, &save_ptr))) {
384            ERROR("Error parsing mount_point\n");
385            return 0;
386        }
387        fstab->recs[cnt].mount_point = strdup(p);
388
389        if (!(p = strtok_r(NULL, delim, &save_ptr))) {
390            ERROR("Error parsing fs_type\n");
391            return 0;
392        }
393        fstab->recs[cnt].fs_type = strdup(p);
394
395        if (!(p = strtok_r(NULL, delim, &save_ptr))) {
396            ERROR("Error parsing mount_flags\n");
397            return 0;
398        }
399        tmp_fs_options[0] = '\0';
400        fstab->recs[cnt].flags = parse_flags(p, mount_flags, NULL,
401                                       tmp_fs_options, FS_OPTIONS_LEN);
402
403        /* fs_options are optional */
404        if (tmp_fs_options[0]) {
405            fstab->recs[cnt].fs_options = strdup(tmp_fs_options);
406        } else {
407            fstab->recs[cnt].fs_options = NULL;
408        }
409
410        if (!(p = strtok_r(NULL, delim, &save_ptr))) {
411            ERROR("Error parsing fs_mgr_options\n");
412            return 0;
413        }
414        fstab->recs[cnt].fs_mgr_flags = parse_flags(p, fs_mgr_flags,
415                                                    &flag_vals, NULL, 0);
416        fstab->recs[cnt].key_loc = flag_vals.key_loc;
417        fstab->recs[cnt].length = flag_vals.part_length;
418        fstab->recs[cnt].label = flag_vals.label;
419        fstab->recs[cnt].partnum = flag_vals.partnum;
420        fstab->recs[cnt].swap_prio = flag_vals.swap_prio;
421        fstab->recs[cnt].zram_size = flag_vals.zram_size;
422        cnt++;
423    }
424    fclose(fstab_file);
425
426    return fstab;
427}
428
429void fs_mgr_free_fstab(struct fstab *fstab)
430{
431    int i;
432
433    for (i = 0; i < fstab->num_entries; i++) {
434        /* Free the pointers return by strdup(3) */
435        free(fstab->recs[i].blk_device);
436        free(fstab->recs[i].mount_point);
437        free(fstab->recs[i].fs_type);
438        free(fstab->recs[i].fs_options);
439        free(fstab->recs[i].key_loc);
440        free(fstab->recs[i].label);
441        i++;
442    }
443
444    /* Free the fstab_recs array created by calloc(3) */
445    free(fstab->recs);
446
447    /* Free the fstab filename */
448    free(fstab->fstab_filename);
449
450    /* Free fstab */
451    free(fstab);
452}
453
454static void check_fs(char *blk_device, char *fs_type, char *target)
455{
456    int status;
457    int ret;
458    long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID;
459    char *tmpmnt_opts = "nomblk_io_submit,errors=remount-ro";
460    char *e2fsck_argv[] = {
461        E2FSCK_BIN,
462        "-y",
463        blk_device
464    };
465
466    /* Check for the types of filesystems we know how to check */
467    if (!strcmp(fs_type, "ext2") || !strcmp(fs_type, "ext3") || !strcmp(fs_type, "ext4")) {
468        /*
469         * First try to mount and unmount the filesystem.  We do this because
470         * the kernel is more efficient than e2fsck in running the journal and
471         * processing orphaned inodes, and on at least one device with a
472         * performance issue in the emmc firmware, it can take e2fsck 2.5 minutes
473         * to do what the kernel does in about a second.
474         *
475         * After mounting and unmounting the filesystem, run e2fsck, and if an
476         * error is recorded in the filesystem superblock, e2fsck will do a full
477         * check.  Otherwise, it does nothing.  If the kernel cannot mount the
478         * filesytsem due to an error, e2fsck is still run to do a full check
479         * fix the filesystem.
480         */
481        ret = mount(blk_device, target, fs_type, tmpmnt_flags, tmpmnt_opts);
482        if (!ret) {
483            umount(target);
484        }
485
486        INFO("Running %s on %s\n", E2FSCK_BIN, blk_device);
487
488        ret = android_fork_execvp_ext(ARRAY_SIZE(e2fsck_argv), e2fsck_argv,
489                                      &status, true, LOG_KLOG | LOG_FILE,
490                                      true, FSCK_LOG_FILE);
491
492        if (ret < 0) {
493            /* No need to check for error in fork, we can't really handle it now */
494            ERROR("Failed trying to run %s\n", E2FSCK_BIN);
495        }
496    }
497
498    return;
499}
500
501static void remove_trailing_slashes(char *n)
502{
503    int len;
504
505    len = strlen(n) - 1;
506    while ((*(n + len) == '/') && len) {
507      *(n + len) = '\0';
508      len--;
509    }
510}
511
512/*
513 * Mark the given block device as read-only, using the BLKROSET ioctl.
514 * Return 0 on success, and -1 on error.
515 */
516static void fs_set_blk_ro(const char *blockdev)
517{
518    int fd;
519    int ON = 1;
520
521    fd = open(blockdev, O_RDONLY);
522    if (fd < 0) {
523        // should never happen
524        return;
525    }
526
527    ioctl(fd, BLKROSET, &ON);
528    close(fd);
529}
530
531/*
532 * __mount(): wrapper around the mount() system call which also
533 * sets the underlying block device to read-only if the mount is read-only.
534 * See "man 2 mount" for return values.
535 */
536static int __mount(const char *source, const char *target,
537                   const char *filesystemtype, unsigned long mountflags,
538                   const void *data)
539{
540    int ret = mount(source, target, filesystemtype, mountflags, data);
541
542    if ((ret == 0) && (mountflags & MS_RDONLY) != 0) {
543        fs_set_blk_ro(source);
544    }
545
546    return ret;
547}
548
549static int fs_match(char *in1, char *in2)
550{
551    char *n1;
552    char *n2;
553    int ret;
554
555    n1 = strdup(in1);
556    n2 = strdup(in2);
557
558    remove_trailing_slashes(n1);
559    remove_trailing_slashes(n2);
560
561    ret = !strcmp(n1, n2);
562
563    free(n1);
564    free(n2);
565
566    return ret;
567}
568
569int fs_mgr_mount_all(struct fstab *fstab)
570{
571    int i = 0;
572    int encrypted = 0;
573    int ret = -1;
574    int mret;
575
576    if (!fstab) {
577        return ret;
578    }
579
580    for (i = 0; i < fstab->num_entries; i++) {
581        /* Don't mount entries that are managed by vold */
582        if (fstab->recs[i].fs_mgr_flags & (MF_VOLDMANAGED | MF_RECOVERYONLY)) {
583            continue;
584        }
585
586        /* Skip swap and raw partition entries such as boot, recovery, etc */
587        if (!strcmp(fstab->recs[i].fs_type, "swap") ||
588            !strcmp(fstab->recs[i].fs_type, "emmc") ||
589            !strcmp(fstab->recs[i].fs_type, "mtd")) {
590            continue;
591        }
592
593        if (fstab->recs[i].fs_mgr_flags & MF_WAIT) {
594            wait_for_file(fstab->recs[i].blk_device, WAIT_TIMEOUT);
595        }
596
597        if (fstab->recs[i].fs_mgr_flags & MF_CHECK) {
598            check_fs(fstab->recs[i].blk_device, fstab->recs[i].fs_type,
599                     fstab->recs[i].mount_point);
600        }
601
602        if (fstab->recs[i].fs_mgr_flags & MF_VERIFY) {
603            if (fs_mgr_setup_verity(&fstab->recs[i]) < 0) {
604                ERROR("Could not set up verified partition, skipping!");
605                continue;
606            }
607        }
608
609        mret = __mount(fstab->recs[i].blk_device, fstab->recs[i].mount_point,
610                     fstab->recs[i].fs_type, fstab->recs[i].flags,
611                     fstab->recs[i].fs_options);
612
613        if (!mret) {
614            /* Success!  Go get the next one */
615            continue;
616        }
617
618        /* mount(2) returned an error, check if it's encrypted and deal with it */
619        if ((fstab->recs[i].fs_mgr_flags & MF_CRYPT) &&
620            !partition_wiped(fstab->recs[i].blk_device)) {
621            /* Need to mount a tmpfs at this mountpoint for now, and set
622             * properties that vold will query later for decrypting
623             */
624            if (mount("tmpfs", fstab->recs[i].mount_point, "tmpfs",
625                  MS_NOATIME | MS_NOSUID | MS_NODEV, CRYPTO_TMPFS_OPTIONS) < 0) {
626                ERROR("Cannot mount tmpfs filesystem for encrypted fs at %s\n",
627                        fstab->recs[i].mount_point);
628                goto out;
629            }
630            encrypted = 1;
631        } else {
632            ERROR("Cannot mount filesystem on %s at %s\n",
633                    fstab->recs[i].blk_device, fstab->recs[i].mount_point);
634            goto out;
635        }
636    }
637
638    if (encrypted) {
639        ret = 1;
640    } else {
641        ret = 0;
642    }
643
644out:
645    return ret;
646}
647
648/* If tmp_mount_point is non-null, mount the filesystem there.  This is for the
649 * tmp mount we do to check the user password
650 */
651int fs_mgr_do_mount(struct fstab *fstab, char *n_name, char *n_blk_device,
652                    char *tmp_mount_point)
653{
654    int i = 0;
655    int ret = -1;
656    char *m;
657
658    if (!fstab) {
659        return ret;
660    }
661
662    for (i = 0; i < fstab->num_entries; i++) {
663        if (!fs_match(fstab->recs[i].mount_point, n_name)) {
664            continue;
665        }
666
667        /* We found our match */
668        /* If this swap or a raw partition, report an error */
669        if (!strcmp(fstab->recs[i].fs_type, "swap") ||
670            !strcmp(fstab->recs[i].fs_type, "emmc") ||
671            !strcmp(fstab->recs[i].fs_type, "mtd")) {
672            ERROR("Cannot mount filesystem of type %s on %s\n",
673                  fstab->recs[i].fs_type, n_blk_device);
674            goto out;
675        }
676
677        /* First check the filesystem if requested */
678        if (fstab->recs[i].fs_mgr_flags & MF_WAIT) {
679            wait_for_file(n_blk_device, WAIT_TIMEOUT);
680        }
681
682        if (fstab->recs[i].fs_mgr_flags & MF_CHECK) {
683            check_fs(n_blk_device, fstab->recs[i].fs_type,
684                     fstab->recs[i].mount_point);
685        }
686
687        if (fstab->recs[i].fs_mgr_flags & MF_VERIFY) {
688            if (fs_mgr_setup_verity(&fstab->recs[i]) < 0) {
689                ERROR("Could not set up verified partition, skipping!");
690                continue;
691            }
692        }
693
694        /* Now mount it where requested */
695        if (tmp_mount_point) {
696            m = tmp_mount_point;
697        } else {
698            m = fstab->recs[i].mount_point;
699        }
700        if (__mount(n_blk_device, m, fstab->recs[i].fs_type,
701                    fstab->recs[i].flags, fstab->recs[i].fs_options)) {
702            ERROR("Cannot mount filesystem on %s at %s\n",
703                    n_blk_device, m);
704            goto out;
705        } else {
706            ret = 0;
707            goto out;
708        }
709    }
710
711    /* We didn't find a match, say so and return an error */
712    ERROR("Cannot find mount point %s in fstab\n", fstab->recs[i].mount_point);
713
714out:
715    return ret;
716}
717
718/*
719 * mount a tmpfs filesystem at the given point.
720 * return 0 on success, non-zero on failure.
721 */
722int fs_mgr_do_tmpfs_mount(char *n_name)
723{
724    int ret;
725
726    ret = mount("tmpfs", n_name, "tmpfs",
727                MS_NOATIME | MS_NOSUID | MS_NODEV, CRYPTO_TMPFS_OPTIONS);
728    if (ret < 0) {
729        ERROR("Cannot mount tmpfs filesystem at %s\n", n_name);
730        return -1;
731    }
732
733    /* Success */
734    return 0;
735}
736
737int fs_mgr_unmount_all(struct fstab *fstab)
738{
739    int i = 0;
740    int ret = 0;
741
742    if (!fstab) {
743        return -1;
744    }
745
746    while (fstab->recs[i].blk_device) {
747        if (umount(fstab->recs[i].mount_point)) {
748            ERROR("Cannot unmount filesystem at %s\n", fstab->recs[i].mount_point);
749            ret = -1;
750        }
751        i++;
752    }
753
754    return ret;
755}
756
757/* This must be called after mount_all, because the mkswap command needs to be
758 * available.
759 */
760int fs_mgr_swapon_all(struct fstab *fstab)
761{
762    int i = 0;
763    int flags = 0;
764    int err = 0;
765    int ret = 0;
766    int status;
767    char *mkswap_argv[2] = {
768        MKSWAP_BIN,
769        NULL
770    };
771
772    if (!fstab) {
773        return -1;
774    }
775
776    for (i = 0; i < fstab->num_entries; i++) {
777        /* Skip non-swap entries */
778        if (strcmp(fstab->recs[i].fs_type, "swap")) {
779            continue;
780        }
781
782        if (fstab->recs[i].zram_size > 0) {
783            /* A zram_size was specified, so we need to configure the
784             * device.  There is no point in having multiple zram devices
785             * on a system (all the memory comes from the same pool) so
786             * we can assume the device number is 0.
787             */
788            FILE *zram_fp;
789
790            zram_fp = fopen(ZRAM_CONF_DEV, "r+");
791            if (zram_fp == NULL) {
792                ERROR("Unable to open zram conf device " ZRAM_CONF_DEV);
793                ret = -1;
794                continue;
795            }
796            fprintf(zram_fp, "%d\n", fstab->recs[i].zram_size);
797            fclose(zram_fp);
798        }
799
800        if (fstab->recs[i].fs_mgr_flags & MF_WAIT) {
801            wait_for_file(fstab->recs[i].blk_device, WAIT_TIMEOUT);
802        }
803
804        /* Initialize the swap area */
805        mkswap_argv[1] = fstab->recs[i].blk_device;
806        err = android_fork_execvp_ext(ARRAY_SIZE(mkswap_argv), mkswap_argv,
807                                      &status, true, LOG_KLOG, false, NULL);
808        if (err) {
809            ERROR("mkswap failed for %s\n", fstab->recs[i].blk_device);
810            ret = -1;
811            continue;
812        }
813
814        /* If -1, then no priority was specified in fstab, so don't set
815         * SWAP_FLAG_PREFER or encode the priority */
816        if (fstab->recs[i].swap_prio >= 0) {
817            flags = (fstab->recs[i].swap_prio << SWAP_FLAG_PRIO_SHIFT) &
818                    SWAP_FLAG_PRIO_MASK;
819            flags |= SWAP_FLAG_PREFER;
820        } else {
821            flags = 0;
822        }
823        err = swapon(fstab->recs[i].blk_device, flags);
824        if (err) {
825            ERROR("swapon failed for %s\n", fstab->recs[i].blk_device);
826            ret = -1;
827        }
828    }
829
830    return ret;
831}
832
833/*
834 * key_loc must be at least PROPERTY_VALUE_MAX bytes long
835 *
836 * real_blk_device must be at least PROPERTY_VALUE_MAX bytes long
837 */
838int fs_mgr_get_crypt_info(struct fstab *fstab, char *key_loc, char *real_blk_device, int size)
839{
840    int i = 0;
841
842    if (!fstab) {
843        return -1;
844    }
845    /* Initialize return values to null strings */
846    if (key_loc) {
847        *key_loc = '\0';
848    }
849    if (real_blk_device) {
850        *real_blk_device = '\0';
851    }
852
853    /* Look for the encryptable partition to find the data */
854    for (i = 0; i < fstab->num_entries; i++) {
855        /* Don't deal with vold managed enryptable partitions here */
856        if (fstab->recs[i].fs_mgr_flags & MF_VOLDMANAGED) {
857            continue;
858        }
859        if (!(fstab->recs[i].fs_mgr_flags & MF_CRYPT)) {
860            continue;
861        }
862
863        /* We found a match */
864        if (key_loc) {
865            strlcpy(key_loc, fstab->recs[i].key_loc, size);
866        }
867        if (real_blk_device) {
868            strlcpy(real_blk_device, fstab->recs[i].blk_device, size);
869        }
870        break;
871    }
872
873    return 0;
874}
875
876/* Add an entry to the fstab, and return 0 on success or -1 on error */
877int fs_mgr_add_entry(struct fstab *fstab,
878                     const char *mount_point, const char *fs_type,
879                     const char *blk_device, long long length)
880{
881    struct fstab_rec *new_fstab_recs;
882    int n = fstab->num_entries;
883
884    new_fstab_recs = (struct fstab_rec *)
885                     realloc(fstab->recs, sizeof(struct fstab_rec) * (n + 1));
886
887    if (!new_fstab_recs) {
888        return -1;
889    }
890
891    /* A new entry was added, so initialize it */
892     memset(&new_fstab_recs[n], 0, sizeof(struct fstab_rec));
893     new_fstab_recs[n].mount_point = strdup(mount_point);
894     new_fstab_recs[n].fs_type = strdup(fs_type);
895     new_fstab_recs[n].blk_device = strdup(blk_device);
896     new_fstab_recs[n].length = 0;
897
898     /* Update the fstab struct */
899     fstab->recs = new_fstab_recs;
900     fstab->num_entries++;
901
902     return 0;
903}
904
905struct fstab_rec *fs_mgr_get_entry_for_mount_point(struct fstab *fstab, const char *path)
906{
907    int i;
908
909    if (!fstab) {
910        return NULL;
911    }
912
913    for (i = 0; i < fstab->num_entries; i++) {
914        int len = strlen(fstab->recs[i].mount_point);
915        if (strncmp(path, fstab->recs[i].mount_point, len) == 0 &&
916            (path[len] == '\0' || path[len] == '/')) {
917            return &fstab->recs[i];
918        }
919    }
920
921    return NULL;
922}
923
924int fs_mgr_is_voldmanaged(struct fstab_rec *fstab)
925{
926    return fstab->fs_mgr_flags & MF_VOLDMANAGED;
927}
928
929int fs_mgr_is_nonremovable(struct fstab_rec *fstab)
930{
931    return fstab->fs_mgr_flags & MF_NONREMOVABLE;
932}
933
934int fs_mgr_is_encryptable(struct fstab_rec *fstab)
935{
936    return fstab->fs_mgr_flags & MF_CRYPT;
937}
938
939int fs_mgr_is_noemulatedsd(struct fstab_rec *fstab)
940{
941    return fstab->fs_mgr_flags & MF_NOEMULATEDSD;
942}
943