/* * Copyright (C) 2010 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.clearsilver.jsilver.syntax; import com.google.clearsilver.jsilver.syntax.analysis.DepthFirstAdapter; import com.google.clearsilver.jsilver.syntax.node.AAddExpression; import com.google.clearsilver.jsilver.syntax.node.ADecimalExpression; import com.google.clearsilver.jsilver.syntax.node.ADivideExpression; import com.google.clearsilver.jsilver.syntax.node.AEqExpression; import com.google.clearsilver.jsilver.syntax.node.AFunctionExpression; import com.google.clearsilver.jsilver.syntax.node.AHexExpression; import com.google.clearsilver.jsilver.syntax.node.AModuloExpression; import com.google.clearsilver.jsilver.syntax.node.AMultiplyExpression; import com.google.clearsilver.jsilver.syntax.node.ANameVariable; import com.google.clearsilver.jsilver.syntax.node.ANeExpression; import com.google.clearsilver.jsilver.syntax.node.ANegativeExpression; import com.google.clearsilver.jsilver.syntax.node.ANumericAddExpression; import com.google.clearsilver.jsilver.syntax.node.ANumericEqExpression; import com.google.clearsilver.jsilver.syntax.node.ANumericExpression; import com.google.clearsilver.jsilver.syntax.node.ANumericNeExpression; import com.google.clearsilver.jsilver.syntax.node.ASubtractExpression; import com.google.clearsilver.jsilver.syntax.node.PExpression; import com.google.clearsilver.jsilver.syntax.node.PVariable; /** * AST visitor to add numeric expressions to the syntax tree. * *

* There are three types of expression we need to process; addition, equality and inequality. By * default these are treated as string expressions unless one of the operands is numeric, in which * case the original expression is replaced with its numeric equivalent. This behavior seems to * exactly match Clearsilver's type inference system. * *

* Note how we preprocess our node before testing to see is it should be replaced. This is very * important because it means that type inference is propagated correctly along compound * expressions. Consider the expression: * *

#a + b + c
* * which is parsed (left-to-right) as: * *
(#a + b) + c
* * When we process the left-hand-side sub-expression {@code #a + b} it is turned into a numeric * addition (due to the forced numeric value on the left). Then when we process the main expression * we propagate the numeric type into it. * *

* This matches Clearsilver behavior but means that the expressions: * *

#a + b + c
* * and * *
c + b + #a
* * produce different results (the {@code c + b} subexpression in the latter is evaluated as string * concatenation and not numeric addition). */ public class TypeResolver extends DepthFirstAdapter { @Override public void caseAAddExpression(AAddExpression node) { super.caseAAddExpression(node); PExpression lhs = node.getLeft(); PExpression rhs = node.getRight(); if (isNumeric(lhs) || isNumeric(rhs)) { node.replaceBy(new ANumericAddExpression(lhs, rhs)); } } @Override public void caseAEqExpression(AEqExpression node) { super.caseAEqExpression(node); PExpression lhs = node.getLeft(); PExpression rhs = node.getRight(); if (isNumeric(lhs) || isNumeric(rhs)) { node.replaceBy(new ANumericEqExpression(lhs, rhs)); } } @Override public void caseANeExpression(ANeExpression node) { super.caseANeExpression(node); PExpression lhs = node.getLeft(); PExpression rhs = node.getRight(); if (isNumeric(lhs) || isNumeric(rhs)) { node.replaceBy(new ANumericNeExpression(lhs, rhs)); } } /** * Determines whether the given (sub)expression is numeric, which in turn means that its parent * expression should be treated as numeric if possible. */ static boolean isNumeric(PExpression node) { return node instanceof ANumericExpression // forced numeric (#a) || node instanceof ANumericAddExpression // numeric addition (a + b) || node instanceof ASubtractExpression // subtraction (a - b) || node instanceof AMultiplyExpression // multiplication (a * b) || node instanceof ADivideExpression // division (a / b) || node instanceof AModuloExpression // modulu (x % b) || node instanceof ADecimalExpression // literal decimal (213) || node instanceof AHexExpression // literal hex (0xabc or 0XABC) || node instanceof ANegativeExpression // negative expression (-a) || isNumericFunction(node); // numeric function (subcount) } /** * Determine if the given expression represents a numeric function. */ static boolean isNumericFunction(PExpression node) { if (!(node instanceof AFunctionExpression)) { return false; } PVariable functionName = ((AFunctionExpression) node).getName(); if (functionName instanceof ANameVariable) { String name = ((ANameVariable) functionName).getWord().getText(); if ("max".equals(name) || "min".equals(name) || "abs".equals(name) || "subcount".equals(name)) { return true; } } return false; } }