Vector.h revision 320a2b410329998a60d754171e06f872aa9c0467
1/*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ANDROID_VECTOR_H
18#define ANDROID_VECTOR_H
19
20#include <new>
21#include <stdint.h>
22#include <sys/types.h>
23
24#include <utils/Log.h>
25#include <utils/VectorImpl.h>
26#include <utils/TypeHelpers.h>
27
28// ---------------------------------------------------------------------------
29
30namespace android {
31
32template <typename TYPE>
33class SortedVector;
34
35/*!
36 * The main templated vector class ensuring type safety
37 * while making use of VectorImpl.
38 * This is the class users want to use.
39 */
40
41template <class TYPE>
42class Vector : private VectorImpl
43{
44public:
45            typedef TYPE    value_type;
46
47    /*!
48     * Constructors and destructors
49     */
50
51                            Vector();
52                            Vector(const Vector<TYPE>& rhs);
53    explicit                Vector(const SortedVector<TYPE>& rhs);
54    virtual                 ~Vector();
55
56    /*! copy operator */
57            const Vector<TYPE>&     operator = (const Vector<TYPE>& rhs) const;
58            Vector<TYPE>&           operator = (const Vector<TYPE>& rhs);
59
60            const Vector<TYPE>&     operator = (const SortedVector<TYPE>& rhs) const;
61            Vector<TYPE>&           operator = (const SortedVector<TYPE>& rhs);
62
63            /*
64     * empty the vector
65     */
66
67    inline  void            clear()             { VectorImpl::clear(); }
68
69    /*!
70     * vector stats
71     */
72
73    //! returns number of items in the vector
74    inline  size_t          size() const                { return VectorImpl::size(); }
75    //! returns wether or not the vector is empty
76    inline  bool            isEmpty() const             { return VectorImpl::isEmpty(); }
77    //! returns how many items can be stored without reallocating the backing store
78    inline  size_t          capacity() const            { return VectorImpl::capacity(); }
79    //! setst the capacity. capacity can never be reduced less than size()
80    inline  ssize_t         setCapacity(size_t size)    { return VectorImpl::setCapacity(size); }
81
82    /*!
83     * C-style array access
84     */
85
86    //! read-only C-style access
87    inline  const TYPE*     array() const;
88    //! read-write C-style access
89            TYPE*           editArray();
90
91    /*!
92     * accessors
93     */
94
95    //! read-only access to an item at a given index
96    inline  const TYPE&     operator [] (size_t index) const;
97    //! alternate name for operator []
98    inline  const TYPE&     itemAt(size_t index) const;
99    //! stack-usage of the vector. returns the top of the stack (last element)
100            const TYPE&     top() const;
101    //! same as operator [], but allows to access the vector backward (from the end) with a negative index
102            const TYPE&     mirrorItemAt(ssize_t index) const;
103
104    /*!
105     * modifing the array
106     */
107
108    //! copy-on write support, grants write access to an item
109            TYPE&           editItemAt(size_t index);
110    //! grants right acces to the top of the stack (last element)
111            TYPE&           editTop();
112
113            /*!
114             * append/insert another vector
115             */
116
117    //! insert another vector at a given index
118            ssize_t         insertVectorAt(const Vector<TYPE>& vector, size_t index);
119
120    //! append another vector at the end of this one
121            ssize_t         appendVector(const Vector<TYPE>& vector);
122
123
124    //! insert an array at a given index
125            ssize_t         insertArrayAt(const TYPE* array, size_t index, size_t length);
126
127    //! append an array at the end of this vector
128            ssize_t         appendArray(const TYPE* array, size_t length);
129
130            /*!
131             * add/insert/replace items
132             */
133
134    //! insert one or several items initialized with their default constructor
135    inline  ssize_t         insertAt(size_t index, size_t numItems = 1);
136    //! insert one or several items initialized from a prototype item
137            ssize_t         insertAt(const TYPE& prototype_item, size_t index, size_t numItems = 1);
138    //! pop the top of the stack (removes the last element). No-op if the stack's empty
139    inline  void            pop();
140    //! pushes an item initialized with its default constructor
141    inline  void            push();
142    //! pushes an item on the top of the stack
143            void            push(const TYPE& item);
144    //! same as push() but returns the index the item was added at (or an error)
145    inline  ssize_t         add();
146    //! same as push() but returns the index the item was added at (or an error)
147            ssize_t         add(const TYPE& item);
148    //! replace an item with a new one initialized with its default constructor
149    inline  ssize_t         replaceAt(size_t index);
150    //! replace an item with a new one
151            ssize_t         replaceAt(const TYPE& item, size_t index);
152
153    /*!
154     * remove items
155     */
156
157    //! remove several items
158    inline  ssize_t         removeItemsAt(size_t index, size_t count = 1);
159    //! remove one item
160    inline  ssize_t         removeAt(size_t index)  { return removeItemsAt(index); }
161
162    /*!
163     * sort (stable) the array
164     */
165
166     typedef int (*compar_t)(const TYPE* lhs, const TYPE* rhs);
167     typedef int (*compar_r_t)(const TYPE* lhs, const TYPE* rhs, void* state);
168
169     inline status_t        sort(compar_t cmp);
170     inline status_t        sort(compar_r_t cmp, void* state);
171
172     // for debugging only
173     inline size_t getItemSize() const { return itemSize(); }
174
175
176     /*
177      * these inlines add some level of compatibility with STL. eventually
178      * we should probably turn things around.
179      */
180     typedef TYPE* iterator;
181     typedef TYPE const* const_iterator;
182
183     inline iterator begin() { return editArray(); }
184     inline iterator end()   { return editArray() + size(); }
185     inline const_iterator begin() const { return array(); }
186     inline const_iterator end() const   { return array() + size(); }
187     inline void reserve(size_t n) { setCapacity(n); }
188     inline bool empty() const{ return isEmpty(); }
189     inline void push_back(const TYPE& item)  { insertAt(item, size()); }
190     inline void push_front(const TYPE& item) { insertAt(item, 0); }
191     inline iterator erase(iterator pos) {
192         return begin() + removeItemsAt(pos-array());
193     }
194
195protected:
196    virtual void    do_construct(void* storage, size_t num) const;
197    virtual void    do_destroy(void* storage, size_t num) const;
198    virtual void    do_copy(void* dest, const void* from, size_t num) const;
199    virtual void    do_splat(void* dest, const void* item, size_t num) const;
200    virtual void    do_move_forward(void* dest, const void* from, size_t num) const;
201    virtual void    do_move_backward(void* dest, const void* from, size_t num) const;
202};
203
204
205// ---------------------------------------------------------------------------
206// No user serviceable parts from here...
207// ---------------------------------------------------------------------------
208
209template<class TYPE> inline
210Vector<TYPE>::Vector()
211    : VectorImpl(sizeof(TYPE),
212                ((traits<TYPE>::has_trivial_ctor   ? HAS_TRIVIAL_CTOR   : 0)
213                |(traits<TYPE>::has_trivial_dtor   ? HAS_TRIVIAL_DTOR   : 0)
214                |(traits<TYPE>::has_trivial_copy   ? HAS_TRIVIAL_COPY   : 0))
215                )
216{
217}
218
219template<class TYPE> inline
220Vector<TYPE>::Vector(const Vector<TYPE>& rhs)
221    : VectorImpl(rhs) {
222}
223
224template<class TYPE> inline
225Vector<TYPE>::Vector(const SortedVector<TYPE>& rhs)
226    : VectorImpl(static_cast<const VectorImpl&>(rhs)) {
227}
228
229template<class TYPE> inline
230Vector<TYPE>::~Vector() {
231    finish_vector();
232}
233
234template<class TYPE> inline
235Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) {
236    VectorImpl::operator = (rhs);
237    return *this;
238}
239
240template<class TYPE> inline
241const Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) const {
242    VectorImpl::operator = (static_cast<const VectorImpl&>(rhs));
243    return *this;
244}
245
246template<class TYPE> inline
247Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) {
248    VectorImpl::operator = (static_cast<const VectorImpl&>(rhs));
249    return *this;
250}
251
252template<class TYPE> inline
253const Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const {
254    VectorImpl::operator = (rhs);
255    return *this;
256}
257
258template<class TYPE> inline
259const TYPE* Vector<TYPE>::array() const {
260    return static_cast<const TYPE *>(arrayImpl());
261}
262
263template<class TYPE> inline
264TYPE* Vector<TYPE>::editArray() {
265    return static_cast<TYPE *>(editArrayImpl());
266}
267
268
269template<class TYPE> inline
270const TYPE& Vector<TYPE>::operator[](size_t index) const {
271    LOG_FATAL_IF( index>=size(),
272                  "itemAt: index %d is past size %d", (int)index, (int)size() );
273    return *(array() + index);
274}
275
276template<class TYPE> inline
277const TYPE& Vector<TYPE>::itemAt(size_t index) const {
278    return operator[](index);
279}
280
281template<class TYPE> inline
282const TYPE& Vector<TYPE>::mirrorItemAt(ssize_t index) const {
283    LOG_FATAL_IF( (index>0 ? index : -index)>=size(),
284                  "mirrorItemAt: index %d is past size %d",
285                  (int)index, (int)size() );
286    return *(array() + ((index<0) ? (size()-index) : index));
287}
288
289template<class TYPE> inline
290const TYPE& Vector<TYPE>::top() const {
291    return *(array() + size() - 1);
292}
293
294template<class TYPE> inline
295TYPE& Vector<TYPE>::editItemAt(size_t index) {
296    return *( static_cast<TYPE *>(editItemLocation(index)) );
297}
298
299template<class TYPE> inline
300TYPE& Vector<TYPE>::editTop() {
301    return *( static_cast<TYPE *>(editItemLocation(size()-1)) );
302}
303
304template<class TYPE> inline
305ssize_t Vector<TYPE>::insertVectorAt(const Vector<TYPE>& vector, size_t index) {
306    return VectorImpl::insertVectorAt(reinterpret_cast<const VectorImpl&>(vector), index);
307}
308
309template<class TYPE> inline
310ssize_t Vector<TYPE>::appendVector(const Vector<TYPE>& vector) {
311    return VectorImpl::appendVector(reinterpret_cast<const VectorImpl&>(vector));
312}
313
314template<class TYPE> inline
315ssize_t Vector<TYPE>::insertArrayAt(const TYPE* array, size_t index, size_t length) {
316    return VectorImpl::insertArrayAt(array, index, length);
317}
318
319template<class TYPE> inline
320ssize_t Vector<TYPE>::appendArray(const TYPE* array, size_t length) {
321    return VectorImpl::appendArray(array, length);
322}
323
324template<class TYPE> inline
325ssize_t Vector<TYPE>::insertAt(const TYPE& item, size_t index, size_t numItems) {
326    return VectorImpl::insertAt(&item, index, numItems);
327}
328
329template<class TYPE> inline
330void Vector<TYPE>::push(const TYPE& item) {
331    return VectorImpl::push(&item);
332}
333
334template<class TYPE> inline
335ssize_t Vector<TYPE>::add(const TYPE& item) {
336    return VectorImpl::add(&item);
337}
338
339template<class TYPE> inline
340ssize_t Vector<TYPE>::replaceAt(const TYPE& item, size_t index) {
341    return VectorImpl::replaceAt(&item, index);
342}
343
344template<class TYPE> inline
345ssize_t Vector<TYPE>::insertAt(size_t index, size_t numItems) {
346    return VectorImpl::insertAt(index, numItems);
347}
348
349template<class TYPE> inline
350void Vector<TYPE>::pop() {
351    VectorImpl::pop();
352}
353
354template<class TYPE> inline
355void Vector<TYPE>::push() {
356    VectorImpl::push();
357}
358
359template<class TYPE> inline
360ssize_t Vector<TYPE>::add() {
361    return VectorImpl::add();
362}
363
364template<class TYPE> inline
365ssize_t Vector<TYPE>::replaceAt(size_t index) {
366    return VectorImpl::replaceAt(index);
367}
368
369template<class TYPE> inline
370ssize_t Vector<TYPE>::removeItemsAt(size_t index, size_t count) {
371    return VectorImpl::removeItemsAt(index, count);
372}
373
374template<class TYPE> inline
375status_t Vector<TYPE>::sort(Vector<TYPE>::compar_t cmp) {
376    return VectorImpl::sort((VectorImpl::compar_t)cmp);
377}
378
379template<class TYPE> inline
380status_t Vector<TYPE>::sort(Vector<TYPE>::compar_r_t cmp, void* state) {
381    return VectorImpl::sort((VectorImpl::compar_r_t)cmp, state);
382}
383
384// ---------------------------------------------------------------------------
385
386template<class TYPE>
387void Vector<TYPE>::do_construct(void* storage, size_t num) const {
388    construct_type( reinterpret_cast<TYPE*>(storage), num );
389}
390
391template<class TYPE>
392void Vector<TYPE>::do_destroy(void* storage, size_t num) const {
393    destroy_type( reinterpret_cast<TYPE*>(storage), num );
394}
395
396template<class TYPE>
397void Vector<TYPE>::do_copy(void* dest, const void* from, size_t num) const {
398    copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
399}
400
401template<class TYPE>
402void Vector<TYPE>::do_splat(void* dest, const void* item, size_t num) const {
403    splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num );
404}
405
406template<class TYPE>
407void Vector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const {
408    move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
409}
410
411template<class TYPE>
412void Vector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const {
413    move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
414}
415
416}; // namespace android
417
418
419// ---------------------------------------------------------------------------
420
421#endif // ANDROID_VECTOR_H
422